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Abstract

In this work we investigate a technique for accelerating convergence of adjoint–based opti-
mization of PDE systems based on a nonlinear change of variables in the control space. This
change of variables is accomplished in the differentiate–then–discretize approach by con-
structing the descent directions in a control space not equipped with the Hilbert structure.
We show how such descent directions can be computed in general Lebesgue and Besov
spaces, and argue that in the Besov space case determinationof descent directions can
be interpreted as nonlinear wavelet filtering of the adjointfield. The freedom involved in
choosing parameters characterizing the spaces in which thesteepest descent directions are
constructed can be leveraged to accelerate convergence of iterations. Our computational
examples involving state estimation problems for the 1D Kuramoto–Sivashinsky and 3D
Navier–Stokes equations indeed show significantly improved performance of the proposed
method as compared to the standard approaches.

Key words: optimal control, adjoint equations, state estimation, preconditioning,
computational fluid dynamics
PACS:47.27.Rc, 47.27.nd, 47.10.A-

1 Introduction

Problems of optimal control of distributed systems arise inmany areas of science
and engineering. Without loss of generality, in this investigation we will focus on
problems motivated by applications in fluid mechanics such as:

• shape optimization in aerodynamics (see, e.g., [1,2]),
• flow control for drag reduction, (see, e.g., [3,4]),
• variational data assimilation in dynamic meteorology known as 4DVAR (see,

e.g., [5]),
• mixing enhancement (see, e.g., [6]).
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Denoting the state of the systemv ∈ X , whereX is an infinite dimensional state
space, and the control variableφ ∈U, whereU is a finite–dimensional or infinite–
dimensional control space, the governing system of partialdifferential equations
(PDEs) can be expressed in a general form asG(v,φ) = 0. Then the problem of
finding an optimal controlφopt can be stated as PDE–constrained optimization in
the following way

min
v∈X , φ∈U

j(v,φ) (1a)

subject toG(v,φ) = 0, (1b)

where j : X ×U → R is the cost functional representing mathematically the per-
formance criterion we want to optimize. In principle, aftera suitable discretization,
problems of the type (1) can be solved using general methods of Nonlinear Pro-
gramming (NLP), see, e.g., [7]. However, from the computational point of view,
formulation (1) is not quite convenient when dealing with distributed systems, as
it requires simultaneous optimization over discretizations of the state and control
spacesX andU, the first of which may have a very large dimension. In practice,
in the presence of equality constraints only and subject to certain assumptions on
the functionG(v,φ), we can writev = v(φ) which allows us to define thereduced
cost functionalJ (φ) , j(v(φ),φ), so that (1) can be transformed to the equivalent
unconstrainedformulation

min
φ∈U
J (φ). (2)

The advantage of (2) as compared to (1) is that now optimization must be per-
formed with respect to the control variableφ only. Hereafter we will focus exclu-
sively on formulation (2) and, unless needed for clarity, wewill drop the adjective
“reduced” when referring to the cost functionalJ (φ). The mathematical theory of
optimal control of PDE systems was developed initially by Lions [8]; in the con-
text of problems arising in fluid mechanics it was further investigated by Abergel
and Temam [9]. The state of the art of this area is surveyed in the monograph
by Gunzburger [10]. There are two main paradigms relevant tosolving problem
(2): the “discretize–then–differentiate” approach stipulates that the state variable
v and, if necessary, the control variableφ are discretized first and then the opti-
mization problem is solved in the finite–dimensional setting; on the other hand, in
the “differentiate–then–discretize” approach the optimality conditions are derived
on the continuous (PDE) level and only then discretized and solved numerically.
While it is recognized that in general these two routes may lead to different results
and there is an on–going debate as to the relative merits of the two approaches [10],
in the present work we will adopt the “differentiate–then–discretize” methodology,
as in this context our approach is more straightforward to introduce.

There are aspects of optimal control problems in fluid mechanics that make their
computational solution particularly challenging. First of all, given the usual dimen-
sion of spatio–temporal discretizationsṽ of the state variablev [tilde ( ˜ ) will de-
note a discretized version of a variable, operator, or space], which often involve as
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many asO(1016) degrees of freedom, it is impossible to store the linear operators
acting onṽ as matrices. Therefore most existing NLP software packagesmay not be
used and “matrix–free” alternatives must be developed. Moreover, complete Hes-
sian information is often unavailable and consequently Newton’s method can rarely
be used. Consequently, one must employ quasi–Newton or gradient approaches and
in this investigation we focus on gradient-based methods. The necessary condition
characterizing the minimizerφopt of the cost functionalJ (φ) is the vanishing of the
Gâteaux differentialJ ′ : U×U→ R, i.e.,

J ′(φopt;φ′) = 0, ∀φ′ ∈U, (3)

where the Gâteaux differential is defined asJ ′(φ;φ′) , limε→0
J (φ+εφ′)−J (φ)

ε (the
symbol , means “equal to by definition”). In many applications, including the
cases considered in the present work, the cost functionalj is quadratic in both
v and φ, however,v = v(φ) is a nonlinear mapping, and therefore optimization
problem (2) will often be nonconvex. As a result, problem (2)may admit several
local minimizers and (3) will characterize such a local minimizerφopt only. Given

a discretization of some initial guessφ̃(0)
= φ̃0, an approximation of a minimizer

can be found using a gradient–based descent method of the general form

φ̃(n+1)
= φ̃(n)

+A∇̃J (φ̃(n)
), n = 0,1, . . . , (4)

such that limn→∞ φ̃(n)
= φ̃opt, wheren is the iteration count. At every iterationn

the descent directionA∇̃J is determined based on the gradient̃∇J of the cost

functional evaluated at̃φ(n)
and iterations are performed until a critical point is

reached, i.e., until̃∇J (φ̃(n)
) = 0 in some approximate sense. As will be shown

below, this gradient can be conveniently expressed using solutions of a suitably–
defined adjoint system. Adopting different forms of the operatorA we may recover
different variants of the gradient method such as the steepest descent method, the
conjugate gradient method, etc.

We emphasize that, as shown in [11], PDE–constrained optimization problems with
quadratic cost functionals are often of the elliptic type inthe sense that the reduced
Hessian of the cost functional is an elliptic operator regardless of the specific type
of the PDE representing the constraint. It is also well known[7,12] that for convex
problems the rate of convergence of gradient iterations (4)to the discrete mini-
mizer φ̃opt depends on thecondition numberκ of the (reduced) Hessian ofJ (φ̃) in
the neighborhood of the minimizer. The condition number characterizes the local
ellipticity of the isocontours ofJ (φ̃), i.e., whenκ & 1 these isocontours are close
to spheres, whereas whenκ ≫ 1, the isocontours are squashed in some directions
resulting in many iterations required in order to converge to the minimizer in (4).
Convergence of gradient iterations (4) can thus be accelerated by a suitable rescal-
ing of the independent variables, so that the condition number of the problem is
reduced, a procedure known aspreconditioning. The effect of preconditioning can

3



be represented as multiplication of the descent directionA∇̃J in (4) by a precon-
ditioning operator (matrix)̃T chosen so that the condition number of the resulting
problem is reduced. Algebraic preconditioning strategies[13] determine the pre-
conditionerT̃ by exploiting the algebraic structure of the descent direction A∇̃J .
On the other hand, operator preconditioning strategies [14] determine a contin-
uous preconditioning operatorT on the PDE level by analyzing properties of the
infinite–dimensional problem. An advantage of the latter approach is that the result-
ing improvements in the bounds on the condition numbers are often discretization–
independent. An example of the operator preconditioning approach is furnished by
the method of Sobolev gradients developed by Neuberger [15]which derives the
preconditioning operators from the corresponding Sobolevnorms. In other words,
when using different Hilbert spacesV equipped with the inner products(·, ·)V as
the control spaceU, Riesz’ theorem [16] guarantees existence of the corresponding
gradients∇V J ∈ V which are defined through the Riesz identity

J ′(φ;φ′) = (∇V J ,φ′)V , ∀φ′∈V . (5)

As will be shown below, different Hilbert (Sobolev) gradients can be computed
by applying alinear transformation to the adjoint field. An approach employing
Sobolev spacesH p as the Hilbert spaces for gradient extraction was used with suc-
cess for solution of problems involving minimization of potentials [17] and was
also employed in the context of PDE–constrained optimization in [18]. A simple,
yet illuminating, example illustrating an application of operator preconditioning to
solution of a linear boundary value problem for an elliptic PDE is presented in Ap-
pendix A. The utility of different Hilbert space gradients in an area of mathematical
modelling was recently reviewed in [19]. Preconditioners,both of the algebraic and
operator type, are also useful for solution of nonlinear problems, however, in such
situations the preconditioner is often allowed to vary fromone iteration to another,
resulting in the so–calledvariable preconditioning[13,14]. This approach is related
to the variable metric method used for solution of systems ofnonlinear algebraic
equations [12]. As regards PDE–constrained optimization,a heuristically motivated
variable preconditioning approach was developed in [18], where it was proposed to
precondition the gradients by “focusing” them on a specific range of length–scales
which was modified during the iterations, thereby resultingin an effectively multi-
scale strategy.

