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Abstract

We are interested in solution techniques for backward–in–time evolutionary PDE problems

arising in fluid mechanics. In addition to their intrinsic interest, such techniques have ap-

plications in the recently proposed retrograde data assimilation. As our model system we

consider the terminal value problem for the Kuramoto–Sivashinsky equation in a 1D peri-

odic domain. Such backward problems are typical examples ofill–posed problem, where

any disturbances are amplified exponentially during the backward march. Hence, regular-

ization is required in order to solve such problem efficiently in practice. We consider regu-

larization approaches in which the original ill–posed problem is approximated with a less

ill–posed problem obtained by adding a regularization termto the original equation. While

such techniques are relatively well–understood for simplelinear problems, in this work we

investigate them carefully in the nonlinear setting and report on some interesting universal

behavior. In addition to considering regularization termswith fixed magnitudes, we also

mention briefly a novel approach in which these magnitudes are adapted dynamically using

simple concepts from the Control Theory.
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1 Introduction

The motivation for investigating aterminalvalue problem for a dissipative partial

differential equation (PDE) comes from the recently–proposedretrogradeframe-

work for data assimilation [5,18]. In the atmospheric sciences, data assimilation is

used, for example, to generate initial conditions for future weather forecasts based

on some past measurements [10]. Such problems are typically solved using meth-

ods of PDE–constrained optimization to determine an initial condition in the past,

such that the ensuing system evolution best matches the available measurements.

Using this initial condition determined in the past to integrate the system until the

present time, one can obtain an initial condition for a future forecast. In the classical

formulation of the variational data assimilation known as 4DVAR [10] one needs

to solve the governing PDE system forward in time, and the adjoint system back-

ward in time, both of which are well–posed [8]. On the other hand, in the proposed

retrograde framework, one solves the PDE–constrained optimization problem us-

ing the terminal state as the control variable, and as a result one must solve the

governing PDE systembackwardin time, and the adjoint systemforward in time,

both of which are now ill–posed problems. The present investigation seeks to as-

sess how accurately such ill–posed problems can be solved when regularization is

applied. In addition, the issue of a numerical solution of terminal value problems

for dissipative PDEs is also one of an independent interest.
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The Kuramoto–Sivashinsky equation was proposed in [13] and [22] to model in-

stabilities of flame fronts and is often used as a model for nonlinear evolutionary

systems, because in sufficiently large domains its solutions are characterized by

self–sustained chaotic and multiscale behavior. The initial value problem for the

Kuramoto–Sivashinsky equation is given by

∂u
∂τ

+u
∂u
∂x

+
∂2u
∂x2 +

∂4u
∂x4 = 0, τ ∈ [0,T] x∈ [0,L],

∂iu(τ,0)

∂xi =
∂iu(τ,L)

∂xi , τ ∈ [0,T], i = 0, . . . ,3,

u(0,x) = φ(x), x∈ [0,L],

(1.1)

whereu : [0,T]× [0,L] → R is the solution andφ : [0,L] → R the initial con-

dition. Our focus here will be entirely on the case of one–dimensional (1D) pe-

riodic domains[0,L]. While there exist some results concerning the behavior of

the Kuramoto–Sivashinsky system in a bounded domain [6], this system is typi-

cally studied in the periodic setting. Such formulation will make it possible to use

elementary methods of the Fourier analysis to justify the proposed regularization

strategies. We expect that the performance of these regularization strategies would

be similar for systems defined on bounded domains, however, their mathematical

characterization would be somewhat less straightforward.We emphasize that form

(1.1) is generic, in the sense that forms of the equation involving coefficients other

then unity in front of different terms (see, e.g., [9]) may always be reduced to (1.1)

via a suitable (nonlinear) change of variables. As shown in [17], the size of the

domainL plays a role similar to the Reynolds number in hydrodynamicsin that it

determines the behavior of the solutions. For small values of L the zero solution is

the only stable solution, while asL increases, a sequence of bifurcations leads to

different families of nontrivial fixed–point, traveling wave and, eventually, chaotic

solutions [9]. In this investigation we will be mainly interested in suchturbulent

solutions corresponding to large values ofL.

