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Abstract. In this paper we review the state of the art in the field of control of vortex
dynamics. We focus on problems governed by two–dimensionalincompressible Euler
equations in domains both with and without boundaries. Following a comprehensive review
of earlier approaches, we discuss how methods of modern control and optimization theory can
be employed to solve control problems for vortex system. In addition, we also address the
companion problem of the state estimation for vortex systems. While most of the discussion
concerns point vortex systems, in the second part of the paper we also introduce a novel
approach to the control of Euler flows involving finite–area vorticity distributions. The paper
concludes with what, in the author’s opinion, represent promising new research directions.
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1. Introduction

The goal of this article is to review the recent progress and address some open questions in the
area of control of vortex–dominated flows. This article is written from the interdisciplinary
perspective grounded in the theoretical fluid dynamics and straddling the fields of the control
and optimization theory. We will first clarify what we mean by“control” problems. Let us
consider a system characterized by a state variableX, either finite–dimensional or infinite–
dimensional, and depending on timet and some input (control) variableU, i.e.,X = X(t,U).
We will also assume that the system evolution is governed by adifferential equationE(X,U)=

0 with suitable initial conditions. The control problem can thus be stated as follows:

Problem 1 (control) Given an initial stateX1 = X(0) of the system and a prescribed final
stateX2 = X(T), determine the controlU that will move the system fromX1 to X2 during the
time interval[0,T].

We refer the reader to the monograph by Sontag [1] for a modernaccount of the theory
of control, and to [2] for a historical overview. A related problem concerns system
“optimization” and can be stated thus:

Problem 2 (optimization) Find the optimal input parametersUopt and the corresponding
optimal state Xopt which extremize a measure of the system performance expressed
mathematically by the function j= j(X,U), i.e.,

(Xopt,Uopt) = argminX,U j(X,U),

subject toE(X,U) = 0
(1)

(the function “argmin” returns the values of the argumentsX andU for which j(X,U) attains
a minimum). The foundations of the modern theory of optimization were laid by Kantorovich
and Dantzig (for which the former was honored with the Nobel Prize in Economics in 1975),
and developed further by many scholars. A modern account of this field can be found in the
monographs [3, 4, 5]. At an intersection of the optimizationand control theory one finds
the field of “optimal control” where one seeks to solve Problem 1 in an optimal way, i.e., by
requiring the controlU to extremize some performance criterion as in Problem 2. Following
earlier related developments in the calculus of variations, the field of modern optimal control
theory originated with the work of Pontryagin [6]; we refer the reader to the monograph [7]
for an up–to–date account of this field. In general, solutionof such problems usually involves
an open–loopcontrol U which depends on the initial and final states of the system as well
as the time. An important subclass of control problems arestabilizationproblems defined as
follows:

Problem 3 (stabilization) Consider a system governed by an equationEw(X,U,W) = 0,
whereW represents stochastic inputs. Determine a control inputU that will contain the state
X of the system in a neighborhood of some solutionX0, either time–dependent or steady, of
the deterministic problemE(X0,U) = Ew(X0,U,0) = 0.

The solution of stabilization problems usually involvesclosed–loop(feedback) control which
depends on the instantaneous state of the system only, i.e.,U = U(X). In practice, optimal
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control and stabilization problems sometimes occur together, namely, when systems actuated
with optimal open–loop controls require additional stabilization in order to reject exogenous
disturbances and in this way to achieve robustness. Anotherclass of problems which can also
be cast as optimal control problems are state estimation problems defined thus:

Problem 4 (estimation) Reconstruct the stateX of the system given its incomplete and noisy
measurements̃Y.

A common feature of Problems 1–4 is that they representinverse problemsin which,
instead of merely looking for solutions of a system of equations E(X,U) = 0, one looks
for input parametersU such that the solutionX has some desired properties. The study of a
control problem usually involves two stages:analysisof the control system seeks to identify
conditions under which Problems 1–4 can be solved and often requires an examination of
thecontrollability andobservabilityof the system;synthesisof the control is the subsequent
phase during which the actual control is determined. A discussion of all relevant details of
problems 1–4 would take us far outside the scope of this paper. Therefore, when surveying
different results, we will usually emphasize the new concepts and refer the reader to the
control–theoretic literature for details.

During the last 15 years or so the state–of–the–art computational fluid dynamics (CFD)
on the one hand, and control methods for Problem 1–4 on the other hand, both reached a
degree of computational efficiency which made it possible tostart to tackle realistic problems
of flow control in a systematic manner. While in principle thecontrol theory for infinite–
dimensional systems described by partial differential equations (PDEs) is, at least in the linear
setting, relatively well understood [8, 9], actual computational solution of such problems still
remains very difficult. Despite several remarkable successes (see the monographs [10, 11]
and the survey articles [12, 13, 14] for a broad and up–to–date perspective), solution of many
real–life problems continues to present formidable challenges. They are mostly related to the
computational resources, both in terms of the CPU time and storage, required to obtain the
solution: for example, solution of Problem 2 for a time–dependent system often requires as
many asO(101−102) solutions of the system of governing equations over the time–window
of interest. On the other hand, determination of the feedback kernels needed in the “simplest”
solutions to Problems 3 and 4 requires the solution of a discretized operator equation with
O(N2) variables, whereN is the number of the computational degrees of freedom in the
discretization of the flow problem. Despite the steady increase of the computational power
available, these limitations will at least for some time remain prohibitive when it comes to
solution of control problems for high–Reynolds number flowsin nontrivial domains. This
realization has motivated the pursuit of various simplifying approaches that, by reducing
significantly the number of the relevant degrees of freedom,render solution of such control
problems feasible. The first of the two main trends relies on the use of the truncated
Galerkin bases with small dimensions. Such bases, which aredesigned to optimally capture
the system evolution in the energy norm, can be constructed using the proper orthogonal
decomposition (POD) techniques [15]. POD–based approaches to solution of flow control
problems are currently the subject of active research [16, 17]. The second of these trends
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relies on a simplification of the mathematical model of the problem by neglecting the effects
considered less important in a given setting. For instance,a family of amplitude equations,
known as the Landau–Ginzburg models, have been quite successful describing the onset
and development of various hydrodynamics instabilities [18], and control of such model
problems was investigated in [20, 19, 21, 22]. Another such possibility is to neglect the
viscous diffusion which is equivalent to using the Euler equation instead of the Navier–Stokes
equation as the mathematical model of the flow problem. It is particularly relevant to high–
Reynolds number phenomena dominated by nonlinear “vortex dynamics”, i.e., the dynamics
of localized vortical structures embedded in a quasi–irrotational flow. Such vortex–based
approaches to solution of flow control problem are currentlyalso the subject of active research,
and the purpose of the present article is to review the recentadvances in this area. An earlier
review of this field was written by Vainchtein and Mezić [23].