The goal of the present paper is to propose and investigate a more general precon-
ditioning approach for accelerating convergence of adjoint–based optimization of
PDE systems. This method extends the concept of the Sobolev gradients by mak-
ing it possible to extract their counterparts in general Banach spaces not equipped
with the Hilbert structure. Since Riesz representation (5)does not apply in non–
Hilbert spaces, we employ a more general procedure to extract the steepest descent
directions in Banach spaces which follows the proposal firstmade by Neuberger
in [15]. This procedure will involve anonlineartransformation of the adjoint field
equivalent to a nonlinear change of variables in iterative procedure (4). Further-
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more, by extracting the steepest descent directions in a continuous family of nested
spaces we will allow this change of the metric to vary in the course of iterations
(4). Our computational examples illustrating applicationof this strategy to solve
optimal control problems for two different PDE systems showadvantages of the
proposed approach with respect to traditional techniques.As argued in [18] and as
is also well–known in the image processing literature (see,e.g., [20]), extraction
of gradients in different functional spaces is in fact equivalent to applying different
filters to the adjoint field. Gradients extracted in Hilbert spaces can be regarded as
obtained via an application of alinear filter to the adjoint state and, for example, the
Sobolev gradients can be viewed as obtained via applicationof suitable low–pass
filters (defined in wavenumber space) to the adjoint field [18]. In the same spirit,
extraction of the steepest descent directions in general Banach spaces not endowed
with a Hilbert structure can be regarded as application of anonlinearfilter to the
adjoint field. In particular, as will be shown below, identification of directions of
the steepest descent in Besov spaces can be regarded as nonlinear wavelet filtering
of the adjoint field emphasizing itscoherentpart [21], in contrast to the low–pass
filtering which emphasizes specific wavenumber components only.

The structure of the paper is as follows: in the next Section we introduce our two
model PDE–constrained optimization problems, one formulated using the Kuramoto–
Sivashinsky equation in a one–dimensional (1D) periodic domain and the other
formulated using the Navier–Stokes system in a three–dimensional (3D) channel
periodic in the streamwise and spanwise directions; in thatSection we also show
how the Sobolev gradients of the relevant cost functionals can be identified from
solutions of the appropriate adjoint problems; in the following Section we describe
how directions of the steepest descent in various Banach spaces (Lebesgue, Besov)
can be identified; in Section 4 we present computational results illustrating how
these descent directions can be used to accelerate convergence of the iterative solu-
tion procedure; summary and conclusions are deferred to Section 5.

2 Model Optimal Control Problems

In this Section we set up two model PDE–constrained optimization problems whose
computational solution will be used to illustrate our new approach. In both cases
we are interested in solving a variational data assimilation problem (4DVAR) [5],
wherein, given some incomplete and possibly noisy measurements of the system
evolution over the time window[0,T], one seeks to determine the initial condition
(the control variable)φ in such a way that the ensuing system evolution matches
the available measurements as well as possible. We formulate this problem for the
Kuramoto–Sivashinsky equation in a 1D periodic domain and then the Navier–
Stokes system in a 3D channel. These problems were introduced as benchmarks
for adjoint–based optimization in [18] and [22], respectively. An advantage of us-
ing such “synthetic” state estimation problems is that in the absence of noise we
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know the exact minimizer (which is the state used to generatethe measurements)
and thus we can know whether the minimum actually found is local or global.
Without the risk of confusion, in certain cases we will use the same symbols to
denote analogous quantities in the statement of the optimization problems for the
Kuramoto-Sivashinsky and Navier–Stokes equations in Sections 2.1 and 2.2, re-
spectively.

2.1 State Reconstruction for the Kuramoto–Sivashinsky Equation

The Kuramoto–Sivashinsky equation is chosen here, since its solutions are en-
dowed with chaotic and multiscale behavior which makes it anattractive model
for the Navier–Stokes system. For simplicity, we will consider this equation on a
periodic spatial domainΩ = (0,2π) and a time interval[0,T]





∂tu+4∂4
xu+κ

(
∂2

xu+u∂xu
)

= 0, x∈ Ω, t ∈ [0,T],

∂i
xu(0, t) = ∂i

xu(2π, t), t ∈ [0,T], i = 0, . . . ,3,

u(x,0) = φ, x∈ Ω.

(6)

Out of many different ways in which the coefficients of the Kuramoto–Sivashinsky
equation may be scaled, we follow here the approach proposedin [23]. In our
computations we will setκ = 4000 which will result in 23–24 coherent structures
(“bumps”) present in the domain. A solution of system (6) exhibiting a characteris-
tic spatio–temporal pattern is shown in Fig. 1 (the numerical method used to obtain
this solution is described further below). We refer the reader to [18] for further de-
tails related to the Kuramoto–Sivashinsky as a model problem for adjoint–based
optimization.

Given incomplete (and possibly noisy) measurementsy=H uact ∈Y , whereuact(·, t)∈
X are states at the actual system trajectory andH : X →Y is an observation opera-
tor withY the space of measurements, our optimization problem consists in finding
an initial conditionφopt in (6) which minimizes the following cost functional

J (φ) =
1
2

Z T

0
[H u(φ)−y]2dτ. (7)

Consistently with the properties of system (6) [24], we willassume thatφ ∈U =
L2(Ω). SinceJ depends on the control variableφ implicitly through state equation
(6), expression (7) represents in fact a reduced cost functional. We will assume that
the observation operatorH has the form of projection of the stateu on a set of
cosine modes with the wavenumbers in some setΛr , i.e.,

H , ∑
r∈Λr

Pr , where Prz,

[
1
π

Z 2π

0
cos(rx′)z(x′)dx′

]
cos(rx). (8)
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Fig. 1. Dynamics of the Kuramoto–Sivashinsky system forκ = 4 · 103: (a) initial condi-
tion φ (chosen on the chaotic attractor of the system), and (b) spatio-temporal evolution of
the system [visualized are the zero (solid), several positive (dotted) and negative (dashed)
isocontours ofu in the space–time plane].

The Gâteaux differential of (7) is given by

J ′(φ;φ′) =
Z T

0

Z 2π

0
(H u−y)H u′dxdt, (9)

where the perturbationu′(φ;φ′) satisfies the Kuramoto–Sivashinsky equation lin-
earized around the stateu(φ), i.e.,





Lu′ , ∂tu
′ +4∂4

xu′ +κ
[
∂2

xu′+u∂xu
′+(∂xu)u′

]
= 0, x∈ Ω, t ∈ [0,T],

∂i
xu

′(0, t) = ∂i
xu

′(2π, t), t ∈ [0,T], i = 0, . . . ,3,

u′(x,0) = φ′, x∈ Ω,
(10)

with the operatorL : X → X ∗ understood in the weak sense (X ∗ is the space dual
to X ). Relation (9) can now be transformed to a form consistent with (5) by intro-
ducing an adjoint operatorL∗ : X →X ∗ and the corresponding adjoint stateu∗ ∈X
via the following identity

〈
u∗,Lu′

〉
X×X ∗

=
〈
L∗u∗,u′

〉
X×X ∗

+b, (11)

where〈·, ·〉X×X ∗ represents the duality pairing between the spacesX and its dual
X ∗, i.e., givenz1 ∈ X andz2 ∈ X ∗, 〈z1,z2〉X×X ∗ ,

R T
0

R 2π
0 z1z2dtdx. Using integra-
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tion by parts and the definition ofL in (10), we obtain

L∗u∗ , −∂tu
∗ +4∂4

xu∗ +κ
(
∂2

xu∗−u∂xu
∗
)
, and (12)

b =

[
Z 2π

0
u∗u′dx

]t=T

t=0
.

