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Abstract. The regularity of solutions of the three–dimensional Navier–Stokes equation is
controlled by the boundedness of the enstrophy E . The best estimate available to–date for its
rate of growth is dE/dt ≤ CE3, where C > 0, which was recently found to be sharp by Lu &
Doering (2008). Applying straightforward time–integration to this instantaneous estimate leads
to the possibility of loss of regularity in finite time, the so–called “blow–up”, and therefore the
central question is to establish sharpness of such finite–time bounds. We consider an analogous
problem for Burgers equation which is used as a “toy model”. The problem of saturation of
finite–time estimates for the enstrophy growth is stated as a PDE–constrained optimization
problem

max
φ

[E(T )− E(0)] subject to E(0) = E0

where the control variable φ represents the initial condition, which is solved numerically for
a wide range of time windows T > 0 and initial enstrophies E0. We find that the maximum
enstrophy growth in finite time scales as Eα

0 with α ≈ 3/2. The exponent is smaller than α = 3
predicted by analytic means, therefore suggesting lack of sharpness of analytical estimates.

1. Introduction

In this investigation we are interested in the largest enstrophy growth that can be achieved in
a hydrodynamic system with some fixed initial enstrophy E0. This question is motivated by
one of the “millennium problems” of the Clay Mathematics Institute (Fefferman, 2006), namely,
whether the three–dimensional Navier–Stokes equation with smooth initial condition at t = 0
admits smooth solutions for all times t > 0. In other words, the question is whether a finite–
time “blow–up” could occur in the Navier–Stokes system starting from some arbitrary smooth
initial data. While it is well known that boundedness of the enstrophy E(t) =

∫
Ω u(t)2 dΩ

implies smoothness of the solution u(t), the best estimate for the rate of growth of enstrophy
is dE(t)/dt < CE(t)3 for some constant C > 0. There is recent computational evidence by Lu
& Doering (2008) showing that this estimate is in fact sharp at any single instant of time. The
central question is therefore how to extend this estimate to finite time intervals (0, T ], where
T > 0, in a way that accounts for the constraint of the system evolution. We note that a
straightforward time integration of the above bound for dE(t)/dt leads to a finite–time blow–up
of the enstrophy, namely

E(t) ≤ E(0)√
1− 4CE(0)2

ν3 t
. (1)
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Therefore, a long–term goal of our research is to use computational methods of PDE–constrained
optimization to determine to what extent these finite–time estimates can be saturated by the
actual evolution of the flow.

2. Model Problem

As a first step we have addressed this question in the context of the one–dimensional Burgers
equation in a periodic domain for which the corresponding estimate of the enstrophy growth
rate takes the form dE(t)/dt < c E(t)

5
3 for some constant c > 0. This instantaneous estimate

is also known to be sharp and the corresponding maximizing solutions were found in Lu &
Doering (2008). Integrating this estimate over [0, T ] and using some standard bounds one
obtains (Doering, 2010)

max
t∈[0,T ]

E(t) ≤ [E
1
3
0 + c′E0]3, (2)

where c′ is a positive constant. Given smooth initial data, the viscous Burgers equation is
known to lead to smooth solutions valid for all times, however, the question how well theoretical
estimate (2) is saturated by actual solutions of the equation is still quite relevant, because bounds
(1) and (2) are obtained using similar methods. We add that using the instantaneously–optimal
solutions found in Lu & Doering (2008) one obtains the scaling maxt∈[0,T ] E(t) ∼ E1

0 in the limit
of large initial enstrophies E0. Since the exponent is unity, this power–law is rather far from
saturating theoretical estimate (2). In order to address this issue we have attempted to compute
solutions of the Burgers system which, for a given initial enstrophy E0 and time window [0, T ],
may saturate the bound (2). This is done by solving numerically a family of PDE–constrained
optimization problems of the form

max
φ∈H1(Ω)

