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Abstract

In the paper we develop Random Vortex Blob method for the case of flows in periodic domains.
It is shown how the formulation of the problem must be modified to account for the periodicity
constraint. Properties of periodic vorticity particles are discussed. We also derive a rigorous
method to satisfy the boundary conditions. Example computations concern the flow in an X-
periodic duct with moving boundaries and varying in time pressure gradient.

1 Introduction

In the present paper we are interested in an incompressible viscous fluid flow through an infinitely
long horizontal channel. We consider two-dimensional (2D) flows and in order to properly ac-
count for the infinite length of the channel we will assume that both the flow domain and the
corresponding flow quantities are X-periodic with some characteristic period L = 2π. We will
investigate flows at turbulent, yet not too high, values of the Reynolds numbers. In our study the
flow is driven by (i) pressure gradient (i.e. the prescribed drop of pressure across one segment of
the channel) and/or (ii) the motion of the boundaries. This particular flow configuration repre-
sents phenomena taking place during digestion in living organisms as well as those encountered in
process engineering. The flow configuration is outlined in Fig.1. The problem is solved using the
Random Vortex Blob Method, an extension of the implementation described in [1]. However, in
order to properly account for the requirement of X-periodicity, some additional problems have to
be addressed. First, one must assure that the relevant hydrodynamic quantities are all X-periodic
by construction. Then it will be shown that periodicity imposes an additional constraint which
relates the total vorticity production in the boundary layer to the pressure drop across one segment
of the duct and the acceleration of the boundaries.

The organization of the paper is as follows. In the next Section we give the mathematical de-
scription of the problem and outline the solution method, in the following Section we consider the
properties of the X-periodic vorticity carrier, in Section 4 we relate the vorticity production in
the boundary layer to the corresponding pressure drop, in Section 5 we present some results of
the numerical simulations, and, finally in Section 6, we give some conclusions and discuss further
perspectives.
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Figure 1: Flow configuration.

2 Formulation of the Problem and the Solution Method

The problem is described using the velocity-vorticity form of the momentum equations with ap-
propriate initial and boundary conditions for velocity. In our investigation the flow is initially at
rest and velocity boundary condition represents the prescribed motion of the duct walls. Because
of the assumption of X-periodicity, corresponding constraints have to be added to the governing
system 

∂ω
∂t +

(
~V · ∇

)
ω = ν4ω

∇ · ~V = 0
~V (x, y, 0) = 0, ~V |Γ = ~Vb
~V (x, y, t) = ~V (x+ 2kπ, y, t) , k = 0,±1, . . .
∇p (x, y, t) = ∇p (x+ 2kπ, y, t)

}
(a)

[p]1−2 = p2 − p1 = C(t). (b)

(1)

The relations (Eq.1a) represent the X-periodicity requirement for the hydrodynamic fields (note
that the first of these relations implies the X-periodicity of the corresponding vorticity field ω =
∂u
∂y −

∂v
∂x), whereas (Eq.1b) is the varying in time pressure drop across one segment of the channel.

It should be emphasized that it is strictly necessary to take this condition into account, since
otherwise the problem would not be uniquely posed. This is because for given boundary velocity
and the period L one can obtain flows with different pressure drops.

The above system of partial differential equations (PDE’s) is solved using the Random Vortex Blob
Method originally introduced in [2]. Our approach is an extension of the method developed in [1],
some additional measures have however to be taken in order to satisfy the periodicity constraints.
In principle the method makes use of the random walk to model viscous diffusion and incorporates
a rigorous algorithm which controls vorticity production in the boundary layer, so that the no-slip
condition for velocity is satisfied. Below we give a brief outline of the method.