We remark thatb does not contain any boundary terms (resulting from integration
by parts), since all of them vanish due to periodicity. Defining an adjoint system as





L∗u∗ =H ∗(H u−y), x∈ Ω, t ∈ [0,T],

∂i
xu

∗(0, t) = ∂i
xu

∗(2π, t), t ∈ [0,T], i = 0, . . . ,3,

u∗(x,T) = 0, x∈ Ω,

(13)

and using (10), (11) and (12) we can now express Gâteaux differential (9) in the
desired form (5), namely

J ′(φ;φ′) =

Z 2π

0
u∗

∣∣∣
t=0

φ′dx. (14)

Thus, this differential (i.e., the sensitivity of the cost functionalJ with respect to
perturbationsφ′ of the initial condition) can be expressed using the solution of ad-
joint system (13). Physically, the adjoint field evaluated in the part of the domain
Ω× [0,T] where the control is defined represents the sensitivity of cost functional
(7) to the control variable. In the present problem, this control variable is the un-
known initial condition which we seek to reconstruct.

Relationship (14) can now be employed to extract the gradient required in descent
optimization algorithm (4). SinceU = L2(0,2π) is equipped with the inner product
(z1,z2)L2 ,

R 2π
0 z1z2dx for z1,z2 ∈ L2(0,2π), we immediately obtain

J ′(φ;φ′) =

Z 2π

0
u∗

∣∣
t=0 φ′dx=

(
∇L2J ,φ′

)
L2

=⇒ ∇L2J = u∗
∣∣
t=0. (15)

Despite its simplicity, this is often not an optimal choice,as it may result in poor
scaling of the corresponding discrete optimization problem. For reasons explained
hereafter (see also [15,18]), in many cases it is beneficial to extract gradients in
Sobolev spaces, for instance in the spaceH1(l)(0,2π) equipped with the inner prod-
uct

(
z1,z2

)
H1(l) =

1
(1+ l2)

Z 2π

0

[
z1z2+ l2(∂xz1)(∂xz2)

]
dx, (16)

where l is an adjustable length–scale parameter (in contrast, the spaceL2(0,2π)

does not possess any adjustable parameters). IdentificationJ ′(φ;φ′) =
(
∇H1(l)

J ,φ′
)

H1(l)

[cf. (5)] yields, after integration by parts, the gradient∇H1(l)
J defined as the solu-
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tion of the following boundary value problem for the Helmholtz equation





1
1+ l2

[
1− l2∂2

x

]
∇H1(l)

J = ū∗
∣∣∣
t=0

, x∈ Ω

∇H1(l)
J (0) = ∇H1(l)

J(2π).

(17)

Thus, the Sobolev space gradient∇H1(l)
J is obtained by applying the inverse Helmholtz

operator to the “classical”L2 gradient. Interestingly, when regarded in Fourier
space, the inverse Helmholtz operator is equivalent to a low–pass filter with the
cut–off given by the inverse of the length–scalel parameterizing inner product
(16). Consequently, extracting gradients in the Sobolev space with the inner prod-
uct given by (16) has the effect of de–emphasizing components with characteristic
length–scales smaller thanl . As was shown in [18], adjusting this length–scale
in the course of the iterative solution of an optimization problem can accelerate
convergence of iterations. For example, starting withl large and then gradually de-
creasing it to zero results in a multiscale procedure targeting first the large–scale
structures and then gradually homing in on the smaller scalecomponents of the

solution φ̃opt (we note that liml→0∇H1(l)
J = ∇L2J ) . This technique can thus be

regarded as a combination of operator preconditioning withthe variable metric ap-
proach mentioned in Introduction. Finally, we emphasize that due to the inclusion

H1(l)(0,2π) ⊂ L2(0,2π) [25], ∇H1(l)
J does represent an acceptable descent direc-

tion for problem (6) as regards smoothness.

In the present work the state and adjoint systems are both solved in the well-
resolved setting (on 512 grid points) using a dealiased pseudospectral Fourier–
Galerkin method. Time advancement is performed using an RK3scheme on the
nonlinear term in (6) and the termu∂xu∗ in (13), and theθ method withθ = 5/8 on
the linear terms (see [26]).

2.2 State Reconstruction for the Navier–Stokes Equation

As our second model we consider a viscous incompressible flowin a channelΩ ,
(0,L1)× (−1,1)× (0,L3) periodic in the streamwise and spanwise directionsx1

andx3, and bounded in the directionx2 (Fig. 2a). The quantities defined at the wall,
i.e., for x2 = ±1, will be distinguished by the subscript “w”. Defining the state

vector asq =


u

p


, whereu = [u1 u2 u3]

T is the velocity vector field andp is the
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(b)

Fig. 2. Turbulent flow in a channel atReτ = 100: (a) configuration and (b) visualization of
near–wall coherent structures (courtesy of T. Bewley).

pressure field, the system evolution is governed by the Navier–Stokes system

N (q) =




∂u
∂t

+(u ·∇)u+∇p−ν∆u

∇ ·u


 =


Pxi

0


 in Ω× (0,T];

u = Φ at t = 0;
u|w = 0 on∂Ω,

(18)

wherePx is the pressure gradient adjusted to maintain a constant mass flux andΦ
is the initial condition. Consistently with the propertiesof system (18) [24], we
will assume thatΦ ∈ U = L2(Ω). In the present investigation the stateq will be
estimated based on information about skin friction and pressure fluctuations at the
wall (i.e., for x = ±1) which are a signature of the near–wall coherent structures
(Fig. 2b, see also [22] for a discussion concerning the completeness of this set of
measurements). We define first a wall measurement vectorm = [m1 m2 m3]

T , where
m1 , ∂u1

∂n |w, m2 , p|w, andm3 , ∂u3
∂n |w, distributed in time over an assimilation

window [0,T] and in space over the channel walls for an “actual” channel–flow
system (n is defined as an inward–facing normal). Solution of our stateestimation
problem is obtained as the minimization of a functionalJ (Φ) which represents
mathematically the “misfit” of the measurements in the actual and reconstructed
systems

J (Φ) =
1
2

Z T

0

[
ℓ1

∥∥∥∥
∂u1

∂n
−m1

∥∥∥∥
2

w
+ ℓ2

∥∥∥∥p−m2

∥∥∥∥
2

w
+ ℓ3

∥∥∥∥
∂u3

∂n
−m3

∥∥∥∥
2

w

]
dt, (19)

where the coefficientsℓ1, ℓ2, ℓ3, and the norm‖ · ‖w are defined appropriately to
measure the deviation of the model system from the measurements of the actual
flow on the channel walls atx2 = ±1. Note thatℓ2 is proportional to the square
of the (constant) fluid density,ρ2, andℓ1 andℓ3 are proportional to the square of
the (constant) fluid viscosity,µ2, in order to make (19) dimensionally consistent. In
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the present work we will consider the case in whichL2 norms are used such that
‖ f‖2

w ,
R

w f 2dS. The Gâteaux differential of (19) is given by

J (Φ;Φ′) =

Z T

0

Z

w

[
ℓ1

(∂u1

∂n
−m1

)∂u′1
∂n

+ ℓ2

(
p−m2

)
p′+ ℓ3

(∂u3

∂n
−m3

)∂u′3
∂n

]
dSdt,

(20)

where the equation governing the perturbation vectorq′ = q′(Φ;Φ′) =


u′

p′


 satis-

fies the Navier–Stokes system linearized around the stateq(Φ), i.e.,

L(q′) =




∂u′

∂t
+(u ·∇)u′ +(u′ ·∇)u+∇p′−ν∆u′

∇ ·u′


 =


0

0


 in Ω× (0,T];

u′ = Φ′ at t = 0;
u′|w = 0 on∂Ω.