The concept of the vortex dynamics in its modern sense goes back to the seminal paper
by Helmholtz [24]. Since the year 1858 when it was published,the theory of vortex motion
has been elaborated by many eminent scholars. Instead of attempting to review this immense
body of work, we refer the reader to the monograph by Truesdell [25] which contains many
bibliographical references and the recently published bibliography collected by Meleshko
and Aref [26] which, to the author’s best knowledge, is the most comprehensive resource
available as regards the literature on this topic publisheduntil the middle of the 20th century.
Vortex motion was also discussed at length in many classicaltextbooks on the theoretical
fluid dynamics including [27, 28, 29, 30, 31] in addition to modern monographs [32, 33] and
review papers [34, 35]. This subject was also treated from the point of view of the modern
mathematical analysis in [36, 37]. In the present paper we will primarily focus on vortex
systems as “models” of fluid flow, however, it should be emphasized that starting with the
seminal work of Rosenhead [38], they have also given rise to the “vortex methods” [39], an
autonomous family of numerical methods designed for the solution of a class of evolutionary
PDEs.

It is well–known that certain important properties of the vortex motion in two–
dimensional (2D) and three–dimensional (3D) flows can be quite different. However, since
most of the control problems dealt in fact with vortex flows in2D, this is the setting we will
be concerned with in this article. We will assumeΩ ⊆ R

2 to be our domain, either bounded
or unbounded, with∂Ω denoting its boundary, if it is present. Using the time–dependent
streamfunctionψ(t, ·) : Ω → R, the motion of the inviscid incompressible fluid is described
by the Euler equation which can be written in the form [37]



















∂∆ψ
∂t

+J(∆ψ,ψ) = 0 in Ω× (0,T],

ψ|∂Ω = ψb,

ψ|t=0 = ψ0,

(2)

whereJ( f ,g) ,
∂ f
∂x

∂g
∂y −

∂ f
∂y

∂g
∂x is the Jacobian with(x,y) ∈ Ω (the symbol “,” means “equal to

by definition”),∆ , ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator,T is the length of the time interval we
are interested in, whereasψb andψ0 are, respectively, the boundary and initial conditions.



Vortex Dynamics Models in Flow Control 5

Given the streamfunctionψ as a solution of (2), the velocity field can be expressed as

u = [u,v] =
[

∂ψ
∂y ,−∂ψ

∂x

]

so that it satisfies by construction the incompressibility condition

∇ · u = 0. We remark that in view of the identity−∂ψ
∂τ

∣

∣

∣

∂Ω
, −τ ·∇ψ

∣

∣

∣

∂Ω
= u · n|∂Ω, where

n andτ are, respectively, the outward facing normal and the associated tangent unit vectors
on the boundary∂Ω, the boundary condition in (2) is in fact equivalent to prescribing the
wall–normal velocity component‡. In the case of steady–state problems system (2) reduces
to a nonlinear boundary–value problem [37], namely

{

∆ψ = F(ψ) in Ω,

ψ|∂Ω = ψb
(3)

whereF(ψ) is an arbitrary function. We emphasize that this non–determinacy of the function
F(ψ) is a signature of the lack of uniqueness of solutions of (3). Most control problems have
been considered for a particular family of (weak) solutionsof (2) and (3), namely, systems of
point vortices, in which all the vorticity is concentrated in isolated singularities. In addition to
reviewing these results, we will also present some novel ideas concerning the optimal control
of another family of solutions of (2) and (3) which generalizes the concept of point vortices.
These will be thePrandtl–Batchelor flows[40, 41] distinguished by the presence of vortex
patches with constant vorticity.

Vortex models have been employed in a vast range of applications in science and
engineering which it is impossible to review here. In order to fix attention and provide
motivation for the subsequent discussion of some idealizedcases, we mention here three
specific applications that have received a lot of attention:

• modeling coherent structures in 2D turbulent flows [42], where some of the ideas are
due to the seminal work of Onsager [43]; in addition to understanding the fundamental
properties of 2D turbulence, such models found applications in the Geophysical Fluid
Dynamics [44],

• modeling recirculation regions attached to objects such asbluff bodies and airfoils [45];
models of this type are relevant to the problem of lift enhancement via stabilization of
trapped vortices in aeronautical applications [46],

• modeling generation of thrust in fish–like locomotion [47, 48, 49].

Over the years several different control techniques have been applied to vortex dynamics
problems, many of which were based on ad–hoc and/or speculative arguments. While in
our survey we will attempt to do justice to most noteworthy approaches, our focus will be
primarily on techniques based on solid mathematical foundations. Therefore, our presentation
will involve a blend of mathematical analysis and results ofnumerical computations.

The structure of the paper is as follows: in the next Section we state some basic facts
concerning vortex motion in 2D domains with and without boundaries; in this Section we

‡ We remark that whenΩ is multiply–connected,ψb is defined up to a constant on any closed boundary segment,
and formulation (2) must be modified to account for the cyclicconstants representing the circulations around the
contours [27, 30, 31].
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also analyze different vortex equilibria and their stability properties, next in the rather short
Section 3 we discuss the control of vortex systems in domainswithout boundaries, whereas
in Section 4 we will discuss it in the case of domains with boundaries where most of our
attention will be on vortex flows past bodies§, then in Section 5 we will discuss the dual
concept of the state estimation for vortex systems, whereasin Section 6 we will introduce
some novel concepts concerning the optimal control of vortex flows with finite–area vorticity
distributions, summary, conclusions and a discussion of some future research directions are
deferred to Section 7.

2. Point Vortex Systems — Dynamics and Equilibria

In this Section we discuss the equations governing the motion of point vortices, first in
unbounded, then in bounded, domains. Subsequently, we recast these equations into a
formalism employed in the modern control theory [1, 7]. Finally, owing to their importance
for stabilization problems, we discuss point vortex equilibria in flows past objects focusing on
their stability.

2.1. Point Vortex Dynamics in Domains without Boundaries

Description of the vortex motion can be made more succinct using methods of the complex
analysis and hereafter we will frequently employ this formalism. Identifying the position of
a point vortex with a point in the complex plane, i.e.,z1 = x1 + iy1 ∈ C, where i=

√
−1, and

in view of the identity∆ψ = −ω [37], whereω is the vorticity, the complex potentialW(z)
induced at a pointz∈ C by a point vortex located atz1 in an unbounded domain is given in
terms of complex Green’s function for the Laplace equation,i.e.,

W(z) =
Γ1

2πi
ln(z−z1), (4)

whereΓ1 is the circulation of the vortex. The complex velocity can then be obtained as

V(z) , (u− iv)(z) =
dW(z)

dz
=

Γ
2πi

1
z−z1

. (5)

Assuming that there areN such vortices in the plane with the coordinateszk ∈ C, k = 1, . . . ,N
and circulations{Γk}N

k=1, their evolution is governed by the following system of nonlinear
complex differential equations (ODEs)

dzk

dt
=

1
2πi

N

∑
l=1

′
Γl

zk−zl
, k = 1, . . . ,N, (6)

where the overline denotes complex conjugation and the prime on the summation symbol
indicates that the singular self–induction terms withk = l are omitted. Separating the real and

§ Here we emphasize the distinction between bounded domainsand domains with boundaries, as the latter may
in general be unbounded, at least in some directions, but maypossess some internal boundaries.
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imaginary parts in (6) we obtain

dxk

dt
= − 1

2π

N

∑
l=1

′
Γl(yk−yl )

rkl
, (7a)

dyk

dt
=

1
2π

N

∑
l=1

′
Γl(xk−xl )

rkl
, k = 1, . . . ,N, (7b)

where rkl ,
√

(xk−xl )2+(yk−yl )2. System (7a)–(7b) is known to possess several
remarkable properties [33]. For example, defining the Hamiltonian as

