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Abstract

We are interested in solution techniques for backward+ime-evolutionary PDE problems
arising in fluid mechanics. In addition to their intrinsiderest, such techniques have ap-
plications in the recently proposed retrograde data aksion. As our model system we
consider the terminal value problem for the Kuramoto—Siu@sky equation in a 1D peri-
odic domain. Such backward problems are typical exampléis-pbsed problem, where
any disturbances are amplified exponentially during théwaed march. Hence, regular-
ization is required in order to solve such problem efficigintl practice. We consider regu-
larization approaches in which the original ill-posed peol is approximated with a less
ill-posed problem obtained by adding a regularization tariie original equation. While
such techniques are relatively well-understood for sinlipar problems, in this work we
investigate them carefully in the nonlinear setting anarepn some interesting universal
behavior. In addition to considering regularization terwith fixed magnitudes, we also
mention briefly a novel approach in which these magnitudesdapted dynamically using

simple concepts from the Control Theory.
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1 Introduction

The motivation for investigating terminalvalue problem for a dissipative partial
differential equation (PDE) comes from the recently—psgutretrogradeframe-
work for data assimilationd,18]. In the atmospheric sciences, data assimilation is
used, for example, to generate initial conditions for fetweather forecasts based
on some past measurement§][ Such problems are typically solved using meth-
ods of PDE—constrained optimization to determine an indtadition in the past,
such that the ensuing system evolution best matches thial@leameasurements.
Using this initial condition determined in the past to int#g the system until the
present time, one can obtain an initial condition for a fatiarecast. In the classical
formulation of the variational data assimilation known &VAR [10] one needs
to solve the governing PDE system forward in time, and theiatlgystem back-
ward in time, both of which are well-pose8| [ On the other hand, in the proposed
retrograde framework, one solves the PDE—constraineandgstion problem us-
ing theterminal state as the control variable, and as a result one must sSodve t
governing PDE systerbackwardin time, and the adjoint systeforward in time,
both of which are now ill-posed problems. The present ingasbn seeks to as-
sess how accurately such ill-posed problems can be solved vegularization is
applied. In addition, the issue of a numerical solution ofmi@al value problems

for dissipative PDEs is also one of an independent interest.
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The Kuramoto—Sivashinsky equation was proposed 8) &nd [22] to model in-
stabilities of flame fronts and is often used as a model folinear evolutionary
systems, because in sufficiently large domains its solateme characterized by
self-sustained chaotic and multiscale behavior. Thealntalue problem for the

Kuramoto—Sivashinsky equation is given by

ot ox o0x%  oxt
d'u(t,0) d'u(t,L)
ox  ox

U(O, X) = (p(X), Xe [07 L]7

0, 1€ [0,T] x € [0,L],

1€[0,T], i=0,...,3, (1.1)

whereu : [0,T] x [0,L] — R is the solution andp : [0,L] — R the initial con-
dition. Our focus here will be entirely on the case of one-ahisional (1D) pe-
riodic domains[0,L]. While there exist some results concerning the behavior of
the Kuramoto—Sivashinsky system in a bounded dom@intliis system is typi-
cally studied in the periodic setting. Such formulationlwilake it possible to use
elementary methods of the Fourier analysis to justify theppsed regularization
strategies. We expect that the performance of these régatian strategies would
be similar for systems defined on bounded domains, howehar, tathematical
characterization would be somewhat less straightforwaielemphasize that form
(1.1 is generic, in the sense that forms of the equation invglzoefficients other
then unity in front of different terms (see, e.@®])[may always be reduced ta.{1)

via a suitable (nonlinear) change of variables. As shownlif}, the size of the
domainL plays a role similar to the Reynolds number in hydrodynarmdsat it
determines the behavior of the solutions. For small valddstbe zero solution is
the only stable solution, while dsincreases, a sequence of bifurcations leads to
different families of nontrivial fixed—point, traveling wa and, eventually, chaotic
solutions P]. In this investigation we will be mainly interested in suthibulent

solutions corresponding to large valued.of



In the present study we will use the followirtgrminal value problem for the

Kuramoto—Sivashinsky equation

ot ox o0x2 o4

6iv(t_, 0) _ a'v(t,L)