(21)
Here again the operatorL : X → X ∗ is to be understood in the weak sense. Re-
lation (20) can now be transformed to a form consistent with Riesz identity (5) by
introducing an adjoint operatorL∗ : X → X ∗ and the corresponding adjoint state
q∗ ∈ X via the following identity

〈
q∗,Lq′

〉
X×X ∗

=
〈
L∗q∗,q′

〉
X×X ∗

+b, (22)

where〈·, ·〉X×X ∗ represents the duality pairing between the spacesX and its dual
X ∗, i.e., givenz1 ∈ X andz2 ∈ X

∗, 〈z1,z2〉X×X ∗ ,
R T

0
R

Ω z1 · z2dΩdt. Using inte-
gration by parts and the definition ofL in (21), we obtain

L∗q∗ =


−

∂u∗

∂t
−u · [∇u∗ +(∇u∗)T ]−∇p∗−ν∆u∗,

−∇ ·u∗


 ,

b =

Z

Ω

(
u∗j u′j

)∣∣∣
t=T

t=0
dΩ−

Z T

0

Z

w
n j

[
p∗u′j +u∗j p′+u∗i

(
u j u

′
i +u′j ui

)
−ν

(
u∗i

∂u′i
∂x j

−u′i
∂u∗i
∂x j

)]
dΩdt.

Defining the adjoint system as

L∗q∗ = 0 in Ω× [0,T);
u∗ = 0 att = T;

u∗1(x1,±1,x3) = ℓ1
1
ν

(∂u1

∂n
−m1

)
,

u∗2(x1,±1,x3) = ℓ2n̄2

(
p−m2

)
,

u∗3(x1,±1,x3) = ℓ3
1
ν

(∂u3

∂n
−m3

)
,





on∂Ω,

(23)
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whereq∗ =


u∗

p∗


, and using (21) and (22) we can now express Gâteaux differential

(20) in a desired form consistent with (5)

J ′(Φ;Φ′) =

Z

Ω
u∗

∣∣∣
t=0

Φ′dΩ. (24)

Thus, this differential (i.e., the sensitivity of the cost functionalJ with respect to
perturbationsΦ′ of the initial condition) can be expressed using the solution of
adjoint system (23). Relationship (24) can now be employed to extract the gradi-
ent required in descent optimization algorithm (4). SinceU = L2(Ω) is equipped
with the inner product(z1,z2)L2 ,

R

Ω z1 ·z2dΩ for z1,z2 ∈ L2(Ω), we immediately
obtain

J ′(Φ;Φ′) =
Z

Ω
u∗

∣∣
t=0Φ′dΩ =

(
∇L2J ,Φ′

)
L2

=⇒ ∇L2J = u∗
∣∣
t=0. (25)

As already discussed in Section 2.1, identifyingJ ′(Φ;Φ′) with anH1(l) inner prod-
uct defined as

(
z1,z2

)
H1(l) = 1

(1+l2)

R

Ω
[
(z1)i (z2)i + l2(∂x j (z1)i)(∂x j (z2)i)

]
dΩ with

implied summation for repeated indices, i.e.,

J ′(Φ;Φ′) =
(
∇H1(l)

J ,Φ′
)

H1(l), (26)

then integrating by parts and using the boundary conditions∇H1(l)
J |w = 0, the gra-

dient∇H1(l)
J is obtained as the solution of the following boundary value problem

for the Helmholtz equation





1
1+ l2

[
1− l2∆

](
∇H1(l)

J
)

= u∗
∣∣
t=0, in Ω

∇H1(l)
J |w = 0,

∇H1(l)
J periodic inx1 andx3.

(27)

The length–scalel plays here the same role as discussed in Section 2.1 and the
same comments apply as regards variable metric operator preconditioning.

We will study the case with the Reynolds numberReτ = 100. Both Navier–Stokes
system (18) and adjoint system (23) are solved numerically with a method com-
bining a finite–difference discretization on a nonuniform grid in the wall–normal
directionx2 with spectral discretization in the periodic directionsx1 andx3. Time–
advancement is carried out applying the RK3 method to the nonlinear terms in (18)
and the termu · [∇u∗ + (∇u∗)T ] in (23), and the Crank–Nicolson method to the
remaining terms. Further details concerning this numerical method together with
benchmark computations are presented in [3].
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3 Gradient Extraction in Banach Spaces

In this Section we show how steepest descent directions can be identified in general
Banach spaces not equipped with the Hilbert structure. Thisidea was introduced by
Neuberger [15] in the context of numerical solution of direct problems for PDEs.
As regards adjoint–based solution of inverse problems for PDEs, similar ideas were
discussed in [27,28]. We will assume that the Banach space ofcontrolsU is reflex-
ive, i.e.,U∗∗ = U. Fixing φ, the Gâteaux differentialJ ′(φ, ·) can be regarded as
a bounded linear functional onU, i.e., J ′(φ, ·) : U → R. As such, the Gâteaux
differential admits the representation

J ′(φ;φ′) =
〈

∇UJ ,φ′
〉
U∗×U

, (28)

where∇UJ ∈ U∗, i.e., the gradient∇UJ is an element of the dual spaceU∗ and〈
·, ·

〉
U∗×U denotes the duality pairing of the spacesU andU∗, i.e., for z1 ∈ U

andz2 ∈U∗,
〈
z1,z2

〉
U∗×U

,
R

Ω z1z2dx. We emphasize that the Riesz theorem and
inner–product representation (5) are not applicable in thepresent case whenU is
nota Hilbert space. In many important situations the dual spaceU∗ is “larger” than
the primal spaceU, i.e.,U ⊆U∗, in which case the gradient∇UJ may not belong
to the control spaceU and therefore could not be used to update the control in
(4). The reason is that, if∇UJ /∈ U, the gradient∇UJ may not meet the regular-
ity (smoothness), integrability, etc., conditions required for well–posedness of the
original problemG(v,φ) = 0. In the computational setting this may become ap-
parent in the form of small–scale oscillations and/or singularities appearing in the
gradient as the numerical resolution is refined. Thus, in a general case an accept-
able steepest descent direction, denoted hereDJ , may not be identified with the
negative gradient and must be therefore determined in a different way. As shown in
[15,27], this can be done definingDJ to be the unit–norm element of the spaceU
which minimizes expression (28). In other words, we postulate to findDJ as the
solution of the following constrained minimization problem

DJ = argmin‖ϑ‖U=1

〈
∇UJ ,ϑ

〉
U∗×U

, (29)

which can be transformed to the more convenient unconstrained form

DJ = argminϑ∈U

[〈
∇UJ ,ϑ

〉
U∗×U

+
µ
p
‖ϑ‖p
U

]
= argminϑ∈UF (ϑ), (30)

wherep is a positive integer chosen to make the resulting expression simpler,µ is
the Lagrange multiplier andF : U→ R is the Lagrange functional. This problem
can be solved by examining the first–order optimality conditions forF . Thus, the
steepest descent directionDJ is characterized by the vanishing of the Gâteaux
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differential of (30), i.e.,

∀ϑ′∈U F ′(DJ ;ϑ′) =
〈

∇UF (DJ ),ϑ′
〉
U∗×U

= 0, (31)

where∇UF : U →U∗ andF ′ is the Gâteaux differential of the Lagrange func-
tionalF . Thus, we obtain

∇UF (DJ ) = 0 inU∗ (32)

as an equation characterizing the descent directionDJ ∈U. Depending on the ex-
pression for the norm‖ · ‖U , equation (32) may be of algebraic or differential type.
Specific examples will be analyzed in Sections 3.1 and 3.2. Wenote that the map-
ping∇UF : U→U∗ is nonlinear, hence determination of the descent directionin
a Banach space involves anonlineartransformation of the adjoint variable. In or-
der to distinguish them from the gradient∇J , we will refer toDJ as the Lebesgue,
Besov, etc., descent directions depending on the choice of the function spaceU.
On the other hand, when the control spaceU does possess the Hilbert structure,
i.e.,U = V , then after settingp = 2, (31) becomes

DJ = argminϑ∈V

[〈
∇V J ,ϑ

〉
V ∗×V

+
µ
2

(
ϑ,ϑ

)
V

]
, (33)

and, using the now applicable Riesz representation (5), optimality condition (31)
becomes

〈
∇V J ,ϑ′

〉
V ∗×V

+µ
(

∇V J ,ϑ′
)
V

=
(

∇VF ,ϑ′
)
V

= 0. (34)

Transforming (34) using integration by parts we obtain expressions such as (17)
and (27). Thus, we conclude that gradient extraction in Hilbert spaces is in fact a
particular case of the generic procedure developed in this investigation.