H , − 1
4π

N

∑
k,l=1

′
ΓkΓl ln rkl (8)

and defining the generalized coordinates and momenta respectively asqk , xk andpk , Γkyk,
k = 1, . . . ,N, (7a)–(7b) can be cast into the Hamiltonian form

dqk

dt
=

∂H
∂pk

, (9a)

dpk

dt
= −∂H

∂qk
, k = 1, . . . ,N. (9b)

In addition to the HamiltonianH , system (7a)–(7b) also conserves the two components of
the linear impulse and the angular impulse. The Hamiltonianformalism can be made even
more elegant using methods of the geometric mechanics [33].N–vortex systems admit many
different equilibria, including asymmetric states [50, 35]. As shown by Gröbli [51], see also
[52], system (7a)–(7b) is integrable forN ≤ 3 and is in general non–integrable forN > 3.
Point vortex dynamics is an area of mathematical physics that has traditionally served as a
“playground”, to use the term recently employed by Aref [35], for methods stemming from
fairly disparate areas of mathematics, both applied and pure.

2.2. Point Vortex Dynamics in Domains with Boundaries

In the presence of solid boundaries the most important complication stems from the fact
that the evolution of system (6) is now constrained by the condition that the normal velocity
component vanish on all solid boundariesu ·n|∂Ω = 0, or equivalentlyψ|∂Ω = ψb. Arguably
the most straightforward approach to satisfy this constraint is to use the “method of images”
[27, 30] which treats solid boundaries as streamlines of a flow field defined in the entire
complex planeC and then, for every point vortex present inΩ, uses suitably chosen images
located inC\Ω. The location of these image vortices is geometry–dependent and is chosen
to ensure that the normal velocity induced together by the original and image systems vanish
everywhere on the boundary∂Ω. For example, for a vortex in the exterior of a cylinder with
radiusRthe image vortices can be determined using the “circle theorem” [30] which states that
if w̃(z) is the complex potential of a flow in a domain without boundaries and with singularities
at some pointszk such that∀k, |zk| > R, then the complex potential of the corresponding flow
past the cylinder is given by the expressionw(z) = w̃(z) + w̃(R2

z ). The second term in the
expression forw(z) represents “image singularities” located inside the obstacle.
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Incorporation of nontrivial boundary conditions could also be done using other, more
general, techniques applicable to the case when the vorticity distribution includes finite–area
vortex regions and the domain boundaries have more complicated shapes. The method of
images can be reformulated in terms of suitably modified Green’s functions constructed to
ensure that the boundary conditions are satisfied on all boundaries [30]. Using such modified
Green’s functions it is possible to generalize Hamiltonianformulation (8), (9a), (9b) for the
case of vortex motion in bounded domains as was done by Lin [53] (the HamiltonianH
generalized for the case of bounded domains is often referred to as the Kirchhoff–Routh path
function [32]). These results were recently brought to an implementable form by Crowdy and
Marshall in [54] where methods of the classical function theory were used to derive explicit
expressions for modified Green’s functions. Yet another possibility to account for the presence
of impermeable boundaries is by using a singular vorticity distribution on the boundary, a so–
called “vortex sheet” [32]. While such techniques turn out to be quite useful in numerical
computations [39], they are less tractable from the analytical point of view. In most examples
discussed in this survey it is sufficient to use the method of images. Needless to say, as will
be evident from examples presented in Section 2.4, incorporation of solid boundary effects
complicates the mathematical structure of system (6).

2.3. Vortex Models as Control Systems

In this Section we recast system (7a)–(7b) modified to account for the presence of the solid
boundaries and the free stream at infinityu∞ as a generic control system. This will involve
identifying explicitly the systeminput (control) and systemoutput (measurements). Using
this generic notation we will be able to analyze the investigations of vortex control problems
carried out by different researchers in a uniform setting. Denoting the state vector of the
system at timet X(t) , [x1(t) y1(t) . . . xN(t) yN(t)]T ∈ R

2N, the system evolution can be
concisely expressed as (unless needed for clarity, we will skip the argumentt)

dX
dt

= f(X), (10)

wheref : R2N → R2N is the function describing the advection velocities of the vortices due
to the induction of all the vortices and their images, as wellas the effect of the free stream
u∞. DenotingU : R → R

M a time–dependent control input withM degrees of freedom,
autonomous system (10) can be generalized to include the actuation as follows

dX
dt

= f(X)+b(X)U, (11a)

whereb(X) : RM → R2N is thecontrol operator describing how the actuationU affects the
system dynamics. Evolution equation (11a) is complemented with an equation describing
how the system output (measurements)Y ∈ RK is obtained, i.e.,

Y = c(X)+DU, (11b)

wherec : R2N → RK andD : RM → RK are suitable observation operators. While the form
of the functionf is determined by (7a)–(7b) augmented, if necessary, to include the image
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vortices and the free stream, the specific forms of the control operatorb and the observation
operatorsc andD will be made clear in the discussion of the different controlproblems in
Sections 3 and 4. DenotingX0 an equilibrium solution of (10), i.e., a state such thatf(X0) = 0,
X′(t) , [x′1(t) y′1(t) . . . x′N(t) y′N(t)]T ∈ R2N the vector of the perturbation variables and
Y′ the vector of the output perturbations, equations (11a) and (11b) can be linearized in a
neighborhood ofX0 yielding theperturbation system

dX′

dt
= AX ′+BU, (12a)

Y′ = CX′+DU, (12b)

whereA , ∇f(X0) andC , ∇c(X0) are the Jacobians off andc evaluated at the equilibrium
X0, whereas for the control operator we for simplicity assume here thatb(X) ≡ b(X0), so
that B = b(X0). Approaches derived using the modern theory of optimal control make it
possible to account systematically for the presence of modeling uncertainties and exogenous
disturbances [7]. This is particularly relevant when control approaches derived based on point
vortex models are then to be applied to problems governed by the Navier–Stokes system,
including actual laboratory experiments. Modeling uncertainties are usually regarded as
additive disturbances represented by a stochastic processw which is referred to as thesystem
(plant) noise. It affects the linearized system dynamics (12a) via a [2N×1] matrix G and
the linearized system output (12b) via a [K × 1] matrix H. Furthermore, we assume that
the system measurements may be additionally contaminated with noisem , [m1 . . . mK]T ,
wherem1, . . . ,mK are also stochastic processes. With these definitions we cannow put the
linearized point vortex system into the standard state–space form which will serve as the basis
for the development of methods based on the linear control theory [1, 7]

dX′

dt
= AX ′+BU+Gw, (13a)

Y′ = CX′+DU+Hw+m. (13b)

However, a majority of problems to be discussed below are in fact formulated in a purely
deterministic setting, so that unless stated otherwise, wewill assume thatw≡ 0 andm ≡ 0.
We finish this Section by stating two definitions of fundamental importance for the analysis
of control system (13a)–(13b):

Definition 1 ([1, 7]) System (13a) is said to be (state) controllable if, for any initial condition
X′(0), it is always possible to determine a controlU that will drive the system to an arbitrary
final stateX′(T) in a finite time T.