ox oxi 7
V(T,x) = ¢ (%), x € [0, L],

0, te[0,T] xe[oL],

te[0,T], i=0,...,3, (1.2)

wherev : [0,T] x [0,L] — R is the solution an@ : [0,L] — R the terminal condi-
tion, as a model to investigate regularization of backwaretime problems for a
class of nonlinear evolutionary PDEs. The difference betw@.1) and (L.2) is that
in the initial value problem the data is provided at O, while in the terminal value
problem the data is provided &t T. Solution of initial value problem1( 1) exists
for all square—integrable initial conditiongg however, as regards terminal value
problem (.2), it was proved in 12] that a solution only exists whef is on the
attractor of systemi(.2). If ¢ is not on the attractor, solutions df.@) will blow up
such thalﬂv(t)||f2 goes towards infinity faster than any exponential decreases
from T to O [11]. In other words, the solution to the terminal value probleray
not exist on[0, T|, unless one makes sure thatctually comes from a solution
of initial value problem {.1); only such terminal conditions fod (1) will be con-
sidered in the present work. To clarify further the matheozdtrelation between
initial-value and terminal—value problenik ) and (L.2), we can rewrite the latter

using the change of variables= T —t as the following initial-value problem

o Py o
ot  ox 0 oxt
dv(t0) V(L)
ox  ox

v(0,X) = ¢(x), x € [0, L],

0, tel0,T] x € [0,L],

te[0,T], i=0,...,3, (1.3)

where all the terms, except for the time—derivative termjeheeversed signs as

compared toX.1).



While the classical case of an ill-posed backward—in—tigstesn, the terminal
value problem for the heat equation, is well understdod, [terminal value prob-
lems for nonlinear PDEs have not been the focus of much puswiesearch. It is
tempting to think that the presence of convective—type inearities, such as the
term vg—‘; in (1.2), could render the problem more regular by reducing thetivea
effects due to the ill-posed “parabolic” part. We emphadmavever, that this is
only a conjecture based on observations of forward Kurasit@shinsky system
(1.1, and we are not aware of any rigorous results to this effeistthus one of the
goals of our paper to verify this conjecture by investiggtirow the performance
of regularization strategies developed for backward-#metinear parabolic prob-

lems is affected by such nonlinearities.

The structure of the paper is as follows: Sectiaiscusses some properties of the
Kuramoto—Sivashinsky system in Fourier space; Se@iontroduces the regular-
ization methods that we use; Sectibpresents the computational results concern-
ing the performance of these regularization methods; sumofahe main results

and final conclusions are deferred to Section

2 Kuramoto—Sivashinsky Equation — a Fourier Space Perspente

The nature of the ill-posedness and the mechanism of the meahlelow—up will
be particularly evident when regarded in the Fourier spapeasentation. This per-
spective will also guide the choice of physically—-motivhtegularization strate-
gies for backward problem1(2). Representingi(T,x) = ¥ ek Uk (T)€XX, where

U (1) € C are the Fourier coefficients and the wavenumbers are def'med:EkZT",



ke Z* with K = {k3" k € Z* }, system {.1) can be expressed as

M _ e+ a0, KEK,  1€[0,T]
dt (2.1)
0c(0) = @ kek,

where4(k) £ k?—k*is the operator corresponding to the linear part of the Kartam
Sivashinsky equation £” means “equal to by definition”), andi = <Jg—\)‘j) is
the Fourier transform of the nonlinear term [hats (*) wilganeral denote Fozrier—
transformed variables; we choose to use rescaled wavenmamlgeK rather than

k € Z, because they result in simpler expressions]. Since theisnku(t,x) are
real, we can restrict ourselves to nonnegative wavenumbere only. The effect
of the different terms inZ.1) can be phenomenologically interpreted as follows: the
(unstable) second—order term injects energy at the intdiatewavenumbers, the
(stable) fourth—order terms dissipates energy at the laeyenumbers, whereas the
nonlinear term moves the energy between the different wawder ranges (as is
evident from the identity/> uz% dx= 0, on a periodic domain the nonlinear term
does not produce energy). By examining the spectrum of tlesadpr 4(k) we
note that the maximum energy injection occurs at the wavéraiRmax= 1/v/2,
whereaxo = 1 marks the boundary between the energy injection and @issip
ranges. It is common to characterize solutions of evolatiprPDES in Fourier

space using the energy function defined as
A 1. 2
E(K):§|UK| , KekK. (2.2)