First we discretize the vorticity field on the Lagrangian grid

ω (x, y, t) ∼=
N∑
i=1

Γiχσ (xi(t), yi(t), t) , (2)

where Γi is the circulation of a given vortex blob and ψσ is a function which describes the distri-
bution of vorticity within the support of the vorticity carrier characterized by the core size σ. The
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Figure 2: Locations of the new vortex blobs on the boundary.

function χσ must be X-periodic as it is related to an infinite array of vortices aligned along the
X-axis. In the following section we will discuss the kinematic properties of such a vortex system.
Every single vortex blob may thus be regarded as a representative of an infinite family of its im-
ages. As is well known, the 2D vorticity equation is formally similar to the Planck-Fokker equation
describing the evolution of the stochastic non-anticipating Wiener process [3]. Consequently, the
time development of the vorticity field may be approximated as the evolution of a family of vortex
blobs, each of them moving according to the stochastic Ito equation

dx̄ = ~V dt+
√

2ν ¯dW, (3)

where dx̄ is an infinitesimal displacement of a vortex carrier, ~V = [u, v] is the deterministic velocity
field (i.e. the “drift”),

√
2ν is the amplitude of the random walk and dW̄ = [Wx,Wy] stand for

infinitesimal increments of the Wiener process. Equation (3) can be integrated forward in time
resulting in the trajectories of the vorticity carriers. In our approach the velocity field ~V has the
representation

~V = ~VBO + ~VBN + ~VA + ~VΓ, (4)

where the constituent fields have the following interpretations:

• ~VBO, ~VBN - velocity fields induced by the old (respectively BO) and new (respectively BN)
generations of vortex blobs; they are a linear superposition of velocities due to particular
vortices and are X-periodic by construction (see discussion in the next section),

• ~VA - an auxiliary potential velocity field (also periodic in the X-direction), and

• ~VΓ - velocity field due to two periodic contour-connected vortices Γa and Γb located above
and below each segment of the channel, the necessity for incorporation of these vortices will
be clarified in Section 4.

All these fields are potential everywhere, apart from ~VBO and ~VBN which are vortical within the
supports of the vorticity carriers and are potential outside. At every time step all of the old
vorticity carriers are advected and simultaneously a new generation of vortices is introduced in the
immediate proximity of the wall to account for the vorticity production in the boundary layer. The
locations of the new particles are schematically shown in Fig.2. The following rigorous algorithm
is used to determine the circulations of the new vortices. According to (4), the tangential V t

b and
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normal V n
b components of the boundary velocity are given by{

V t
b = V t

BO + V t
BN + V t

A + V t
Γ

V n
b = V n

BO + V n
BN + V n

A + V n
Γ

(5)

We now use the Hilbert transformation [4], represented by a linear integral operator L, which
assigns the corresponding tangential component to the normal component of any given potential
vector field taken on the boundary

V t = L (V n) , (6)

where V n = (~n · ∇Φ) and V t = (~τ · ∇Φ). Applying the above operator to the field ~VA we obtain

V t
A = L (−V nBO − V n

BN − V n
Γ − V n

b ) (7)

and we can thus collapse (5) into a single equation for the tangential component of the boundary
velocity

V t
BO + V t

BN + V t
Γ −L (V n

BO + V n
BN + V n

Γ + V n
b ) = V t

b . (8)

This equation can be used to determine the intensities of the new vortices. It may be satisfied
pointwise, at points corresponding to the projections of the vortex centers on the contour, or in the
mean sense, averaged over the boundary segments which cross-sect the blobs. In our investigation
we choose the latter possibility and integrate (8) over the segments [sk, sk+1] , k = 1, . . . ,NB,
where NB denotes the number of blobs in the new generation. The fields ~VBN and ~VΓ are due to
vortices with fixed locations (cf. Fig.2) and therefore can have the following representations

V n
BN (s) =

NB∑
i=1

ΓiNi(s)

V t
BN (s) =

NB∑
i=1

ΓiTi(s)