Definition 2 ([1, 7]) System (13a)–(13b) is said to be observable, if its stateX′ can always
be reconstructed in finite time using only the system outputsY′.

2.4. Vortex Equilibria in Flows Past Bodies

Evidently, important properties of perturbation system (13a)–(13b) will depend on the
properties of the equilibriumX0 around which the linearization is performed. In problems
involving flows past objects these vortex equilibria revealsome intriguing features which we
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Figure 1. Schematic showing the main features of the recirculation zone in (a) Kirchhoff’s
model and (b) Batchelor’s model of the steady wake flow in the infinite Reynolds number
limit.

will now discuss starting with flows past bodieswithouta fixed separation point such as the
circular cylinder. It is well–known that steady–state Euler equations (2) possess nonunique
solutions, and that there is an infinite number of them. The question which of this infinite
number of solutions is actually therelevantone, in the sense of being the infinite Reynolds
number (Re→ ∞) limit of the corresponding solutions of the Navier–Stokessystem, is one
of fundamental questions of hydrodynamics which, as of yet,remain unanswered [55, 56].
Below we briefly present the main families of solutions that have been considered as possible
candidates for this limit. Fundamentally, there are two such families: flows characterized by
anopenrecirculation zone obtained using the “free–streamline” theory of Kirchhoff [57] (see
Figure 1a), and flows featuring aclosedrecirculation zone arising as manifestations of the
Prandtl–Batchelor theorem [40] (see Figure 1b).

In regard to the first class, the solutions are constructed bysupposing the existence
of a “free streamline” which separates the potential flow from a stagnation region behind
the obstacle where the flow velocity vanishes identically [57, 30]. The pressurep0 in the
stagnation zone is assumed equal to the pressure at infinityp∞, so that the free streamline
coincides with a vortex sheet, with the jumpB in the tangential velocity constant and equal to
the free stream at infinity. For a given geometry the free–streamline model does not depend on
any parameters. It can be shown [30] that Euler flows constructed in this way have a non–zero
drag, and therefore do not give raise to d’Alembert’s paradox.

Concerning the second class of flows, the Prandtl–Batchelortheorem [40] stipulates
that in the infinite Reynolds number limitRe→ ∞ the regions in an incompressible flow
characterized by closed streamlines must necessarily correspond toconstantvorticity ω0. In
regard to Euler equation (2), this corresponds to the following choice of the RHS function
F(ψ)

F(ψ) = −ω0H(ψ0−ψ)−2BH(ψ0−ψ), (14)

whereH(·) andδ(·) are the Heaviside and Dirac distributions, which represents regions of
constant vorticityω0 = ∂v

∂x−
∂u
∂y surrounded by a vortex sheet of strengthB and embedded in an

irrotational flow (the boundary of this vortex region is characterized by the conditionψ = ψ0,
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whereψ0 ∈R is a parameter). The strengthB of the vortex sheet can also be interpreted as the
jump of Bernoulli’s constant when crossing the streamlineψ = ψ0. Euler flows satisfying
(2) with (14) and featuring a symmetric pair of counter–rotating vortices touching each
other are referred to as “Sadovskii flows” [58] and were computed in unbounded domains
by Pierrehumbert [59], and Saffman and Moore [60]. From the point of view of modeling
bluff body wakes, the more relevant problem concerns findingPrandtl–Batchelor vortices
in equilibrium with the cylinder. This problem was solved byElcrat et al. [61] who also
assumed for simplicity thatB = 0, i.e., that there is no vortex sheet surrounding the vortex
region. Elcrat et al. discovered several distinct familiesof such vortex flows, each depending
on two parameters (Figure 2). The families consisting of vortex regions withfinite area have
the remarkable property that fixing the circulationΓ =−ω0

R

Ω H(ψ0−ψ)dΩ of an individual
vortex patch and allowing its area to shrink to zero (i.e.,ψ0 →−∞) one obtains a continuous
family of solutions approaching a point–vortex system in equilibrium with the obstacle as
the asymptotic limit. In the case of the families characterized by pairs of vortex regions
above / below the flow centerline and behind the obstacle, this point vortex solution is the one
discovered by Föppl in 1913 [62]. The point vortex equilibrium corresponding to a pair of
vortices behind the cylinder (Figure 2, top row, second column) is referred to as the “Föppl
system”. It has given rise to a number of interesting controlproblems, therefore below we
provide a few details concerning this particular solution.The Föppl system consists of a pair
of counter–rotating point vortices placed symmetrically above and below the flow centerline
behind the cylinder (Figure 3a). These vortices are complemented by a pair of image vortices
inside the cylinder whose location is determined by the circle theorem [30]. As shown already
by Föppl, there exists a one–parameter family of Föppl systems characterized by the following
algebraic relationship











(|z0|2−1)2 = 4|z0|2y2
0,

Γ = 2π
(|z0|2−1)2(|z0|2+1)

|z0|5
,

(15)

wherez0 = x0 + iy0 is the position of the top vortex (the bottom vortex is located at z0 =

x0− iy0), whereasΓ = −Γ1 = Γ2 is the circulation of the vortices. Thus, for every nonzero
value of the circulationΓ there exists an equilibrium position of the vortices and this locus
is referred to as the “Föppl line” (see also top row, first column in Figure 2). A remarkable
property of Föppl equilibrium (15) is that its flow pattern features a recirculation bubble. In
addition, the Föppl equilibrium possesses some interesting stability properties which will be
reviewed in Section 2.5. As shown by Protas [63], one can generalize this “classical” Föppl
system by incorporating in it higher–order terms representing the corrections due to the finite
area of the vortex region, so that the new system can approximate with arbitrary accuracy the
solutions of Euler equation (2) characterized by finite–area vortex regions, i.e., with the RHS
given by (14). Below we outline the main idea of this construction. Consider a compact region
P of vorticity embedded in an irrotational flow past a circularcylinder and characterized by a
constant vorticity distributionω0. Using complex Green’s function (4), the complex potential
induced by such a vortex patch in a 2D unbounded domain can be expressed for points outside
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the patchz /∈ P as

W̃P(z) = (ϕ+ iψ)(z) =
ω0

2πi

Z

P
ln(z−z′)dA(z′), (16)

wheredA(z′) = dx′dy′. Tilde (·̃) indicates that this potential represents a flow in a domain
without boundaries, whereas the subscript indicates that the potential is due to the patchP.
We now choose a pointzs∈ P as the origin of the local coordinate system associated withthe
patchP and setζ = z′−zs. Complex potential (16) can now be expressed as

W̃P(z) =
Γ0

2πi
ln(z−zs)+

ω0

2πi

Z

P
ln

(

1− ζ
z−zs

)

dA(ζ). (17)

The second term in (17) can, for|z− zs| > |z′− zs|, be expanded in a Laurent series which
yields

W̃P(z) =
Γ0

2πi
ln(z−zs)−

1
2πi

∞

∑
n=1

cn

n
(z−zs)