A typical instantaneous energy function for a solution ofteyn (L.1) on a “tur-
bulent” attractor is shown in Fidl. In addition to the features mentioned above,
the plot of the energy functioB (k) reveals also a flat region for small wavenum-
bers indicative of a “white noise” behavior of the largedscstructuresT]. The

region 08 < Kk < 1.25 exhibits a power—law decay described approximately by



K~% [24] which is why it is sometimes referred to as an “inertial rahgimilar
to the scaling range observed in solutions of the Naviekeéx®ystem17]. For
high wavenumbers the energy functiBik) tends towards zero exponentially fast

which is consistent with the estimat§ |
|G« = O(e™ %), for K— oo, (2.3)

wherea > 0, applicable to infinitely differentiable functions pedlio on|[O,L].

3 lll-Posedness and Regularization Techniques

Using the Fourier space representation of the solut{oyx) = 5 <k Vk (t)€4*, ter-

minal value problemX.2) becomes

d = —W + A4(K)V, KeK, te[0,T]
dt (3.1)
\7K<T):¢K7 K € K.

We note that introducing the change of varialilesT — 1 one can convert3 1) to
an initial value problem in which, as compared 201, the terms on the right—hand
side (RHS) have reversed signs. This means that the roleedétims in the oper-
ator —4(k) will be interchanged: the fourth—order term will now act asemergy
source, whereas the second—order term will act as an eniegyAs a result, dur-
ing backward—in—time integration 08(1) any perturbations, arising for instance
from the truncation of the Fourier series representatiothefterminal condition
¢, are exponentially amplified. Indeed, numerical simulagiconfirm that the so-
lution v(t) usually “blows up” (in the sense of numerical overflow errarghe
finite—precision arithmetic) within a few time steps. Thypé of ill-posedness is
generic in parabolic systems integrated backwards in tltris.typically studied

in the context of the heat equation for which most of the rageation strategies
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Fig. 1. The energy functiof (k) corresponding to a “turbulent” solution of initial value
problem (.1) with L = 154; the vertical line corresponds kg, for clarity, the wavenum-

bersk are treated as a continuous variable.

Ba(k)

Bﬁ('i)

(b)
Fig. 2. A qualitative sketch of the effect of regularization the spectrum of the linear op-
erator—4(k) for (a) hyperviscous regularization, and (b) pseudo—parabegularization:
(solid line) spectrum of the linear operaterd(k), (dotted lines) spectra of the regularized
operators—B, (k) and —Bg(K); arrows represent the trends corresponding to the increase
of the regularization parameter; for clarity, the wavenensi are treated as a continuous

variable.
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were developedlf4]. Given the qualitative similarity between the backwarate
equation and the linear part of probleh?), we will proceed by adapting these

methods to the problem at hand.

The idea of regularization is to replace the original illspd problem with another
one that is more stable and in some suitably—defined sense tbothe original
problem. Evidently, in problen(1) the unboundedness of the operatofi (k) for

K — oo is the source of the ill-posedness. In the spirit of the “guasersibility”
approach developed by Lattés and Lionslid][ we propose to regularize this prob-

lem by replacing 3.1) with

dp . . .
% = — G+ A(K) P + W) B(K) P
£ —G + Au(x) Pk KeEK, te[0,T] (3.2)
Pe(T) = b, K € K.

wheredgyx = (H‘g—\g) , U(t) € RT is a small “regularization parameter” that in gen-
eral may be a func?ion oftime: [0,T] — R, andB(K) is a regularization operator
chosen to “correct” the behavior ef4(k) for largek. Two choices of the regu-
larization operatoB(K) will be discussed in Sectiorg&1and3.2below. Thus, for

a given form ofB(k), the main challenge consists in choosing the regularizatio
parametef, so that the regularized solutiguit,x) = 3k P (t)€** is stable and,
at least for some time, close to the solution of original peab(3.1) in which no
perturbation was allowed to appear. As we will see, thesairements are in fact
contradictory, and the choice afwill have to represent a trade—off between them.
In the case of linear problems, such optimal values of thelegzation param-
eter can often be found exactl4]. On the other hand, for nonlinear problems