3



In the present study we will use the followingterminal value problem for the

Kuramoto–Sivashinsky equation

∂v
∂t

+v
∂v
∂x

+
∂2v
∂x2 +

∂4v
∂x4 = 0, t ∈ [0,T] x∈ [0,L],

∂iv(t,0)

∂xi =
∂iv(t,L)

∂xi , t ∈ [0,T], i = 0, . . . ,3,

v(T,x) = ϕ(x), x∈ [0,L],

(1.2)

wherev : [0,T]× [0,L] → R is the solution andϕ : [0,L] → R the terminal condi-

tion, as a model to investigate regularization of backward–in–time problems for a

class of nonlinear evolutionary PDEs. The difference between (1.1) and (1.2) is that

in the initial value problem the data is provided att = 0, while in the terminal value

problem the data is provided att = T. Solution of initial value problem (1.1) exists

for all square–integrable initial conditionsφ, however, as regards terminal value

problem (1.2), it was proved in [12] that a solution only exists whenϕ is on the

attractor of system (1.1). If ϕ is not on the attractor, solutions of (1.2) will blow up

such that‖v(t)‖2
L2

goes towards infinity faster than any exponential ast decreases

from T to 0 [11]. In other words, the solution to the terminal value problemmay

not exist on[0,T], unless one makes sure thatϕ actually comes from a solution

of initial value problem (1.1); only such terminal conditions for (1.1) will be con-

sidered in the present work. To clarify further the mathematical relation between

initial–value and terminal–value problems (1.1) and (1.2), we can rewrite the latter

using the change of variables̄t = T − t as the following initial–value problem

∂v
∂t̄

−v
∂v
∂x

− ∂2v
∂x2 −

∂4v
∂x4 = 0, t̄ ∈ [0,T] x∈ [0,L],

∂iv(t̄,0)

∂xi =
∂iv(t̄,L)

∂xi , t̄ ∈ [0,T], i = 0, . . . ,3,

v(0,x) = ϕ(x), x∈ [0,L],

(1.3)

where all the terms, except for the time–derivative term, have reversed signs as

compared to (1.1).
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While the classical case of an ill–posed backward–in–time system, the terminal

value problem for the heat equation, is well understood [14], terminal value prob-

lems for nonlinear PDEs have not been the focus of much previous research. It is

tempting to think that the presence of convective–type nonlinearities, such as the

term v∂v
∂x in (1.2), could render the problem more regular by reducing the relative

effects due to the ill–posed “parabolic” part. We emphasize, however, that this is

only a conjecture based on observations of forward Kuramoto–Sivashinsky system

(1.1), and we are not aware of any rigorous results to this effect.It is thus one of the

goals of our paper to verify this conjecture by investigating how the performance

of regularization strategies developed for backward–in–time linear parabolic prob-

lems is affected by such nonlinearities.

The structure of the paper is as follows: Section2 discusses some properties of the

Kuramoto–Sivashinsky system in Fourier space; Section3 introduces the regular-

ization methods that we use; Section4 presents the computational results concern-

ing the performance of these regularization methods; summary of the main results

and final conclusions are deferred to Section5.

2 Kuramoto–Sivashinsky Equation — a Fourier Space Perspective

The nature of the ill–posedness and the mechanism of the numerical blow–up will

be particularly evident when regarded in the Fourier space representation. This per-

spective will also guide the choice of physically–motivated regularization strate-

gies for backward problem (1.2). Representingu(τ,x) = ∑κ∈K ûκ(τ)eiκx, where

ûκ(τ)∈C are the Fourier coefficients and the wavenumbers are defined asκ = k2π
L ,
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k∈ Z+ with K =
{

k2π
L ,k∈ Z+

}
, system (1.1) can be expressed as

dûκ
dτ

= −ŵκ +A(κ)ûκ, κ ∈ K, τ ∈ [0,T]