−n, |z−zs| > ζm, (18)

where

cn(zs) = ω0

Z

P
ζndA(ζ) (19)

andζm = max(zs+ζ)∈P |ζ|. Thus, the pointzs represents also the location of a singularity which,
for the moment, remains unspecified. The quantitiescn(zs), n = 1, . . . ,N0 are the moments of
the vorticity distribution in the patchP with respect to the pointzs and therefore are related
to the eccentricity of the patch(c1), its ellipticity (c2), etc. The zeroth momentc0 is equal to
the total circulationΓ0 of the patch. The complex potential due to a finite–area vortex patchP
can be approximated for points of the plane lying outside this patch by truncating expression
(18), i.e., replacing it with a finite sum of singularities located at the pointzs

W̃P(z) ∼= W̃P,N0(z) =
Γ0

2πi
ln(z−zs)−

1
2πi

N0

∑
n=1

cn

n
(z−zs)

−n, |z−zs| > ζm. (20)

The order of truncationN0 is represented by the second subscript onW̃. The complex potential
W̃Q,N0(z) due to the patchQ with the opposite–sign vorticity−ω0 and located symmetrically
below the flow centerline (Figure 1b) can be represented using an analogous expression in
whichzs is replaced withzs andcn with −cn for n = 1, . . . ,N0. We now use these expressions
to construct potential flows approximating solutions of thesteady–state Euler equations in the
sense that the velocity field of the potential flow will converge, forz /∈ P andz /∈ Q, to the
velocity field of the Euler flow asN0 → ∞. These potential flows are constructed using the
potentialsW̃P,N0(z) andW̃Q,N0(z), and employing the circle theorem [30] to generate suitable
image singularities inside the obstacle in a way ensuring that the boundary conditions for
the wall–normal velocity component are satisfied. As was shown in [63], the equilibrium
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solutions of such “higher–order” Föppl systems are characterized by the condition

U∞

(

1− R2

z2
N0

)

− Γ0

2πi



− 1
(

zN0 − R2

zN0

) − 1
(zN0 −zN0)

+
1

(

zN0 − R2

zN0

)





+
1

2πi

N0

∑
n=1






(−1)n+1 R2cn

(

zN0 − R2

zN0

)n+1

zn−1
N0

zn+1
N0

− cn

(zN0 −zN0)
n+1 − (−1)n+1 R2cn

(

zN0 − R2

zN0

)n+1

1

z2
N0






= 0

(21)

which is a complex–valued equation characterizing one complex unknownzN0, i.e., theN0–
order Föppl equilibrium. The sum in Equation (21) represents theN0–order correction to
the classical Föppl system resulting from the finite area ofthe vortex region. Assuming a
fixed circulationΓ0 of this vortex region, the higher–order Föppl equilibriazN0 represent a
two–parameter family of solutions of (21) depending on the truncation orderN0, which is a
discrete parameter, and the set of momentscn(z0), n = 1, . . . ,N0, which vary continuously
with the area|A| of the vortex region desingularizing classical Föppl equilibrium (15). Thus,
whenN0 = 0 we recover the classical Föppl system with one equilibrium given by (15). In the
caseN0≥ 1 the qualitative and quantitative properties of the loci ofthe higher–order equilibria
zN0 were studied in [63]. While a detailed review of these results is beyond the scope of the
present paper, we mention one result which is quite relevantto the vortex control problem. In
[63] it was proven that, for a fixed truncation orderN0, the locus of equilibrium solutionszN0

forms a curve parametrized by the area|A| of the vortex region and starting at the classical
equilibriumz0. Therefore, the higher–order equilibriazN0 can be regarded as perturbations of
the classical equilibriumz0 such that the distance|zN0−z0| is a continuous function of the area
|A| of the vortex region desingularizing classical equilibrium (15) (Figure 3b). We conclude
this discussion by remarking that all the flows belonging to the Prandtl–Batchelor family of
solutions of (2), together with the limiting point–vortex systems, are characterized byzero
drag.

The question of existence of vortex equilibria becomes moresubtle when one considers
flows past objects with fixed separation points, such as corners or cusps. In such cases the
flow must satisfy one additional condition, namely the Kutta–Joukowski condition, which
requires that the separation should occur at a singular point. In the context of equation (2) this
is enforced by specifying the value of the streamfunction ata point adjacent to the prescribed
separation point, thereby restricting the class of possible solutions. Indeed, the flow past a
finite plate normal to the oncoming uniform stream [64] is an example of a potential flow in
which no vortex equilibrium exists that would also satisfy the Kutta–Joukowski condition
(in fact, in the past some authors had staked claims to the opposite effect, and we refer
the reader to [26] for some interesting remarks concerning the history of this problem).
This issue was recently revisited by Zannetti [65] who investigated the existence of point
vortices in equilibrium with a flow past a locally deformed wall that also need to satisfy the



Vortex Dynamics Models in Flow Control 14

point vortices isolated vortices attached vortices infinite vortices

Figure 2. (first column) One–parameter families of point vortices in equilibrium with the
cylinder and (remaining columns) the associated two-parameter families of isolated, attached
and infinite vortex regions computed in [61]. The family of infinite vortices (fourth column)
is a perturbation of the potential flow. [Figure reproduced with permission of the publisher
(Cambridge University Press).]
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Figure 3. (a) Schematic of the classical Föppl system; the dashed line represents the
separatrix streamline delimiting the recirculation bubble, (b) loci of the higher–order Föppl
equilibriazN0 parametrized by the area|A| of the vortex region for different truncation orders
(N0 = 1,3,5,10,15) [63]; the circle represents the classical Föppl equilibrium.
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Figure 4. The Föppl (“Equil.”) and Kutta manifolds with their asymptotes showing no
intersection points [65]; the domain boundary is in the formof a symmetric Ringleb snow
cornice [46]. [Figure reproduced with permission of the publisher (Cambridge University
Press).]

Kutta–Joukowski condition. The problem was analyzed by studying the intersection points
of the “Föppl manifold”, representing the locus of the point vortex equilibria, and the “Kutta
manifold” representing the locus of point vortices satisfying the Kutta–Joukowski condition.
Criteria concerning the existence of such intersection points were linked to the geometry
of the domain, more specifically, to the properties of the conformal mapping employed to
transform the original domain into the half–plane. In particular, it was shown that there exist
domain boundaries with fore–and–aft symmetry for which theFöppl and Kutta manifolds do
not intersect, so that there is no vortex equilibrium satisfying the Kutta–Joukowski condition
(Figure 4).