E(T )

subject to E(0) = E0,
(3)

where φ is the initial condition for Burgers equation, for a broad range of initial enstrophies E0

and time windows (0, T ] covering several orders of magnitude. The condition φ ∈ H1(Ω) implies
that the initial data, which is our control variable, should belong to a suitable Sobolev space
of functions with square–integrable derivatives. For all parameter values the initial conditions
φ which correspond to the maxima in (3) are found using an iterative gradient–ascent method.
A central element of this approach is determination of the cost functional gradient which is
done using a suitably-defined adjoint system (Ayala, 2010). Another important element is “arc–
minimization” used to determine the length of the maximization step in a way ensuring that
the constraint E(0) = E0, cf. (3), is satisfied up to the machine accuracy.

3. Results and Conclusions

Great care was exercised to make sure that all maxima of problem (3) are identified and
computational evidence was found for the presence of an infinite, but countable, number of
local maxima. All these local maximizers, however, turn out to be rescaled copies of only
one solution. Such local maximizers corresponding to the two lowest wavenumbers are shown
in Figure 1a. The rescalings, which leave Burgers equation invariant, are parametrized by
the dominating wavenumber of the solution. Therefore, after such rescaling is applied, the
different local maximizers exhibit in fact the same behavior of maxt∈[0,T ] E(t) vs. E0. It
should be emphasized, however, that the presence of other local maximizers cannot be ruled
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Figure 1. (a) Two local maximizers of problem (3) which after rescaling exhibit the same
scaling in maxt∈[0,T ] E(t) ∼ Eα0 , (b) dependence of maxt∈[0,T ] E(t) on E0 for different lengths T of
the time window with a clearly visible envelope (marked in red).

theoretical
estimate (2)

optimal
(instantaneous)

[Lu & Doering, 2008]

optimal
(finite–time)

[present study]

α 3 1 3/2

Table 1. Exponents characterizing the power–law scaling of the maximum enstrophy built up
in finite time maxT>0

[
maxφ∈H1(Ω) E(T )

]
versus the initial enstrophy E0 in the limit of large E0.

out on purely computational grounds. The scaling of maxt∈[0,T ] E(t) versus E0 obtained for
a range of different time horizons T is shown in Figure 1b. The main finding is that, as
predicted by estimate (2), the maximum enstrophy indeed exhibits two distinct power–laws in
the form maxT>0

[
maxφ∈H1(Ω) E(T )

]
∼ Eα0 corresponding to the limits of small and large initial

enstrophies E0. While for small E0 the exponent of the power–law is the same as predicted by
(2), i.e., α = 1, more importantly, the exponent corresponding to large E0 was found to be
α ≈ 3

2 which is significantly less than 3 predicted by theoretical relation (2). This suggests that
the extension of the instantaneous estimate for the enstrophy growth rate dE(t)/dt < c E(t)

5
3

to finite times via a straightforward time integration is not sharp, and therefore the system
evolution should be accounted for using a more accurate approach. As a summary, different
exponents describing the power law maxT>0

[
maxφ∈H1(Ω) E(T )

]
∼ Eα0 in the limit of large initial

enstrophies E0 are collected in the Table 1.
Since for smooth initial data solutions of the viscous Burgers equations at any time t ∈ (0, T ]

are real–analytic, we can also characterize their smoothness by examining the time–evolution of
the associated width of the analyticity strip in the complex plane. This is done by tracking the
location of the complex–plane singularities nearest to the real line (Sulem et al., 1982). This
characterization opens up the possibility of a fundamentally different formulation of the problem
of saturation of enstrophy estimates.
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A complete description of the problem of the maximum enstrophy growth in a hydrodynamic
system together with a detailed analysis of the computational optimization results obtained
for Burgers equation is presented in Ayala & Protas (2011). Our future work will involve an
analysis of the sharpness of the corresponding estimates available for incompressible flows in two
dimensions and eventually in three dimensions. We remark that, as regards two–dimensional
flows, the relevant quantity is the palinstrophy (i.e., the L2 norm of the vorticity gradient),
rather than enstrophy.
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