V n
Γa/b

(s) = ΓaNa(s) + ΓbNb(s)
V t

Γa/b
(s) = ΓaTa(s) + ΓbTb(s),

(9)

where s is the arc length coordinate along the contour. The functions Ni(s) and Ti(s) represent
the normal and tangential velocity components induced by vortices with unit circulation located at
(xi, yi). The subscripts a and b denote contour-connected vortices located outside the flow domain,
above and below the channel walls (Fig.4). Consequently, the relation (8) transforms into a system
of algebraic equations

KΓ = B, (10)

where

Kij =
∫ si+1

si
(Tj −LNj) (s′)ds′, i = 1, . . . ,NB, j = 1, . . . ,NB + 2 (11)

are the elements of the “influence matrix” representing the mutual induction of the new vortices
and

Bi = −
∫ sj+1

sj

(
V t
BO + V t

BN + V t
Γ

)
(s′)ds′ +

∫ sj+1

sj

L (V n
BO + V n

BN + V n
Γ + V n

b ) (s′)ds′, (12)
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Figure 3: Construction of the X-periodic vorticity carrier.

are the right-hand side terms which stand for the perturbation of the boundary velocity due to
displacement of the vorticity already present in the flow field. Consequently, the system (10)
determines how the circulations of the new vortices, both those created in the boundary layer
and the two which remain contour-connected, should be adjusted so as to compensate for the
boundary velocity perturbation resulting from the displacement of the old blobs and acceleration
of the boundary. The system therefore consists of NB equations for NB + 2 unknowns Γi which
are the circulations of the NB new vortex blobs and the two contour-connected vortices Γa and
Γb. In Section 4 we will derive the two missing equations using the constraints on the vorticity
production in the boundary layer.

3 Construction of the X-periodic Vorticity Carrier

In the present section we are concerned with the derivation of the induction formulas for the X-
periodic vorticity carrier. As was already remarked, such a vortex can in fact be represented as
an infinite array of vortices aligned along the X-axis [5]. All vortices carry the circulation Γ and
are separated by the distance 2π from each other (Fig. 3). The velocity induced by such a system
can be obtained by summing up the velocities induced by all the images (for simplicity we use the
complex notation with V (z) = (u− iv) (z) and z = x+ iy, where i stands for the imaginary unit)

Vind(z) =
∞∑

n=−∞

Γ
2πi

1
z − (z0 + 2πn)

=
Γ

2πi
cot

(
z − z0

2

)
. (13)

In the above z0 is the location of a representative vortex (z0 = 0 for the configuration shown in
Fig.3). One can easily verify that the corresponding complex potential W (z) is given by

W (z) =
Γ

4πi
ln sin

(
z − z0

2

)
. (14)

The real part of (14) is the Green’s function of the underlying Neumann problem for the Laplace
equation. Formula (13) has interesting asymptotic properties. For y going to infinity the X-
component of the induced velocity does not decay to zero, instead it approaches some finite value

lim
y→±∞

Vind = ± Γ
4π . This fact however does not have any consequences for our method, since we

restrict our investigation to flows in closed domains. At the origin (i.e. for z → z0) the formula
(13) behaves like a single point-vortex with Vind

z→z0−→ Γ
2πi

1
z−z0 . Of course, for the purpose of

desingularization, it is necessary to convolve the induction formula (13) with a suitable mollifying
function. In our study we use blobs with constant vorticity distribution within the vortex core and
zero outside. Consequently, formula (13) has to be modified to account for situations when z0 lies
within the core. To this end, when |z − z0| < σ

2 , we subtract from (13) the singular term Γ
2πi

1
z−z0
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and then add the solid body rotation represented by Γ
2πi

z−z0
σ2 , where the overbar denotes complex

conjugation. Finally, one could observe that for an Y-periodic array of vortices the trigonometric
functions in formulas (13) and (14) (i.e. cot and sin) should be replaced by their hyperbolic
counterparts (i.e. coth and sinh).