The same questions also pertain to the problem of existence of finite–area vortex regions
described by equations (2) and (14), and also required to satisfy the Kutta–Joukowski
condition. In this regard it was conjectured by Zannetti in [65] that nonexistence of apoint
vortex in equilibrium with the flow and satisfying at the same time the Kutta–Joukowski
condition would preclude the existence of the corresponding family of finite–area vortex
regions satisfying analogous conditions. While this issueis currently under investigation,
claims supporting an opposite point of view had been made by Turfus et al. [66, 67]. The
latter results however were recently questioned by Gallizio [68] as a computational artifact
related to insufficient numerical resolution. On the other hand, when the body placed in
the flow does not possess the fore–and–aft symmetry, it is possible to find equilibrium point
vortex configurations satisfying the Kutta–Joukowski condition. Indeed, using an inclined flat
plate as the obstacle, Saffman and Sheffield [45] found several families of equilibrium vortex
configurations satisfying the Kutta–Joukowski condition,and one such solution is shown in
Figure 5a. Such solutions are in fact quite interesting fromthe practical point of view, because
configurations as shown in Figure 5a feature an increased lift as compared to the flow without
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(a) (b)

Figure 5. (a) Streamline pattern in one of the equilibrium solutions found by Saffman and
Sheffield [45] and involving a vortex attached to an inclinedflat plate; (b) modified Joukowski
airfoil with a cornice–shaped cavity (“Kasper wing”); equilibrium position of the vortex in
the cavity is denotedS [121]. [Figures reproduced with kind permission of the publishers
(Wiley-Blackwell and Springer Science for Figures (a) and (b), respectively).]

attached vortices. Since most such equilibrium solutions are linearly unstable, one possibility
to obtain more robust configurations consists in “trapping”the vortices in a suitably–designed
cavity on the upper surface of the airfoil (Figure 5b). The shape of the cavity is closely
related to a “snow cornice” and one of the first investigatorsto study vortex equilibria in such
geometries was Ringleb [46]. The concept of a vortex trappedin a cornice–shaped cavity
on the top surface of an airfoil, known also as the “Kasper wing” [69], has been explored in
the aerospace industry [70] and still remains the subject ofintense research efforts [71]. The
existence of solutions characterized by finite regions of constant vorticity, i.e., satisfying (2)
with (14) in addition to the Kutta–Joukowski condition, in such geometries was stipulated by
Bunyakin et al. [72], however, to the author’s best knowledge, such flows have not actually
been computed yet. There also exist other models of the wake flows corresponding to the
Re→ ∞ limit, such as the Riabouchinsky flow [73] which is a hybrid unifying some features
of the Kirchhoff and Prandtl–Batchelor flows. However, we will not discuss them here, since
they do not strictly satisfy Euler equations (2).

A salient feature of real flows past bluff bodies is the spontaneous formation of an
array of counter–rotating vortices, the so–called Bénard–von Kármán vortex street, when the
Reynolds number is sufficiently high. This phenomenon was first modeled mathematically
using point vortices by von Kármán [74] who found equilibrium configurations of two arrays
of point vortices extending indefinitely in the upstream anddownstream directions. Von
Kármán also established that, while the symmetric arrangements are always unstable, the
staggered arrangements are linearly stable, but only for certain combinations of the intra–
vortex separations and the distance between the two lines ofvortices, a result that was
subsequently made more precise by Heisenberg [75]. This class of models was also studied
by Villat [76] and was recently revisited using modern techniques by Aref et al. [77] who
found more complicated equilibrium patters involving several arrays of vortices. A weakness
shared by all models based on periodic arrangements of vortices is that they extend to infinity
also in the upstream direction, so that it is not possible to account for the presence of the solid
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body generating the wake. This is most likely the reason why such vortex models have not
been investigated in the context of flow control problems.

2.5. Stability of Vortex Equilibria in Flows Past Bodies

Having surveyed different vortex configurations in equilibrium with solid bodies, we now
turn to an analysis of their stability. These properties aregoing to play a central role in the
development of methods based on the optimal control theory.We will focus on analyzing the
stability of the Föppl system, since this is the equilibrium configuration whose stability has
been researched the most thoroughly. As will be argued later, many other vortex equilibria
have analogous properties as regards the linear stability.The stability properties of the
classical Föppl system and their relevance for the modeling of transition to vortex shedding
were thoroughly analyzed by Tang & Aubry [78]. In an earlier study, Smith [79] identified
an error in Föppl’s original derivation which concerned the stability of solution (15) with
respect to symmetric perturbations. This issue was again revisited by Cai et al. [80] who
also derived a more general stability criterion and appliedit to study the stability of point
vortices in equilibrium with elliptic cylinders and circular cylinders with splitter plates. De
Laat & Coene [81] analyzed the frequency of the neutrally stable oscillatory mode as a
function of the downstream coordinatex0. The linear stability analysis of the Föppl system
is performed by adding the perturbationsz′1 , x′1 + iy′1 andz′2 , x′2 + iy′2 to the coordinates
z1 = x0 + iy0 andz2 = x0− iy0 of the upper and lower vortex in equilibrium solution (15),
and then linearizing governing system (10) aroundX0 = [x0 y0 x0 − y0]

T assuming small
perturbations (Figure 6a). Thus, evolution of the perturbations is governed by system (12a)
whereX′ = [x′1 y′1 x′2 y′2]

T andB ≡ 0, and the system matrixA is given by (see [78])

A =











a b c d
e −a f c
c −d a −b

− f c −e −a











(22)

with the following entries

a =
3x0

|z0|6
− 2x0

|z0|8
,

b =
1

|z0|9
− 5

2|z0|7
+

1
2|z0|5

+
2

|z0|3
+

1
|z0|

,

c = − x0

|z0|4
,

d = − 1
2|z0|5

− 1
2|z0|3

− 1
|z0|

,

e=
1

|z0|9
− 5

2|z0|7
− 3

2|z0|5
+

1
|z0|

,

f =
1

2|z0|5
− 3

2|z0|3
− 1

|z0|
.

(23)
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Figure 6. (a) Schematic indicating the perturbationsX′ of the classical Föppl equilibriumX0;
the big dots represent the equilibrium and the small dots represent the perturbed positions, (b)
the three modes of motion characterizing the linearized Föppl system with the system matrix
A given in (22); note that another pair of the modesα andβ can be obtained by reversing the
direction of the corresponding eigenvectors.

We remark that (12a) is a linear time–invariant (LTI) system. Eigenvalue analysis of the
matrix A reveals the presence of the following modes of motion (Figure 6b):

• unstable (growing) modeα corresponding to a positive real eigenvalueλ1 = λr > 0,

• stable (decaying) modeβ corresponding to a negative real eigenvalueλ2 = −λr < 0,

• neutrally stable oscillatory modeγ corresponding to a conjugate pair of purely imaginary
eigenvaluesλ3/4 = ±iλi .

These qualitative properties are independent of the downstream coordinatex0 parameterizing
equilibrium solution (15). The linearized system is neutrally stable to symmetric perturbations
and unstable to almost all asymmetric perturbations. Furthermore, analysis of the orientation
of the unstable eigenvectors ofA carried out in [78] revealed that the initial stages of instability
of the Föppl system closely resemble the onset of the vortexshedding in an actual cylinder
wake undergoing the Hopf bifurcation. A question naturallyarising in this context concerns
the stability of the solutions of Euler equation (2) with (14) which desingularize the classical
Föppl solution, cf. Figure 2. This problem was investigated in [82] where it was shown that, in
analogy with the classical Föppl system discussed above, the Jacobians of such solutions are
characterized by one unstable and one exponentially stablemode in addition to an infinite
number of neutrally stable modes. The nonlinear stability of Föppl equilibrium (15) has
received only limited attention: it was studied in a weakly nonlinear setting by Tordella [83]
and recently for a more general system using the energy–Casimir methods by Shashikanth et
al. [84].
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Figure 7. Schematic of a co–rotating vortex pair; dotted lines represent vortex trajectories.