this is not possible and one has to resort to numerical coatipus. For the most

part we will considerconstantvalues of the regularization parametgt) = p. We



will focus on two forms of the operatdB(k) that will result in the so—called “hy-
perviscous” and “pseudo—parabolic” regularization. @fleems of regularization
have also been considered in the literature, e.g., “hypedioon” [2], variational
techniques15,16], convolution with a filter, Galerkin projection, etc., kiey will
not be addressed in the present study. We will instead bresfhysider general-
ization of the hyperviscous and pseudo—parabolic reqdtian for the case of
the time—dependent coefficients= p(t). We also mention that results concerning
continuous dependence of solutions of the backward heattiequwith different

regularizing operators on the regularization parametenewroved in 3].
3.1 Hyperviscous Regularization

In this approach we take the regularization operator in trenfof a sixth—order

differential operator,3,14] i.e.,
Ba(K) £ k°, (3.3)

although any higher—order operator in the fokAT, m > 4 could be used as well.
The magnitude of this term is given lpy= a. As shown in Fig2a, when added
to 4(k), this operator has the effect of attenuating Fourier magesvith K >

Livi-4a with the operator-4q(k) £ —[4(K) + Bq(K)] becoming stable for

a > 1/4. Moreover, we also observe that for> 1/3 the peak in—44 (k) disap-
pears and the spectrum @f, becomes a monotonously decreasing functior.of
Thus, in a linear problem, given the spectral content of dmninal conditiond,
one would be able to determine the minimum value of the regalion parameter
o required for stability and determine also the errors witpeect to the unperturbed
solution. Performance of this regularization strategy onrmnlinear problem will

be assessed in SectidnWe add that for systems defined on a bounded domain

10



it would be necessary to provide additional boundary caematfor regularization

operator 8.3), and the choice of these boundary conditions is rather imapas.
3.2 Pseudo—Parabolic Regularization

In this approach the regularization operator will involeef derivatives in space in

addition to one derivative in timel[3,19,20,21]

d
By (K) £ K4a, (3.4)

so that the regularized operator becomes

£ 3.5
The magnitude of this regularization term is given oy 3. We remark that, in
contrast to the hyperviscous technique, this approachgidlaezation also affects

op
. . pﬁ)
the form of the nonlinear term which beconegs= 1+BK4K' Furthermore, the reg-

ularized operatorz(K) is not given as a polynomial, but a rational functionkof
We note that restriction @3 to positive values is necessary to avoid poles in expres-
sion 3.5 which could lead to undesirable behavior. To be more pegém 3 < 0
such poles would occur at the wavenumkgr= {/—1/B for which the denomi-
nator in @.5) vanishes. As a result, operatdg (k) would become unbounded for
K — Kp resulting in a “resonance” behavior which is clearly an sidble effect.
As is evident form Fig2b, the spectrum of the operatdiz(K) is now bounded
for all k by B~1, but the operator remains unstable for RllIn this sense, regu-
larized problem 3.2) with the regularization operator given i8.6) still remains
ill-posed, although, as shown by the computational repuéisented in Sectiofh
the degree of ill-posedness is weak and does not prevenffiaremf numerical

solution for moderate times. In principle, this ill-posedr could be mitigated by

11



using higher—order spatial derivatives B14) which would ensure thafig(k) — 0
for K — o, but this was found unnecessary in the present investigaie add
that, since regularization operat@.4) does not increase the order of the equation,
for systems defined on bounded domains it is not necessampwidp additional

boundary conditions in the pseudo—parabolic approach.

3.3 Adaptive Regularization

It appears plausible that an optimal value of the reguléiomaparameter may
change in time, hence a natural generalization of the aphesapresented in Sec-
tions3.1and3.2is to allow the regularization parametersandf3 to be adapted in
some dynamic fashion. As a criterion of this adaptation oa§ nequire that the
solution of the regularized backward proble&d) have a prescribed fixed energy
Eo given in terms of thé., norm as as
L
1Pl 2 [ p(t.02dx= 3 [P =Eo. (3.6)
0 Kek
The idea behind this admittedly simple criterion is to eedtiat the regularization
is not too “soft”, resulting in an instability and blow—umdat the same time not
too aggressive, which could result in large errors. Condi{8.6) could be enforced
at every discrete time step, j = Nt,...,1, whereNy is the total number of time
steps, yielding