4 Solution of the Potential Problem in the X-periodic Domain

The remaining element that has to be determined in the representation (4) is the auxiliary field
~VA. It is a potential field and therefore can be found as the gradient ~VA = ∇Φ of the potential Φ
which is the solution of the Neumann problem for the Laplace equation posed in the X-periodic
domain 

4Φ = 0
(n · ∇) Φ = V n

A

Φ (x, y) = Φ (x+ 2πk, y) , k = 0,±1, . . .
(15)

The Neumann-type boundary condition in the above problem is determined using the relation (5).
This kind of the Laplace problem can be solved using a variety of methods. In our case we use
the Boundary Element Method suitably modified to account for periodicity. First it is necessary
to find the boundary value of the potential Φ. It is the solution of the boundary integral equation

Φ(sP ) +
1
π

∮
Γ
Re

[
1
2

cot
(
z − z0

2

)
nQ

]
Φ(sQ)dsQ

=
1
π

∮
Γ
Re

[
1
2

ln sin
(
z − z0

2

)
nQ

]
dΦ(sQ)
dnQ

dsQ, P,Q ∈ Γ, (16)

where the X-periodic kernel functions have been used. The above is the Fredholm equation of the
second kind and can be solved using standard techniques. At this point it is possible to reconstruct
the field VA at any point belonging to the flow domain. To this end one can use the Cauchy-type
integral with the suitable X-periodic kernel

VA(z) = (u− iv)(z) =
1

4πi

∮
Γ
V (τ) cot

(
z − τ

2

)
dτ =

1
8πi

∮
Γ

W (τ)
sin2

(z−τ
2

)dτ, z ∈ Ω, τ ∈ Γ. (17)

In these expressions W (τ) denotes the boundary value of the complex potential W = Φ + iΨ,
where Φ is the solution of (16), whereas Ψ (i.e. the streamfunction) can be found as Ψ(s) =∫ s
0 V

n
A (τ)dτ + Ψ(0). The potential velocity V (τ) on the boundary is the derivative dW

dz of the
complex potential W taken along the contour.

5 Relation Between Vorticity Production and Pressure Drop Across
One Segment of the Duct

In the present section we derive the formula which relates vorticity production in the boundary
layer to the pressure drop [p]1−2 across one section of the channel. This relation turns out to be
a necessary supplement to the governing system (1) in multiply connected domains. The review
papers [6] and [7] account for the pressure constraints in the context of the velocity-vorticity
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Figure 4: Topological equivalence between the flow in a periodic duct and the flow in an annular
domain with a pressure jump.

formulation of the momentum equations. From the topological point of view, our flow configuration
(denoted “T1” in Fig.4) is equivalent to either of the two annular configurations (denoted “T2”
and “T3” in Fig.4) involving a pressure jump across the cut (i.e. between the points A-C and B-D).
There is no net flow in the normal direction, so consequently there can be no pressure difference
between the pairs of points A-B and C-D. We will now express the pressure jump [p]1−2 in terms
of vorticity production in the boundary layer. First, we project the Navier-Stokes equation in the
Lamb form on the direction tangential to the boundary Γ

~τ · ∂
~V

∂t
−
(
~V · ~n

)
ω = − ∂

∂s

(
p+

V 2

2

)
− ν ∂ω

∂n
, (18)

where ~n and ~τ denote versors normal and tangential to the boundary. We now integrate (18) along
one segment of the channel, i.e. from A to C, or equivalently from B to D

[p]1−2 = −
∫ C

A
~τ · ∂

~V

∂t
ds+ ν

∫ C

A

∂ω

∂n
ds. (19)

Note that the non-linear advection term drops out due to the impermeability condition on the
boundary, whereas the contribution from V 2