3. Control of Vortex Flows in Domains without Boundaries

As compared to the results concerning vortex flows in domainswith boundaries, which will
be reviewed in Section 4, the results concerning optimal control of vortex flows in domains
without boundaries are relatively few. The reason appears to be that such configurations
represent a fairly idealized setting not connected directly to any specific application. In this
context we mention the work of Vainchtein and Mezić [85], elaborated further in [86], who
considered the problem of optimal control of a co–rotating vortex pair. Such a system of
two same–sign vortices represents the simplest point vortex system with nontrivial behavior
(Figure 7). The nominal dynamics consists of the two vortices moving in opposite directions
on circular trajectories around their vorticity centroidxc ,

Γ1x1+Γ2x2
Γ1+Γ2

. The control objective
in that investigation was twofold, namely, to movexc from an initial to a desired location
and to change the vortex separation 2r , ‖x1−x2‖ from some initial to a desired value using
(i) a uniform strain field and (ii) a field due to a localized source or sink as the actuation.
The authors considered “adiabatic” control where it was assumed that the control field was a
small (of orderε) perturbation of the nominal velocity field. This made it possible to apply
the method of averaging [87] which “averaged out” the fast rotation of the vortices aroundxc

yielding in this way a reduced system for the averaged quantities〈xc〉 and〈r〉 as the new state
variables. For example, in the case of the uniform strain field used as the control, governing
equation (11a) for the control system now takes the specific form

d〈xc〉
dt

= b(〈xc〉)U, (24)

whereb(〈xc〉) = [〈xc〉 −〈yc〉]T . The solutions of this averaged system describe the behavior
of the original state variables with an accuracyO(ε) over time intervalsO(ε−1) [87]. In
the case when the strain field was used as the control, the optimal protocols could be
found applying direct methods of calculus to minimize the cost of the control. Assuming
the control input to be bounded in the mean sense over a cycle of vortex rotation resulted



Vortex Dynamics Models in Flow Control 20

in an impulsive control in the form of a combination of Dirac delta measures applied at
optimal phases of the vortex rotation. On the other hand, assuming the control input to
be bounded at all times resulted in a “bang–bang” control in which the actuation either
vanishes, or is equal to its maximum allowed value. The “bang–bang” control often arises
in optimal control problems in which the control is restricted by some lower and upper bound,
and the resulting solution for the optimal control intermittently switches between these two
values [7]. In the case when a sink / source was employed as theactuation, the solution of
the optimal control problem was more complicated and required the use of the Pontryagin
maximum principle applied to the averaged equations. The Pontryagin maximum principle
is a general technique providing necessary conditions characterizing the solution of optimal
control problems involving constraints on both the state and the control [7]. This approach
will be described in more detail in the context of another control problem in Section 4.2;
here we mention only that it also resulted in an optimal control in the form of a set of Dirac
delta measures applied at the optimal phases of the vortex rotation. A generalization of this
problem was considered by the same authors in [23] where the point vortices were replaced
with elliptic vortex patches possessing more internal degrees of freedom. A solution of the
associated problem of state estimation for a co–rotating vortex pair was proposed by Tadmor
[88] and will be discussed in Section 5.

4. Control of Vortex Flows in Domains with Boundaries

Control of vortex flows in domains with boundaries has attracted significant attention. This
in particular concerns vortex flows past objects such as plates, bluff bodies and airfoils placed
in a uniform stream which serve as models of flows arising in many important applications.
In order to place the following discussion in an appropriatecontext, we begin by stating some
general results concerning control and stabilization of 2DEuler equation (2) in a domain with
boundaries. The following result is due to Coron [89]:

Theorem 1 If the controls act on an arbitrary small open subsetΣ of the boundary∂Ω which
meets every connected component of this boundary, then 2D Euler equation (2) is exactly
controllable.

The proof of this theorem relies on the so–called “return method” and for further details
concerning this proof we refer the reader to the monograph [89] which also outlines the
relevant control–theoretic background. Theorem 1 has the physically–relevant implication
that, if the control does not act on certain internal boundary segments of a multiply–connected
domain, then the Euler system in that domain may not be controllable, which is a consequence
of the fact that such control will not have the authority oversome cyclic motions (i.e., motions
with prescribed circulations around holes in the domain).

4.1. Control of Vortex Flows in Bounded Domains

One of the first systematic studies of a vortex control problem in a domain with boundaries
was the investigation by Péntek, Kadtke and Toroczkai [90]who employed methods of “chaos
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Figure 8. (a,b) Symmetric three–vortex configurations with unstableperiodic orbits whose
stabilization was investigated in [90] using the OGY approach; each configuration rotates with
a specific angular velocity (figures not to scale).

control” [91] allowing one to stabilize an otherwise unstable periodic orbit embedded in the
chaotic attractor of the system. Péntek et al. studied the problem of controlling symmetric
arrays of three same–sign point vortices contained in a closed circular container (Figure 8).
As is well known, such simple systems already exhibit nonintegrable (chaotic) behavior in
addition to the presence of unstable periodic motion related to the rotation of the vortex array
as a rigid body. In terms of the actuation, the authors used mass transpiration distributed on
the cylinder boundary and characterized by three degrees offreedom. Control was performed
using an OGY feedback algorithm due to Ott, Grebogi and Yorke[92]. The idea of this
method is to adjust the actuation at every discrete instant of time so as to drive the state of the
system towards thestablemanifold of the fixed point one seeks to stabilize. In this wayonly
a small control input is required, as most of the work is done by the internal dynamics (i.e.,
the transfer along the stable manifold). The OGY approach requires that an eigenvectorξs of
the JacobianA associated with the stable manifold of the equilibriumX0 be available. Then,
the OGY control method relies on the following ansatz

X′(t +∆t) = a‖X′(t)‖ξs, (25)

where∆t ≪ 1 is the time step anda ∈ (0.1) is a real parameter. Relation (25) should be
regarded as a condition on the control inputU which requires it to align the perturbationX′

at the following time level with the stable subspace of the JacobianA, so that the natural
dynamics of the system can bring it to the unstable equilibriumX0. Using (12a) to re–express
(25) we obtain

1
∆t

[

a‖X′(t)‖ξs− (I +∆tA)X′(t)
]

= ∆tBU+O(∆t2). (26)

Truncating the terms proportional to∆t2, one obtains a system of linear equations that need
to be solved in order to obtain the controlU(t) at the present instant of time. Evidently, when
M < 2N, system (26) may not have any solutions. This difficulty was circumvented by the
authors in [90] by requiring that the perturbationX′ reach the stable manifold afterp steps,
i.e., replacing (25) with a modified ansatz

X′(t + p∆t) = a‖X′(t)‖ξs, (27)
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so that (26) would now become

1
∆t

[

a‖X′(t)‖ξs− (I +∆tA)pX′(t)
]

=

= (I +∆tA)p−1BU(t)+(I +∆tA)p−2BU(t +∆t)+ . . .+BU(t + p∆t)+O(∆t2).
(28)

which can be solved for{U(t),U(t + ∆t), . . . ,U(t + p∆t)} provided p is chosen so that
pM≥ 2N [for pM > 2N, system (28) is underdetermined and some values of the control input
can be set equal to zero]. Remarkably, the study [90] also wasthe first investigation which
employed methods of the modern control theory to study the controllability of the vortex
systems shown in Figure 8a,b which allowed the authors to identify the forms of actuation
with insufficient control authority (e.g., changing the shape of the domain boundary from
cylindrical to elliptical). We postpone a detailed discussion of the controllability concept to
Section 4. The computational results reported in [90] confirmed that the OGY control strategy
was indeed capable of preventing the chaotic behavior by maintaining the periodic motion.
The OGY approach was also applied to control vortex systems in unbounded domains which
will be reviewed in Section 4.