Identification of descent directions in Banach spaces has therefore the effect of a
nonlinearchange of variables in the optimization problem. Hence, given a Gâteaux
differentialJ ′(φ;φ′), there is a distinct direction of the steepest descent associated
with every reflexive Banach spaceU assumed to containφ′ and, if the optimization
problem is convex, these descent directions will ultimately lead to the same min-
imizer, but the length of the path may be different in different spaces. Obviously,
now the important question is how these spaces should be chosen in order to yield
a small number of iterations in (4). A mathematically rigorous answer can be given
in the case of rather simple problems only, such as the one discussed in Appendix
A. In the case of more realistic problems, such as the ones introduced in Sections
2.1 and 2.2, to the author’s best knowledge mathematically precise results are un-
available and good choices of the spaces can only be made by way of numerical
experimentation. In this sense the proposed approach can beregarded as heuristic.
However, from the point of view of many practical optimization problems this is
acceptable, because such optimization problems are often solved repeatedly using
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different input data. This is the case, for example, of the variational data assimila-
tion performed on regular basis in order to provide initial conditions for the ensuing
weather forecasts (in fact, our model PDE optimization problems from Sections 2.1
and 2.2 were devised to mimic 4DVAR).

As regards identification of descent directions, we will consider families of Banach
spaces parametrized by one, or more, continuous parameters, such as, for example,
an integrability or differentiability index. In the spiritof the variable metric method,
during iterations we will gradually modify the Banach spacein which the descent
directions are identified by changing values of these parameters. In order to ensure
that the underlying PDE problem remains well–posed at everyiteration, it is nec-
essary that all of these spaces be contained inU. Thus, we will begin the iterations
by first constraining the iterates to some “small” subspaceU(0) of U which will
then “grow” until it becomes numerically indistinguishable fromU. Thus, if e.g.,
U = L2, the intermediate spacesU(n) must ultimately approach the spaceL2. The
family of spaces used for construction of the descent directions can thus be ordered
as follows

U(0) ⊆U(1) ⊆ ·· · ⊆U(n) ⊆ ·· · ⊆U, (35)

whereU(n) is the Banach space used at then–th iteration. In general, the prob-
lem of finding a continuous family of function spaces linkingtwo given function
spaces is the focus of an area of the functional analysis known as the interpolation
theory [25,29]. There are many profound results in this area, however for our pur-
poses here we will only use some fundamental facts concerning the families of the
Lebesgue, Sobolev and Besov spaces. In the remaining parts of this Section we will
show how the steepest descent directions for the model problems from Sections 2.1
and 2.2 can be obtained in the Lebesgue and Besov spaces. We omit the case of
general Sobolev spaces, because it ultimately produced results similar to the other
two cases. The mathematical theory concerning determination of descent directions
in general Sobolev spaces was discussed in [15]. We only mention here that the cor-
responding descent directions are determined by equationsformally similar to (17),
but with the Laplace operator replaced with the nonlinearp–Laplacian.

3.1 Identification of the Steepest Descent Directions in theLebesgue Spaces Lq(Ω)

3.1.1 Optimization Problem for the Kuramoto–Sivashinsky System

In this Section we characterize the directions of the steepest descent in the space
Lq(Ω), characterized by one free parameterq∈ (1,∞), for the optimization problem
introduced in Section 2.1. The norm inLq(Ω) is given by

‖u‖Lq =

(
Z 2π

0
|u|pdx

)1/p

(36)
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and the restriction on the indexq is related to the requirement of reflexivity, i.e.,
[Lq(Ω)]∗∗ = Lq(Ω), which does not hold forq= 1 andq= ∞ [25]. We also note that
for 1 < q < ∞ expressions for the norms inLq(Ω) are differentiable. Furthermore,
sinceLq1(Ω) ⊂ Lq2(Ω) for q1 > q2, the family of spacesLq(Ω) with the index
q decreasing from someq0 to 2 forms a hierarchy of the type (35) whereU = L2.
Following the procedure outlined at the beginning of this Section, we determine the
steepest descent direction in the spaceLq(Ω) as the solution of the minimization
problem

DLqJ = argmin‖ϑ‖Lq=1

〈
∇J ,ϑ

〉
Lq∗×Lq

, (37)

whereLq∗(Ω) = [Lq(Ω)]∗ with 1
q∗ + 1

q = 1 is the dual space with respect toLq(Ω).
Introducing the Lagrange multiplierµ and converting (37) to the corresponding
unconstrained formulation we obtain

DLqJ =argminϑ

[〈
∇J ,ϑ

〉
Lq∗×Lq

+
µ
p

∥∥∥ϑ
∥∥∥

p

Lq

]

= argminϑ

Z 2π

0

(
u∗

∣∣∣
t=0

ϑ+
µ
q

∣∣∣ϑ
∣∣∣
q
)

dx.
(38)

The first–order optimality condition for (38) yields

∀ϑ′∈Lq(Ω)

Z 2π

0

(
u∗

∣∣∣
t=0

+µDLqJ
∣∣∣DLqJ

∣∣∣
q−2

)
ϑ′dx= 0 (39)

which, given the arbitrariness ofϑ′, is equivalent to the relationship

DLqJ
∣∣∣DLqJ

∣∣∣
q−2

= −
1
µ

u∗
∣∣∣
t=0

in Ω. (40)

Thus, the steepest descent direction inLq(Ω) is

DLqJ =





q−1

√
−

1
µ

u∗
∣∣
t=0, q — even,

−sgn(u∗
∣∣
t=0)

q−1

√
1
µ

∣∣∣u∗
∣∣
t=0

∣∣∣, q — odd.

(41)

We reiterate that whenq 6= 2 the steepest descent direction inLp(Ω) is obtained by
applying anonlineartransformation to the adjoint fieldu∗|t=0. In the special case
q = 2 we immediately obtain

DL2J = −
1
µ

v∗
∣∣
t=0 = ∇L2J (42)

which coincides with the “classical” Hilbert space expression obtained in Section
2.1. We emphasize that a Lebesgue descent directionDLqJ can be computed by
evaluating algebraic expressions (41) at every point in thedomainΩ and there is
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no need to solve a system of equations. As regards the constant µ, which serves
as the Lagrange multiplier in the unconstrained formulation (38), it is chosen to
normalizeDLqJ to unit norm, i.e.,‖DLqJ ‖Lq = 1. Finally, we comment that in the
non–reflexive cases (q = 1 andq = ∞) the above procedure does not yield mean-
ingful results.