Ip(tj;utj) [, = Eo fortj €0, T], (3.7)

which can be solved fou(tj) at every timet; using a suitable root—finding tech-
nique. Alternatively, the rather rigid conditio3.() can be relaxed and replaced
with

Ip(t; (1) l[L, — Eo ast — 0. (3.8)

12



Values of the regularization paramefesatisfying the weaker conditior3 ) can
be determined using methods originating in the classiaatrobtheory R3], namely,

a proportional (P) regulator

W(t)) = K(tj+1) +Ke ([ P(tj+15 K(tj+1)) L, — Eo) (3.9)
or a proportional—differential (PD) regulator

W(tj) = K(tjr2)+Kp (1) +1; W(tj+1)) I, — Eo)

d (3.10)
+Ko o (I1B(tj+ 15 u(tj+1)) I, — Eo) ,

whereKp andKp are adjustable parameters. Some results concerning ael&gti

perviscous and pseudo—parabolic regularization will lsgresented in Section

4.

4 Computational Results

In this Section we assess the performance, both in termsbilisg and accuracy,

of the regularization methods introduced in Secti8ris-3.3. We will do this by an-
alyzing the divergence of the trajectory obtained by sa\hre regularized terminal
value problem 3.2) from the “reference” trajectory corresponding to the ora
terminal value problem3.1) in which no disturbances are present. This reference
trajectory is in fact obtained by solving initial value pteln (2.1) and using the
stateu(T) as the terminal condition for the backward probledr®), i.e.,¢ = u(T).

Divergence of these two trajectories is characterized by¢hative error

s IP®) —uM)ll,  VSeex|Pe(t) — (D[
et) = HU()IILZ ~ TN (4.1)

and we will be primarily interested in the studying the bebawf e(0). We also

considered errors defined in terms of norms other thate.g.,H! andH 1), but

13



the results obtained were qualitatively similar and therefvill not be shown here.
Both forward and backward problem2.0) and @.2) are discretized in space us-
ing a pseudo—spectral Fourier—Galerkin method with demlga[4]. We used 512
Fourier modes and found this sufficient to resolve fully bi investigated cases.
Time discretization employed an implicit (Crank—Nicol3@cheme on all the lin-
ear (including regularization) terms i2.0) and @.2) combined with an explicit
(RK3) scheme on the nonlinear terms. The time step used iadlion of both
problems, regardless of the regularization technigue ,usad the same and equal
to At = 2.9-1072. We are primarily interested in the effect of nonlineastiepre-
sented by the parameterin (1.1) and (L.2). In order to assess the performance of
both regularization strategies in different regimes, fibvalues ofL we study the

problem on two different time intervals:

(1) short time interval withl' = 30- At,

(2) long time interval withT = 300- At.

For every value of. we ensure that the terminal conditi¢riies on the “turbulent”
attractor, so that the reference trajectory is guaranteeekist (cf. discussion in

Sectionl) and the system evolution occurs in a statistically steadyme.

We begin our presentation of the results by showing in RBgsh andda,b the val-
ues of the relative errog(0) at the beginning of the intervg0d, T] as a function

of the regularization parameten (Corresponding to the hyperviscous regulariza-
tion in Figs.3a,b, andB corresponding to the pseudo—parabolic regularization in
Figs.4a,b). We focus on the results defined at the beginning of the window,
because as shown in Fig, the errors tend to be the largest there. Furthermore,
for applications to the retrograde data assimilati®i§] solution accuracy of the

backward—in—time problem is the most important at 0. In order to facilitate

14
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Fig. 3. The relative errorg(0) in the hyperviscous regularization as a function of the reg-

ularization parameten on (a) the short interval and (b) long interval wi%) L = 49, (A)
L=154, @) L =267 and ¢) L = 462; figure (c) represents (solid line) the initial conditio
@of (1.1) and the statep(0) obtained by solving problenB(2) with the hyperviscous reg-