ûκ(0) = φ̂κ, κ ∈ K,

(2.1)

whereA(κ) , κ2−κ4 is the operator corresponding to the linear part of the Kuramoto–

Sivashinsky equation (“,” means “equal to by definition”), and ˆwκ =

(
û∂u

∂x

)

κ
is

the Fourier transform of the nonlinear term [hats (ˆ) will ingeneral denote Fourier–

transformed variables; we choose to use rescaled wavenumbers κ ∈ K rather than

k ∈ Z, because they result in simpler expressions]. Since the solutionsu(τ,x) are

real, we can restrict ourselves to nonnegative wavenumbersκ ≥ 0 only. The effect

of the different terms in (2.1) can be phenomenologically interpreted as follows: the

(unstable) second–order term injects energy at the intermediate wavenumbersκ, the

(stable) fourth–order terms dissipates energy at the largewavenumbers, whereas the

nonlinear term moves the energy between the different wavenumber ranges (as is

evident from the identity
R L

0 u2∂u
∂x dx≡ 0, on a periodic domain the nonlinear term

does not produce energy). By examining the spectrum of the operatorA(κ) we

note that the maximum energy injection occurs at the wavenumberκmax= 1/
√

2,

whereasκ0 = 1 marks the boundary between the energy injection and dissipation

ranges. It is common to characterize solutions of evolutionary PDEs in Fourier

space using the energy function defined as

E(κ) ,
1
2
|ûκ|2, κ ∈ K. (2.2)

A typical instantaneous energy function for a solution of system (1.1) on a “tur-

bulent” attractor is shown in Fig.1. In addition to the features mentioned above,

the plot of the energy functionE(κ) reveals also a flat region for small wavenum-

bers indicative of a “white noise” behavior of the large–scale structures [7]. The

region 0.8 / κ / 1.25 exhibits a power–law decay described approximately by
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κ−4 [24] which is why it is sometimes referred to as an “inertial range” similar

to the scaling range observed in solutions of the Navier–Stokes system [17]. For

high wavenumbers the energy functionE(κ) tends towards zero exponentially fast

which is consistent with the estimate [4]

|û|κ = O(e−ακ), for κ → ∞, (2.3)

whereα > 0, applicable to infinitely differentiable functions periodic on [0,L].

3 Ill–Posedness and Regularization Techniques

Using the Fourier space representation of the solutionv(t,x) = ∑κ∈K v̂κ(t)eiκx, ter-

minal value problem (1.2) becomes

dv̂κ
dt

= −ŵκ +A(κ)v̂κ, κ ∈ K, t ∈ [0,T]

v̂κ(T) = ϕ̂κ, κ ∈ K.

(3.1)

We note that introducing the change of variablest = T − τ one can convert (3.1) to

an initial value problem in which, as compared to (2.1), the terms on the right–hand

side (RHS) have reversed signs. This means that the role of the terms in the oper-

ator−A(κ) will be interchanged: the fourth–order term will now act as an energy

source, whereas the second–order term will act as an energy sink. As a result, dur-

ing backward–in–time integration of (3.1) any perturbations, arising for instance

from the truncation of the Fourier series representation ofthe terminal condition

ϕ, are exponentially amplified. Indeed, numerical simulations confirm that the so-

lution v(τ) usually “blows up” (in the sense of numerical overflow errorsin the

finite–precision arithmetic) within a few time steps. This type of ill–posedness is

generic in parabolic systems integrated backwards in time.It is typically studied

in the context of the heat equation for which most of the regularization strategies
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Fig. 1. The energy functionE(κ) corresponding to a “turbulent” solution of initial value

problem (1.1) with L = 154; the vertical line corresponds toκmax; for clarity, the wavenum-

bersκ are treated as a continuous variable.
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Fig. 2. A qualitative sketch of the effect of regularizationon the spectrum of the linear op-

erator−A(κ) for (a) hyperviscous regularization, and (b) pseudo–parabolic regularization:

(solid line) spectrum of the linear operator−A(κ), (dotted lines) spectra of the regularized

operators−Bα(κ) and−Bβ(κ); arrows represent the trends corresponding to the increase

of the regularization parameter; for clarity, the wavenumbersκ are treated as a continuous

variable.
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were developed [14]. Given the qualitative similarity between the backward heat

equation and the linear part of problem (1.2), we will proceed by adapting these

methods to the problem at hand.