3.1.2 Optimization Problem for the Navier–Stokes System

In this Section we characterize the direction of the steepest descent in the space
Lq(Ω), characterized by one free parameterq∈ (1,∞), for the optimization prob-
lem introduced in Section 2.2. TheLq(Ω) norm of a vector–valued fieldu : Ω→R

3

is given by

‖u‖Lq =

(
Z

Ω
|u|qdΩ

)1/q

, (43)

where|u| =
√

u2
1 +u2

2+u2
3. Comparing with the case considered in Section 3.1.1

now the situation is more complicated, because the direction of the steepest descent
is a vector fieldwhich must satisfy the additional condition of incompressibility.
Following the procedure outlined at the beginning of this Section, we determine the
steepest descent direction in the spaceLq(Ω) as the solution of the minimization
problem

DLqJ = argmin‖Θ‖Lq=1, ∇·Θ=0

〈
∇J ,Θ

〉
Lq∗×Lq

. (44)

Introducing two Lagrange multipliersµ andη, and converting (44) to the corre-
sponding unconstrained formulation we obtain

DLqJ =argminΘ

[〈
∇J ,Θ

〉
Lq∗×Lq

+
µ
p

∥∥∥Θ
∥∥∥

p

Lq

+
Z

Ω
η(∇ ·Θ)dΩ

]

= argminΘ

Z

Ω

(
u∗

∣∣∣
t=0

·Θ+
µ
q

∣∣∣Θ
∣∣∣
q
−Θ ·∇η

)
dΩ,

(45)

where we used integration by parts to transform the divergence term and chose the
boundary condition for the Lagrange multiplier as∂η

∂n

∣∣
w = 0, which annihilated the

boundary term arising from this transformation. The first–order optimality condi-
tion for (45) yields

∀Θ′∈Lq(Ω)

Z

Ω

(
u∗

∣∣∣
t=0

+µDLqJ
∣∣∣DLqJ

∣∣∣
q−2

−∇η
)
·Θ′dΩ = 0 (46)
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which, given the arbitrariness ofΘ′, is equivalent to the following algebro–differential
system 




DLqJ
∣∣∣DLqJ

∣∣∣
q−2

= −
1
µ

u∗
∣∣
t=0+∇η, x ∈ Ω

∆η = µ

(
∇

∣∣∣DLqJ
∣∣∣
q−2

)
·DLqJ , x ∈ Ω

∂η
∂n

∣∣∣
w

= 0,

(47)

where the second (Poisson) equation is obtained by applyingthe divergence opera-
tor to the first equation and then using the incompressibility condition∇ ·(DLqJ ) =
0. We note that in the special caseq = 2 we haveη ≡ 0 and (47) reduces to
∇L2J = −1

µu∗
∣∣
t=0 [cf. (25)]. As before, the Lagrange multiplierµ is adjusted in

order to normalizeDLqJ to the unitLq(Ω) norm, i.e.,
∥∥DLqJ

∥∥
Lq

= 1. We remark
that the procedure described above is closely related to theHelmholtz–Weyl de-
composition which is a generalization of the Helmholtz–Hodge decomposition to
the spacesLq(Ω) [30]. We emphasize that, in contrast to the 1D case where the in-
compressibility condition was not present [cf. (41)], new problem (47) is nonlocal
and therefore after discretization yields a fully coupled nonlinear system. We solve
this system using an iterative splitting method which combines Newton’s method
with globalization [31] applied to the first equation (withη frozen during an iter-
ation) with a standard Poisson solver applied to the second equation in (47). For
modest values ofq convergence usually occurs within a few dozens of iterations.

3.2 Identification of the Steepest Descent Directions in theBesov Spaces Bs
p,q(Ω)

In this Section we characterize the steepest descent directions in the Besov space
Bs

p,q(Ω) characterized by three adjustable parameters:s, p andq. We will consider
the parameter rangess≥ 0 andp,q≥ 2, for which we haveBs

p,q(Ω)⊂ L2(Ω) [25],
so that such Besov spaces can form a hierarchy such as (35) with U = L2(Ω).
Besov spaces arise as a result of interpolation between Sobolev spaces with differ-
ent integer smoothness, therefore they appear to be good candidates for the vari-
able metric approach developed in this investigation. We emphasize that, since the
spacesLq(Ω) andB0

q,q are not equivalent, the Lebesgue descent directions arenot
special cases of the Besov descent directions. In order to avoid difficulties related
to the additional condition of incompressibility in the case of vector fields, we de-
rive the steepest descent directions only for the optimization problem introduced in
Section 2.1. From the computational point of view, the most convenient expression
for the norm of an element of a Besov space is given in terms of awavelet de-
composition of that element. Defining an orthogonal waveletψ such that if we set
ψk, j(x) , 2

k
2 ψ(2kx− j) to be the scaled (by 2

k
2 ) and translated (byj2−k) dilates (by

2k) of the original mother waveletψ, then{ψk, j}k, j∈Z forms an orthogonal basis
for L2(R). In an analogous manner we define the scaling functionϕ associated with

18



ψ yielding the functionsϕk, j(x) , 2
k
2 ϕ(2kx− j), such that the set{ϕk, j}k, j∈Z is for

a fixedk orthonormal inL2(R). When working on a periodic domainΩ, rather than
in R, we need to consider suitably periodized wavelets and scaling functions with
nonnegative scalesk≥ 0 only and shiftsj defined such that suppψk, j ∩Ω 6= /0. For
a specific value ofk we will assume allowable shiftsj ∈ {0, . . . ,Nk} with Nk de-
pending on the particular wavelet used. We will also assume that whenk = 0, the
only shift possible isj = 0. Defining the expansion coefficients as

α0 =

Z 2π

0
z(x)ϕ0,0(x)dx, (48a)

βk, j =

Z 2π

0
z(x)ψk, j(x)dx, k = 0,1, . . . , j = 0, . . . ,Nk (48b)

a functionz∈ L2(0,2π) can be represented as

z= α0ϕ0,0+
∞

∑
k=0

Nk

∑
j=0

βk, jψk, j . (49)

For further details concerning wavelets and the multiresolution analysis we refer
the reader to the monographs [32,33]. With these definitionsan (equivalent) norm
in the Besov spaceBs

p,q can be expressed as [25]

∥∥z
∥∥q

Bs
p,q

= |α0|
q+

∞

∑
k=0

[
2kp(s+1/2−1/p)

Nk

∑
j=1

|βk, j |
p] q

p . (50)

Roughly speaking, functions in the spaceBs
p,q(Ω) havesderivatives inLp(Ω) with

the additional parameterq providing a finer gradation in smoothness. Following
the procedure outlined at the beginning of this Section, we determine the steepest
descent direction in the spaceBs

p,q(Ω) as the solution of the minimization problem

DBs
p,qJ = argmin‖ϑ‖Bs

p,q
=1

〈
∇J ,ϑ

〉
B−s

p∗q∗×Bs
p,q

, (51)

whereB−s
p∗q∗ = [Bs

p,q]
∗ with 1

p∗ + 1
p = 1 is the dual space with respect toBs

p,q. Intro-
ducing the Lagrange multiplierµ and converting (51) to the corresponding uncon-
strained formulation we obtain

DBs
p,qJ =argminϑ

[〈
∇J ,ϑ

〉
B−s

p∗q∗×Bs
p,q

+
µ
q

∥∥∥ϑ
∥∥∥

q

Bs
p,q

]

= argminϑ

[
σ0α0+

∞

∑
k=0

Nk

∑
j=0

γk, jβk, j

+
µ
q

{(
|α0|

q+
∞

∑
k=0

[
2kp(s+1/2−1/p)

Nk

∑
j=0

|βk, j |
p
] q

p

}]
,

(52)
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where the following wavelet representations were employedfor the gradient∇J =
σ0ϕ0,0 +∑∞

k=0 ∑Nk
j=0γk, jψk, j and the elementϑ = α0ϕ0,0 +∑∞

k=0 ∑Nk
j=0 βk, jψk, j . The

first–order optimality condition for (52) yields

∀α′
0∈R, β′

k, j∈lp(lq) ∑
j

[
σ0 +µ|α0|

q−2α0

]
α′

0

+
∞

∑
k=0

Nk

∑
j=0

[
γk, j +µq2kp(s+1/2−1/p)

(
∑
l

|βk,l |
p) q

p−1
|βk, j |

p−2βk, j

]
β′

k, j = 0,

(53)

whereα′
0 and{β′

k, j}k, j∈Z are the wavelet expansion coefficients of the perturbation
elementϑ′. Given the arbitrariness ofϑ′, (53) is equivalent to the following infinite
system of algebraic equations

µ|α0|
q−2α0 = −σ0, j = 1, . . . ,Nj , (54a)

µq2kq(s+1/2−1/p)
( Nk

∑
l=0

|βk,l |
p) q

p−1
|βk, j |

p−2βk, j = −γk, j , k = 0, . . . ,∞. (54b)