ularization over (dotted line) the short interval and (dahine) long interval fotl. = 154.
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gualitative comparisons of the results in the differentesase used the same ver-
tical scale in all four Figures. We note that the qualitatnends are the same for
the two regularization methods on both the short and longrwal. As the regu-
larization parametera andf are reduced, the erroeg0) steeply increase which
corresponds to an instability taking place due to insufficiegularization. For
both regularization methods the critical value of the ragahtion parameter below
which blow—up occurs is smaller for the short time intervaijch indicates that the
required “intensity” of regularization is an increasingéion of the length of the
integration interval. On the other hand, for increasingueal of the regularization
parameters the errors slowly grow indicating that due toesgive regularization
the backward solutions deviate too far from the referenagttory. In all four
cases shown in Fig8a,b and4a,b there is a well-defined value of the regulariza-
tion parameter which yields a global minimum of the ere(®). These errors are
noticeably smaller when the pseudo—parabolic regulaozas used, and are also
smaller on the short time intervals. In particular, when plseudo—parabolic reg-
ularization is applied on the short interval, the relativeoee(0) can as small as
0(1072). These observations are confirmed in Figsand4c where we compare
the regularized solutions obtained at 0 using the “optimal” values ak andf3 to
the reference initial conditioq (in order to magnify details only half of the domain
[0,L] is shown in Figs3c and4c). With regard to Fig4c, we reiterate that the so-
lution obtained with the pseudo—parabolic regularizabarthe short time interval
is barely distinguishable fromp. Finally, we discuss the effect of the paramdter
on the performance of the regularization strategies. Wemesthat in all of the
four cases shown the errors corresponding to diffekesgem to collapse onto one
curve (there is admittedly some scatter in the case of theduseparabolic regu-
larization). This rather surprising observation may imal§universal” behavior of

the two regularization techniques whereloes not affect the performance.

16
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for L = 154.
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ization over the long interval using (solid line) a fixed valof B = 1.6, (dotted) “instan-

taneous” adaptation [cf3(7)], (dashed) adaptation using a P controller [&.9], and

(dash—dotted) adaptation using a PD controller [8f1Q)] for L = 154.
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We conclude this Section with a discussion of the regultigmaresults obtained
with the adaptive technique introduced in Sect8® To fix attention, we focus on
the pseudo—parabolic regularization applied on the lotegvial. We seEo = ||¢]|L,

and choose the constarts andKp to ensure rapid convergence (t) |, to Eo

as the time decreases. Numerous computational experirdehtsot produce an
adaptive approach that would have been superior to the pseadabolic regular-
ization with a fixed3 in the sense of yielding a smaller valueaf®). Sample results
are presented in Fig.where we see that, while for the intermediate times the adap-
tive approaches may perform marginally better, at the tiraed the approach with

a fixedp is in fact superior.

5 Summary and Conclusions

In this paper we revisited two regularization techniquesaly developed in the
context of the backward—in—time heat equation, and appghed to a terminal
value problem for a nonlinear system. Using the 1D backwardime Kuramoto—
Sivashinsky equation as a model problem we showed that oigoptimal values
of the regularization parameters involves a trade—off leetwstability and accuracy
with integrations over shorter intervals requiring weakegularization and yield-
ing therefore more accurate results. The pseudo—parategidarization clearly
performs much better than the hyperviscous regularizatiowould furthermore
be less ambiguous for problems defined on bounded domaiitsywasld not re-
quire additional boundary conditions to be specified (whicluld be the case for
the hyperviscous regularization). We also found that,adtiéor problems evolving
on the “turbulent” attractor, the parametethas no systematic effect on the per-

formance of the regularization techniques. This was ratimexpected, since is
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a measure of the nonlinear effects which in the Kuramotaashiinsky system are
of the advective type (thus, increasib@ne reduces the relative significance of the

dissipative terms which are the source of the backwardire-il-posedness).

Since the properties of the two regularization techniquesfaly understood for
linear problems, it would be tempting to compare our presestilts with regu-
larization applied to problem3(1) with the nonlinear term removed. Since such
system does not possess a “turbulent” attractor, such a @asop would not be
meaningful, because one would have to compare regulaimbf transient and
statistically stationary trajectories. In regard to apations in the retrograde data
assimilation which have motivated this research, we calelthat the pseudo—
parabolic regularization could be a feasible solution ed the integration in-

tervals are sufficiently short.
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