The idea of regularization is to replace the original ill–posed problem with another

one that is more stable and in some suitably–defined sense close to the original

problem. Evidently, in problem (3.1) the unboundedness of the operator−A(κ) for

κ → ∞ is the source of the ill–posedness. In the spirit of the “quasi–reversibility”

approach developed by Lattés and Lions in [14], we propose to regularize this prob-

lem by replacing (3.1) with

dp̂κ
dt

= −q̂κ +A(κ)p̂κ +µ(t)B(κ)p̂κ

, −q̂κ +Aµ(κ)p̂κ, κ ∈ K, t ∈ [0,T]

p̂κ(T) = ϕ̂κ, κ ∈ K.

(3.2)

whereq̂κ =

(
p̂∂p

∂x

)

κ
, µ(t) ∈ R+ is a small “regularization parameter” that in gen-

eral may be a function of timeµ : [0,T]→R+, andB(κ) is a regularization operator

chosen to “correct” the behavior of−A(κ) for largeκ. Two choices of the regu-

larization operatorB(κ) will be discussed in Sections3.1and3.2below. Thus, for

a given form ofB(κ), the main challenge consists in choosing the regularization

parameterµ, so that the regularized solutionp(t,x) = ∑κ∈K p̂κ(t)eiκx is stable and,

at least for some time, close to the solution of original problem (3.1) in which no

perturbation was allowed to appear. As we will see, these requirements are in fact

contradictory, and the choice ofµ will have to represent a trade–off between them.

In the case of linear problems, such optimal values of the regularization param-

eter can often be found exactly [14]. On the other hand, for nonlinear problems

this is not possible and one has to resort to numerical computations. For the most

part we will considerconstantvalues of the regularization parameterµ(t) = µ. We
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will focus on two forms of the operatorB(κ) that will result in the so–called “hy-

perviscous” and “pseudo–parabolic” regularization. Other forms of regularization

have also been considered in the literature, e.g., “hyperbolization” [2], variational

techniques [15,16], convolution with a filter, Galerkin projection, etc., butthey will

not be addressed in the present study. We will instead brieflyconsider general-

ization of the hyperviscous and pseudo–parabolic regularization for the case of

the time–dependent coefficientsµ = µ(t). We also mention that results concerning

continuous dependence of solutions of the backward heat equation with different

regularizing operators on the regularization parameters were proved in [3].

3.1 Hyperviscous Regularization

In this approach we take the regularization operator in the form of a sixth–order

differential operator [1,3,14] i.e.,

Bα(κ) , κ6, (3.3)

although any higher–order operator in the formκ2m, m≥ 4 could be used as well.

The magnitude of this term is given byµ = α. As shown in Fig.2a, when added

to A(κ), this operator has the effect of attenuating Fourier modes ˆpκ with κ >
√

1+
√

1−4α
2α , with the operator−Aα(κ) , −[A(κ) +Bα(κ)] becoming stable for

α > 1/4. Moreover, we also observe that forα > 1/3 the peak in−Aα(κ) disap-

pears and the spectrum ofAα becomes a monotonously decreasing function ofκ.

Thus, in a linear problem, given the spectral content of the terminal conditionϕ,

one would be able to determine the minimum value of the regularization parameter

α required for stability and determine also the errors with respect to the unperturbed

solution. Performance of this regularization strategy on our nonlinear problem will

be assessed in Section4. We add that for systems defined on a bounded domain
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it would be necessary to provide additional boundary conditions for regularization

operator (3.3), and the choice of these boundary conditions is rather nonobvious.