2 vanishes because of continuity of the velocity field.
The above relation clearly shows that in order for the pressure drop to be equal to the prescribed
value, the integral vorticity flux across the boundary must satisfy a constraint which also incor-
porates a term corresponding to the boundary acceleration. Equations of the type (19) can be
written for each part of the boundary, in our case A-C and B-D, thus providing the two necessary
equations complementing the algebraic system (10). It is now obvious that because of these inte-
gral constraints, two additional “degrees of freedom” are necessary, so that the algebraic system
(10) is not overdetermined. This clarifies the role played by the two contour-connected vortices
Γa and Γb. The presented argument implies that even though we deal with an internal flow, it
has some features of external flows which are due to the requirement of periodicity. In a real
flow in an annular domain, or a flow exterior to a contour, the relation (19) will also hold, with
the reservation however that there will be no pressure jump resulting in a single-valued pressure
distribution. This implies the existence of a relation between the pressure jump and the circula-
tion of the velocity field around the contour in all multi-connected domains. Finally, one should
observe that a constraint similar to (19) naturally enters in certain formulations of the boundary
conditions for the Vortex Method (e.g. [8]).

ESAIM: Proc., Vol. 7, 1999, 355 -358



B. Protas, A. Styczek 356

Figure 5: The velocity (left) and vorticity (right) fields in a plane 2π− periodic channel flow. See
text for details.

6 Results of Numerical Simulations

We now proceed to show the results of numerical computations. We will present four simulations,
all of which concern the channel flow driven by variable in time pressure gradient and motion of
the boundaries. The Reynolds number based on the channel height H, the mean flow velocity
U0 and the kinematic viscosity ν was roughly the same in all the studied configurations and close
to 5000. At every time step of the simulations approximately 100 new vortices were introduced
at both lower and upper boundary and the total number of vorticity particles at the end of the
simulation was around 6000 ÷ 8000 (note that some of the particles left the flow domain due
to the random motion). Further increase of the number of vorticity carriers was prevented by
prohibitive computational cost mainly related to the evaluation of vortex induction which scales as
N2. Fast summation algorithm of the type [9] for the periodic induction formula has not yet been
implemented. In all our simulations computations were performed until statistically steady state
was reached. In Figs.5 through 8 we show the velocity (left) and vorticity (right) fields obtained
for the following four flow configurations:

• the pressure gradient is constant in time and directed to the left; the wave on the boundary
moves at a constant velocity from right to left (Fig.5),

• the pressure gradient is constant in time and directed to the left; the wave on the bound-
ary moves at a constant velocity from right to left; this case is characterized by a shorter
wavelength of the bumpy disturbance on the wall (Fig.6),

• the pressure gradient is constant in time and directed to the left, the bump on the boundary
oscillates horizontally with the period T = 3.75 (Fig.7),

• the pressure gradient and the bump on the boundary oscillate horizontally with the period
T = 3.75 and opposite phases (Fig.8).

In the first three cases the net flow is from the left to the right.
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Figure 6: The velocity (left) and vorticity (right) fields in a plane 2π− periodic channel flow. See
text for details.

Figure 7: The velocity (left) and vorticity (right) fields in a plane 2π− periodic channel flow. See
text for details.

Figure 8: The velocity (left) and vorticity (right) fields in a plane 2π− periodic channel flow. See
text for details.
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7 Conclusions and Further Perspectives

In the present work we have extended the Vortex Blob Method for the case of flows in an X-periodic
horizontal channel. It was shown that this flow configuration has some characteristics of flows
in multi-connected domains. We proved that an integral constraint on the vorticity production
in the boundary layer and the boundary acceleration must be supplemented to the traditional
vorticity formulation of the equations of motion, so that the pressure jump across one section of
the channel is equal to the prescribed value. We have furthermore developed a rigorous procedure
which determines the intensities of the new vortices in the boundary layer in such a way that the
“no-slip” condition for the velocity is satisfied. Particular emphasis was given to the design and
properties of the X-periodic vorticity carrier. Finally, we presented some results of unsteady flow
computations.

Further work will involve implementation of the fast summation algorithm for the case of X-periodic
geometry. Two such methods are currently available, namely [10] and [11]. Issues related to the
problem of velocity evaluation in periodic channel configurations were also addressed in [12]. Yet
another improvement would consist in checking various dissipation models and the influence they
may have on the accuracy of computations.
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