We note that in the special casep = q system (54b) uncouples. Whenp 6= q we can
solve system (54) by first truncating it at the number of levels consistent with the
spatial discretization (herekmax= log21024= 10) and using Newton’s method with
globalization [31] to solve the resulting nonlinear algebraic system. As a matter of
fact, since system (54b) decouples for different values ofk, Newton’s method can
be used independently for every value ofk which reduces the size of the linear alge-
braic problems that need to be solved at every iteration and also mitigates attendant
problems with conditioning. In our computations reported in Section 4.1 wavelet
decompositions were computed using the “symmlet” wavelet with 10 vanishing
moments. This was done with the help of the MATLAB toolboxwavelab [34].
For modest values of the differencep−q this approach leads to quite rapid con-
vergence. We also emphasize that, because of the relationships between the Besov
norms and wavelet decompositions [cf. (50)], determination of Besov descent di-
rections is in fact equivalent to nonlinear wavelet filtering applied to the adjoint field
as defined by (54) (the filtering is nonlinear, because modifications of the wavelet
coefficients depend on the coefficients themselves). This istherefore analogous to
determination of gradients in the Hilbert–Sobolev spacesH1(l)(Ω) which can in
turn be interpreted as low–pass Fourier filtering applied tothe adjoint field (see
Section 2.1). While the linear Fourier filtering modifies components based on their
wavenumbers only, the wavelet filtering does so based on their relative “coherence”
[21]. Finally, we remark that the utility of wavelet decompositions for computation
of Besov descent directions was first recognized in the imageprocessing literature
[20,35].

20



4 Computational Results

In this Section we illustrate the utility of the proposed approach by comparing its
performance to the standard approach based on theL2 andH1 gradients. We do this
for the two model problems introduced in Sections 2.1 and 2.2. The actual compu-
tational complexity of a state estimation problem depends on several factors, such
as the quality of the initial guess, length of the assimilation window, importance
of nonlinear effects and the rank of the observation operator. In order to exhibit
more clearly the potential of the proposed method, in both model problems we
will choose these parameters in such a way as to make the stateestimation prob-
lem quite hard and therefore practically unsolvable using the standard methods, in
which case the iterations either get stuck in local minima, or take excessively long
to converge. In both cases iterations (4) are carried out using the Polak–Ribiere ver-
sion of the conjugate gradient (CG) method [7]. The “momentum” term in the CG
method is calculated using the standardL2 inner product and is reset to zero every
20 iterations. Line minimization of the cost functional along the descent direction
is performed at every iteration using Brendt’s method [36].

4.1 Results Concerning State Reconstruction for the Kuramoto–Sivashinsky Equa-
tion

The problem set–up is the same as the problem investigated in[18], i.e., Λr =
{1, . . . ,50} in (8) and the initial guess isφ(0) = 0, except that now we use a longer
assimilation window[0,T] with T = 5 ·10−6 corresponding to 500 time steps. As
our computational experience shows, this is enough to make the optimization prob-
lem significantly more difficult than for 300 time steps whichwas the case studied
in [18]. Solution of this state estimation problem was attempted using the Lebesgue
and Besov descent directions in addition to the classicalL2 andH1 gradients. Con-
sistently with hierarchy (35), the parametersln, sn, pn andqn characterizing the
spacesH1(ln), Lqn, andBsn

pn,qn
at then–th iteration are changing according to the

expressions

ln = l0ω−n
l , sn = s0ω−n

s ,

pn = 2+(p0−2)ω−n
p , qn = 2+(q0−2)ω−n

q ,
(55)

wherel0, s0, p0 andq0 are the starting values andωl , ωs, ωp andωq are suitably
chosen decrease parameters, all greater than unity. We emphasize that with these
choices of the parameters the spacesH1(ln), Lqn, and Bsn

pn,qn
become forn → ∞

numerically indistinguishable from the spaceL2. Below we summarize the best
results obtained with each type of the descent direction after a rather modest amount
of computational tests performed to find good values of the parametersl0, s0, p0,
q0, ωl , ωs, ωp andωq. These parameter values are collected in Table 1.
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Fig. 3. Descent directions identified at the first iteration in the spaces (a)L2(Ω), (b)
H1(0.2)(Ω), (c) L10(Ω) and (d)B1

7,5(Ω). For the sake of clarity, only half of the domain
Ω is shown.
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CASE l0 ωl s0 ωs p0 ωp q0 ωq

L2 — — — — — — — —

H1 0.2 1.05 — — — — — —

Lq — — — — — — 10 2

Bs
p,q — — 1 1.1 7 1.1 5 1.1

Table 1
Parameters characterizing the descent directions in different function spaces employed to
solve the optimization problem from Section 2.1 [cf. (55)].The number of non–blank en-
tries in each line is equal to the number of adjustable parameters in the corresponding case.
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Fig. 4. Decrease of cost functional (7) as a function of the iteration countn in the following
cases (cf. Table 1): (solid)L2, (dotted)H1, (dashed)Lq and (dash–dotted)Bs

p,q.

We begin the presentation of the results by showing in Fig. 3 the descent directions
obtained at the first iteration in the different cases listedin Table 2.1. We note
that while the shape of theH1 gradient appears quite close to the shape of the
L2 gradient, the shapes of theLq andBs

p,q descent directions differ from it quite

significantly. Next in Fig. 4 we present the histories of the cost functionalJ (φ̃(n))
during iterations in the four casesL2, H1, Lq, andBs

p,q. We note that the iterates in
the casesL2 andH1 get stuck in local minima. On the other hand, in the casesLq

andBs
p,q we observe what appears to be convergence to a global minimum, and in

the caseBs
p,q this convergence occurs quite rapidly. These findings are corroborated

by the results shown in Fig. 5 where we present distribution of the reconstruction
error measures

EX (t) ,
‖ũ(t, φ̃(nmax))− ũact(t)‖X

‖ũact(t)‖X
, (56)

defined within the assimilation window[0,T] at the end of the iterations (i.e., for
n= nmax). The norms‖·‖X , whereX = H−1, L2, H1, are defined using the Parceval
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Fig. 5. Distribution of the reconstruction error measures (a) EH−1, (b) EL2, and (c)EH1

[cf. (56)] within the assimilation window[0,T] at the end of the iterations for the following
cases (cf. Table 1): (solid)L2, (dotted)H1, (dashed)Lq and (dash–dotted)Bs

p,q.
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CASE l0 ωl q0 ωq

L2 — — — —

H1 0.1 1.001 — —

Lq — — 3 1.001
Table 2
Parameters characterizing the descent directions in different function spaces employed to
solve the optimization problem from Section 2.2 [cf. (55)].The number of non–blank en-
tries in each line is equal to the number of adjustable parameters in the corresponding case.

identity and denoting ˆzk the Fourier transform ofz(x) as

‖z‖2
H−1 ,

∞

∑
k=1

k−2|ẑk|
2, ‖z‖2

L2
,

∞

∑
k=0

|ẑk|
2, ‖z‖2

H1 ,
∞

∑
k=0

k2|ẑk|
2. (57)

These norms are defined here in Fourier space in order to emphasize the fact that
(56) measures the accuracy of reconstruction at, respectively, large, intermediate
and small scales [18]. We observe that by far the best reconstruction with regard to
all three metrics is obtained in the cases, respectively,Bs

p,q andLq. We emphasize
that in theBs

p,q case a significant reduction of the cost functional was obtained after
much fewer iterations. Clearly, the poorest reconstruction was obtained in the case
H1.

4.2 Results Concerning State Reconstruction for the Navier–Stokes System

The problem set–up is the same as in [22], i.e., the initial guessΦ(0) is taken as
the mean flow and the assimilation window[0,T] has the length of 100 viscous
time unitst+ corresponding to 330 time steps. As already pointed out in [22], this
combination of parameters makes the present state estimation problem very chal-
lenging. Solution of this problem is attempted using Lebesgue descent directions
introduced in Section 3.1.2, in addition to the classicalH1 andL2 gradients. The
parametersln andqn characterizing the spacesLqn(Ω) andH1(ln)(Ω) at then–th it-
eration change according to expressions (55). Below we summarize the best results
obtained with each type of the descent direction after a rather modest amount of
computational tests performed to find good values of the parametersl0, q0, ωl and
ωq. These parameter values are collected in Table 2.