3.2 Pseudo–Parabolic Regularization

In this approach the regularization operator will involve four derivatives in space in

addition to one derivative in time [1,3,19,20,21]

Bβ(κ) , κ4 d
dt

, (3.4)

so that the regularized operator becomes

Aβ(κ) ,
κ2−κ4

1+βκ4 . (3.5)

The magnitude of this regularization term is given byµ = β. We remark that, in

contrast to the hyperviscous technique, this approach to regularization also affects

the form of the nonlinear term which becomes ˆqκ =

(
p̂∂p

∂x

)

κ
1+βκ4 . Furthermore, the reg-

ularized operatorAβ(κ) is not given as a polynomial, but a rational function ofκ.

We note that restriction ofβ to positive values is necessary to avoid poles in expres-

sion (3.5) which could lead to undesirable behavior. To be more precise, forβ < 0

such poles would occur at the wavenumberκp , 4
√
−1/β for which the denomi-

nator in (3.5) vanishes. As a result, operatorAβ(κ) would become unbounded for

κ → κp resulting in a “resonance” behavior which is clearly an undesirable effect.

As is evident form Fig.2b, the spectrum of the operatorAβ(κ) is now bounded

for all κ by β−1, but the operator remains unstable for allβ. In this sense, regu-

larized problem (3.2) with the regularization operator given in (3.4) still remains

ill–posed, although, as shown by the computational resultspresented in Section4,

the degree of ill–posedness is weak and does not prevent an efficient numerical

solution for moderate times. In principle, this ill–posedness could be mitigated by
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using higher–order spatial derivatives in (3.4) which would ensure thatAβ(κ) → 0

for κ → ∞, but this was found unnecessary in the present investigation. We add

that, since regularization operator (3.4) does not increase the order of the equation,

for systems defined on bounded domains it is not necessary to provide additional

boundary conditions in the pseudo–parabolic approach.

3.3 Adaptive Regularization

It appears plausible that an optimal value of the regularization parameter may

change in time, hence a natural generalization of the approaches presented in Sec-

tions3.1and3.2 is to allow the regularization parametersα andβ to be adapted in

some dynamic fashion. As a criterion of this adaptation one may require that the

solution of the regularized backward problem (3.2) have a prescribed fixed energy

E0 given in terms of theL2 norm as as

‖p(t)‖L2 ,
Z L

0
p(t,x)2dx= ∑

κ∈K

|p̂κ|2 = E0. (3.6)

The idea behind this admittedly simple criterion is to ensure that the regularization

is not too “soft”, resulting in an instability and blow–up, and at the same time not

too aggressive, which could result in large errors. Condition (3.6) could be enforced

at every discrete time stept j , j = NT , . . . ,1, whereNT is the total number of time

steps, yielding

‖p(t j ;µ(t j)‖L2 = E0 for t j ∈ [0,T], (3.7)

which can be solved forµ(t j) at every timet j using a suitable root–finding tech-

nique. Alternatively, the rather rigid condition (3.7) can be relaxed and replaced

with

‖p(t;µ(t))‖L2 → E0 ast → 0. (3.8)
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Values of the regularization parameterµ satisfying the weaker condition (3.8) can

be determined using methods originating in the classical control theory [23], namely,

a proportional (P) regulator

µ(t j) = µ(t j+1)+KP
(
‖p̂(t j+1;µ(t j+1))‖L2 −E0

)
, (3.9)

or a proportional–differential (PD) regulator

µ(t j) = µ(t j+1)+KP
(
‖p̂(t j+1;µ(t j+1))‖L2 −E0

)

+KD
d
dt

(
‖p̂(t j+1;µ(t j+1))‖L2 −E0

)
,

(3.10)

whereKP andKD are adjustable parameters. Some results concerning adaptive hy-

perviscous and pseudo–parabolic regularization will alsobe presented in Section

4.

4 Computational Results

In this Section we assess the performance, both in terms of stability and accuracy,

of the regularization methods introduced in Sections3.1–3.3. We will do this by an-

alyzing the divergence of the trajectory obtained by solving the regularized terminal

value problem (3.2) from the “reference” trajectory corresponding to the original

terminal value problem (3.1) in which no disturbances are present. This reference

trajectory is in fact obtained by solving initial value problem (2.1) and using the

stateu(T) as the terminal condition for the backward problem (3.2), i.e.,ϕ = u(T).

Divergence of these two trajectories is characterized by the relative error

e(t) ,
‖p(t)−u(t)‖L2

‖u(t)‖L2

≃
√

∑κ∈K |p̂κ(t)− ûκ(t)|2√
∑κ∈K |ûκ(t)|2

, (4.1)

and we will be primarily interested in the studying the behavior of e(0). We also

considered errors defined in terms of norms other thanL2 (e.g.,H1 andH−1), but
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the results obtained were qualitatively similar and therefore will not be shown here.

Both forward and backward problems (2.1) and (3.2) are discretized in space us-

ing a pseudo–spectral Fourier–Galerkin method with dealiasing [4]. We used 512

Fourier modes and found this sufficient to resolve fully all the investigated cases.

Time discretization employed an implicit (Crank–Nicolson) scheme on all the lin-

ear (including regularization) terms in (2.1) and (3.2) combined with an explicit

(RK3) scheme on the nonlinear terms. The time step used in thesolution of both

problems, regardless of the regularization technique used, was the same and equal

to ∆t = 2.9 ·10−2. We are primarily interested in the effect of nonlinearities repre-

sented by the parameterL in (1.1) and (1.2). In order to assess the performance of

both regularization strategies in different regimes, for all values ofL we study the

problem on two different time intervals:

(1) short time interval withT = 30·∆t,

(2) long time interval withT = 300·∆t.

For every value ofL we ensure that the terminal conditionϕ lies on the “turbulent”

attractor, so that the reference trajectory is guaranteed to exist (cf. discussion in

Section1) and the system evolution occurs in a statistically steady regime.

We begin our presentation of the results by showing in Figs.3a,b and4a,b the val-

ues of the relative errore(0) at the beginning of the interval[0,T] as a function

of the regularization parameter (α corresponding to the hyperviscous regulariza-

tion in Figs.3a,b, andβ corresponding to the pseudo–parabolic regularization in

Figs.4a,b). We focus on the results defined at the beginning of the time window,

because as shown in Fig.5, the errors tend to be the largest there. Furthermore,

for applications to the retrograde data assimilation [5,18] solution accuracy of the

backward–in–time problem is the most important att = 0. In order to facilitate

14
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Fig. 3. The relative errorse(0) in the hyperviscous regularization as a function of the reg-

ularization parameterα on (a) the short interval and (b) long interval with (•) L = 49, (N)

L = 154, (�) L = 267 and (�) L = 462; figure (c) represents (solid line) the initial condition

φ of (1.1) and the statesp(0) obtained by solving problem (3.2) with the hyperviscous reg-

ularization over (dotted line) the short interval and (dashed line) long interval forL = 154.
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qualitative comparisons of the results in the different cases we used the same ver-

tical scale in all four Figures. We note that the qualitativetrends are the same for

the two regularization methods on both the short and long interval. As the regu-

larization parametersα andβ are reduced, the errorse(0) steeply increase which

corresponds to an instability taking place due to insufficient regularization. For

both regularization methods the critical value of the regularization parameter below

which blow–up occurs is smaller for the short time interval,which indicates that the

required “intensity” of regularization is an increasing function of the length of the

integration interval. On the other hand, for increasing values of the regularization

parameters the errors slowly grow indicating that due to excessive regularization

the backward solutions deviate too far from the reference trajectory. In all four

cases shown in Figs.3a,b and4a,b there is a well–defined value of the regulariza-

tion parameter which yields a global minimum of the errore(0). These errors are

noticeably smaller when the pseudo–parabolic regularization is used, and are also

smaller on the short time intervals. In particular, when thepseudo–parabolic reg-

ularization is applied on the short interval, the relative error e(0) can as small as