We begin the presentation of the results by showing in Fig. 6 the histories of the

functionalJ (Φ̃(n)
) during iterations in the three casesL2, H1 andLq. We note that,

while the decrease ofJ is in all cases rather slow, it is clearly the fastest in theLq

case and the slowest in theL2 case. Next in Fig. 7 we present distribution of the
error norm

EL2(t) ,
‖ṽ(t,Φ̃(500)

)− ṽact(t)‖L2

‖ṽact(t)‖L2

, (58)
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Fig. 6. Decrease of cost functional (19) as a function of the iteration countn in the following
cases (cf. Table 2): (solid)L2, (dotted)H1 and (dashed)Lq.
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Fig. 7. Distribution of the reconstruction error measureEL2 [cf. (58)] within the assimila-
tion window [0,T] aftern = 500 iterations in the following cases (cf. Table 2): (solid)L2,
(dotted)H1 and (dashed)Lq.

within the assimilation window[0,T] aftern = 500 iterations [due to difficulties in
computing theH−1 andH1 norms, we present here results for theL2 norm only,
cf. (43)]. While in none of the cases can we claim that the original flow has been
successfully reconstructed, the progress towards the actual minimizerΦact is in the
casesH1 andLq significantly better than in the caseL2, with the caseH1 yielding
the lowest errors over the whole assimilation window. We conclude our discussion
by mentioning that state estimation in the present channel flow problem with dis-
tributed wall measurements was also investigated using other methods, including
Taylor–series expansions in [22] and Kalman filtering in [37].
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5 Summary and Conclusions

In this investigation we proposed a method for acceleratingconvergence of gradient–
based optimization of PDE systems. Inspired by the idea of operator precondition-
ing of Farago and Karátson [14], our approach uses descent directions constructed
in continuously varying function spaces as a way of preconditioning the itera-
tions. We show that extraction of descent directions in general Banach spaces not
equipped with the Hilbert structure is in fact equivalent toa nonlinear change of the
control variables. For nonconvex problems such a change of variables may offer the
possibility of “smoothing” the control space more effectively than can be done with
a linear change of variables (which is equivalent to merely stretching and contract-
ing the space in the different directions). We showed how such descent directions
can be characterized and computed in the Lebesgue and Besov spaces commonly
arising in analysis on nonlinear PDEs [25]. These function spaces are parametrized
by, respectively, one and three parameters which can be adjusted in order to accel-
erate convergence. Ideally, a prescription of how this should be done should come
from the mathematical analysis of the PDE optimization problem, however, at least
for the problems of the type proposed in Sections 2.1 and 2.2,such results are un-
likely to be within reach in the foreseeable future. Therefore, these parameters need
to be determined by way of computational experimentation. Our results concerning
the Kuramoto–Sivashinsky equation show that with suitablychosen Lebesgue and
Besov descent directions one can solve optimization problems for which the linear
approach with theL2 andH1 gradients fails. Furthermore, using the Besov descent
directions this could be done performing relatively few iterations. The reasons for
the superior performance of the Besov descent directions appear related to their
larger number of independent free parameters which offer more possibilities for a
topology change than are available in the other cases. As regards the Navier–Stokes
problem, our results indicate that approaches based on variable Sobolev gradients
and Lebesgue descent directions exhibit similar performance which is better than
in the standardL2 approach. It is also worth noting that, given the rate of change of
the different parameters in the case of both model problems [cf. (55), and Tables 1
and 2], the Lebesgue and Besov spaces used remained significantly different from
the spaceL2 during initial iterations only. This initial effect was however impor-
tant enough to result in much faster convergence observed also at later iterations.
Thus, the two sets of results obtained for two different model problems show the
usefulness of an additional flexibility in the design of an iterative process offered
by the alternative descent directions proposed here. Our computational experience
with problems different than the cases reported here indicates that Banach descent
directions are particularly useful in hard problems in which the classical gradients
cannot provide satisfactory performance. As a matter of fact, computational evi-
dence showing that convergence of iterations in some functional spaces is more
rapid than in other possibly might guide the mathematical analysis of such prob-
lems, especially as regards finding for them a natural functional space setting. The
fact that “optimal” values of these parameters must be foundby experimentation is
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not a serious practical limitation, because in actual applications such optimization
problems are often solved repeatedly for a given system using different data (e.g.,
data assimilation in numerical weather prediction [5]). Thus, once determined, the
sets of “optimal” parameters can be reused to accelerate optimizations performed
subsequently. From the heuristic point of view, our preconditioning approach can
be regarded as an application of a nonlinear filter to theL2 descent direction. Af-
ter its parameters are suitably calibrated, this nonlinearfilter acts to emphasize
components of the descent direction which are important forconvergence and de–
emphasize those which are assumed to represent noise. We should also mention
that the computational cost involved in determining a Lebesgue or Besov descent
direction is insignificant comparing to the cost of a single iteration. Finally. we re-
mark that using finite–dimensional emulations of the norms used in the different
Banach spaces, the present approach can also be easily applied in the context of the
“discretize–then–differentiate” methods.
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A Operator Preconditioning in Numerical Solution of a Linear Boundary
Value Problem

In this Appendix we use the Ritz method applied to the Poissonequation in a 1D
periodic domainΩ = (0,2π) to illustrate the importance of extracting gradients in
suitable spaces. The problem we consider is thus

{
−∆w = g, ∆ : H1

per(Ω) → H−1
per(Ω),

w(0) = w(2π),
(A.1)

wherew ∈ U = H1
per(Ω) andH1

per(Ω) is the Sobolev space of periodic functions
with square integrable first derivatives. One way of solving(A.1) is by finding
minimizers of a cost functionalJ : H1

per(Ω)→ R defined as

J (ϑ) ,
Z 2π

0

[1
2
(∇ϑ)2−gϑ

]
dx, (A.2)

which can be done using iterations (4). Assuming (incorrectly!) that U = L2(Ω),
the gradient of (A.2) is∇L2J = −∆ϑ−g, whereas if one takesU = H1

per(Ω), the

gradient is∇H1
J = ∆−1[−∆ϑ−g].
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It is well–known [7], that the rate of convergence of gradient iterations (4) de-
pends on the condition numberκ(Ξ̃) of the discrete HessiañΞ of (A.2). It can be
computed noting thatJ ′′(ϑ;ϑ′,ϑ′′) = −

R 2π
0 ϑ′′(∆ϑ′)dx= −

R 2π
0 (∆ϑ′′)ϑ′dx. Then,

assuming again thatU = L2(Ω), we have

J ′′(ϑ;ϑ′,ϑ′′) = (ΞL2ϑ′,ϑ′′)L2 ⇒ ΞL2ϑ′ = −∆ϑ′ ⇒ ΞL2 = −∆. (A.3)

Using Fourier harmonics as the basis functions, the HessianΞL2 can be represented
as an infinite diagonal matrix with entries proportional to the wavenumbers squared
k2. After truncating the problem at somekmax, the discrete Hessian condition num-

ber can be expressed asκ(Ξ̃L2) =
(

kmax
kmin

)2
, which grows without bound as the res-

olution is refined (i.e., askmax→ ∞). Thus, as the grid is refined, the conditioning
of the minimization problem deteriorates rendering it practically unsolvable.

On the other hand, takingU = H1
per(Ω) we have

J ′′(ϑ;ϑ′,ϑ′′) = (ΞH1ϑ′,ϑ′′)H1 ⇒ ΞH1ϑ′ = ϑ′ ⇒ ΞH1 = Id, (A.4)

so that the condition numberκ(Ξ̃H1) ≡ 1 regardless of the numerical resolution
used. This is thus an instance of a perfect conditioning and convergence can in
principle be achieved in a single iteration. It must be, however, borne in mind that

determination of the gradient∇H1
J is fact equivalent to solution of problem (A.1)

itself. This example contrasting two extreme situations underlines the usual trade–
offs between the effectiveness and ease of computation of preconditioning opera-
tors.
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