O(10−2). These observations are confirmed in Figs.3c and4c where we compare

the regularized solutions obtained att = 0 using the “optimal” values ofα andβ to

the reference initial conditionφ (in order to magnify details only half of the domain

[0,L] is shown in Figs.3c and4c). With regard to Fig.4c, we reiterate that the so-

lution obtained with the pseudo–parabolic regularizationon the short time interval

is barely distinguishable fromφ. Finally, we discuss the effect of the parameterL

on the performance of the regularization strategies. We observe that in all of the

four cases shown the errors corresponding to differentL seem to collapse onto one

curve (there is admittedly some scatter in the case of the pseudo–parabolic regu-

larization). This rather surprising observation may implya “universal” behavior of

the two regularization techniques whereL does not affect the performance.
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Fig. 4. The relative errorse(0) in the pseudo–parabolic regularization as a function of the

regularization parameterβ on (a) the short interval and (b) long interval with (•) L = 49,

(N) L = 154, (�) L = 267 and (�) L = 462; figure (c) represents (solid line) the initial

conditionφ of (1.1) and the statesp(0) obtained by solving problem (3.2) with pseudo—

parabolic regularization over (dotted line) the short interval and (dashed line) long interval

for L = 154.
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(dash–dotted) adaptation using a PD controller [cf. (3.10)] for L = 154.
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We conclude this Section with a discussion of the regularization results obtained

with the adaptive technique introduced in Section3.3. To fix attention, we focus on

the pseudo–parabolic regularization applied on the long interval. We setE0 = ‖ϕ‖L2

and choose the constantsKP andKD to ensure rapid convergence of‖p(t)‖L2 to E0

as the time decreases. Numerous computational experimentsdid not produce an

adaptive approach that would have been superior to the pseudo–parabolic regular-

ization with a fixedβ in the sense of yielding a smaller value ofe(0). Sample results

are presented in Fig.5 where we see that, while for the intermediate times the adap-

tive approaches may perform marginally better, at the timet = 0 the approach with

a fixedβ is in fact superior.

5 Summary and Conclusions

In this paper we revisited two regularization techniques initially developed in the

context of the backward–in–time heat equation, and appliedthem to a terminal

value problem for a nonlinear system. Using the 1D backward–in–time Kuramoto–

Sivashinsky equation as a model problem we showed that choosing optimal values

of the regularization parameters involves a trade–off between stability and accuracy

with integrations over shorter intervals requiring weakerregularization and yield-

ing therefore more accurate results. The pseudo–parabolicregularization clearly

performs much better than the hyperviscous regularization. It would furthermore

be less ambiguous for problems defined on bounded domains, asit would not re-

quire additional boundary conditions to be specified (whichwould be the case for

the hyperviscous regularization). We also found that, at least for problems evolving

on the “turbulent” attractor, the parameterL has no systematic effect on the per-

formance of the regularization techniques. This was ratherunexpected, sinceL is
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a measure of the nonlinear effects which in the Kuramoto–Sivashinsky system are

of the advective type (thus, increasingL one reduces the relative significance of the

dissipative terms which are the source of the backward–in–time ill–posedness).

Since the properties of the two regularization techniques are fully understood for

linear problems, it would be tempting to compare our presentresults with regu-

larization applied to problem (3.1) with the nonlinear term removed. Since such

system does not possess a “turbulent” attractor, such a comparison would not be

meaningful, because one would have to compare regularizations of transient and

statistically stationary trajectories. In regard to applications in the retrograde data

assimilation which have motivated this research, we conclude that the pseudo–

parabolic regularization could be a feasible solution provided the integration in-

tervals are sufficiently short.
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