The next investigation we discuss in this category is the optimal control of a point vortex
in a potential “corner flow” studied by Noack et al. in [93] (Figure 9a). The objective in this
control problem was to enhance mixing which was quantified byconsidering a time–averaged
integral of the mass flux across an invariant manifold of the Poincaré map characterizing
particles’ trajectories. This invariant manifold is a union of the stable and unstable manifolds
emanating from the stable and unstable fixed points of the Poincaré map (Figure 9b). In
Figure 9b we can also see the regions occupied by the fluid entrained and detrained to and
from the recirculation zone, denoted D and E, respectively.The state variable was the position
of the vortexX = [xv yv]

T and the control actuation had the form of a perturbation of the
potential stream in the corner flow and was characterized by one time–dependent parameter,
so that in (11a) we haveU ∈ R and

b(X) = k

[

xv

−yv

]

, (29)

wherek ∈ R is a parameter . A key result demonstrated in [93] was that theabove control
problem can be solved by transforming governing equation (11a) with b(X) given by (29) to
theflat coordinates z1 = α1(xv,yv) andz2 = α2(xv,yv), whereα1 andα2 are suitably chosen
transformations. With thus redefined state variables, the governing system takes the form

d
dt

[

z1

z2

]

=

[

z2

p(z1,z2)

]

+

[

0
q(z1,z2)

]

U. (30)

We note that the first new dependent variable (the flat coordinate)z1 can be prescribed as
z1 = zd

1, wherezd
1 is some chosen function, and the corresponding control can be determined

afterward as

U =
żd
2− p(zd

1,z
d
2)

q(zd
1,z

d
2)

(31)
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Figure 9. Corner flow with a point vortex studied in [93]: (a) the uncontrolled system with
the solid symbol denoting the equilibrium position and the lines representing periodic orbits,
(b) features of the Poincaré map of particle trajectories corresponding to the natural vortex
dynamics, and (c) optimal vortex trajectories with the corresponding frequencies of rotation.
[Reprinted with permission from [93]. Copyright (2004), American Institute of Physics.]

provided q 6= 0 and zd
2 = żd

1. Thus, existence of an invertible transformation to the flat
coordinates is equivalent to controllability of the original system. The trajectoryzd

1 was
then represented with a few Fourier basis functions whose coefficients were optimized
computationally using a linear programming (simplex) algorithm to maximize the cost
functional, and examples of optimal vortex trajectories from [93] are shown in Figure 9c.
Noack et al. presented also a general theory concerning transformation of equations of vortex
motion (11a) to the flat coordinates in arbitrary domains and in situations involving multiple
vortices. The flux–maximizing optimal controlUopt is clearly of an “open–loop” type, and it
is not evident if the corresponding optimal trajectory would in practice be stable with respect
to disturbances and modeling errors. Therefore, Noack et al. proposed to stabilize control law
(31) with proportional feedback terms, so that it would now take the form

U =
żd
2− p(z1,z2)−k1(z1−zd

1)−k2(z2−zd
2)

q(z1,z2)
, (32)

where the coefficientsk1 andk2 were chosen to ensure that the deviationsz1−zd
1 andz2−zd

2
vanish with time. For such feedback stabilization to be applicable in practical settings one
must be able to recover the instantaneous values ofz1 andz2 from some measurements of
the systems. In [93] this was accomplished employing a suitably–designed observer whose
discussion is however deferred to Section 7. For completeness we also mention investigations
[94] and [95] which employed 2D vortex models to study the effect of various passive flow
control strategies in engineering applications.

4.2. Control of Vortex Flows Past Bodies

We now proceed to discuss investigations concerning control of different vortex flows in
domains with internal boundaries. Some of the first systematic studies of this problem were
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(a) (b)

(c) (d)

Figure 10. (a) Trajectory of the vortex under the action of the nonlinear feedback controller
developed in [96] to ensure invariance of the vortex circulation; the dashed lines divide the
flow domain into different controllability regions, the values of (b) the steady actuationU and
(c) circulationΓ corresponding to the equilibrium solutions of the controlled system discussed
in [97]; note that the positive circulation corresponds to the clockwise rotating vortices, a
convention which is opposite to the one adopted everywhere else in this paper, (d) trajectories
of a single vortex and the vorticity centroid (i.e., the collective coordinate) of the high–order
model proposed in [98]. [Figures (a), (b) and (c) reproducedwith permission of the publisher
(Cambridge University Press). Figure (d) reprinted with permission from [98]. Copyright
(1997), American Institute of Physics.]

carried out by Cortelezzi et al. [96, 97, 98]. The first study [96] was concerned with the
control of the unsteady separated flow past a semi–infinite plate with the transverse motion of
the plate serving as the actuation (Figure 10a). The roll–upof the separated shear layer was
modeled by a point vortex whose time–dependent circulationwas predicted using an unsteady
Kutta condition. When circulations of the point vortices are allowed to change during the flow
evolution, equations governing the particle trajectories[cf. (7a)–(7b)] need to be modified, for
instance, by incorporating the so–called Brown–Michael correction [99]. Using the condition
that the circulation of the vortex remain constant, a nonlinear feedback control algorithm was
designed in [96] that determines the instantaneous transverse velocity of the plate as a function
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of the instantaneous coordinates of the vortex. Using methods of nonlinear dynamical systems
it was then shown that the state space of the system, coinciding with the flow domain, consists
of three controllability regions separated by rays emanating from the separation point along
which controllability was lost (Figure 10a). In this Figurewe also notice that, despite the
fact that the vortex circulation remains constant, the vortex is swept downstream and exhibits
oscillations with the amplitude increasing with the downstream distance. This effect was
accompanied by a systematic increase of the magnitude of theactuation. The following
investigation [97] concerned a similar flow configuration, except that the plate was assumed to
be finite, the vortices were assumed to separate symmetrically from the top and bottom edges,
whereas the flow actuation had the form of a blowing / suction point modeled as a source /
sink at the rear side of the plate. As in the earlier investigation, a nonlinear controller was
found which ensures the circulation of the shed vortices stays constant. This is equivalent
to containing the wake to a pair of counter–rotating vortices that remain attached to the
obstacle. Furthermore, it was also shown in [97] that the steady–state actuation corresponding
to a forced equilibrium solution of the point vortex system can be found in an explicit form
(the expressions are rather lengthy and therefore we do not quote them here). As is evident
from Figure 10b,c, the forced equilibrium exhibits an interesting behavior characterized by
a bifurcation of the actuation value: for vortices with anti–clockwise circulation the required
actuation is in the form of blowing and the resulting equilibrium locus is close to the plate; on
the other hand, for vortices with clockwise circulation therequired actuation is in the form of
suction and the resulting equilibrium locus extends downstream. For vanishing actuation
the flow configuration becomes symmetric with respect to the Y–axis and, in agreement
with Zannetti’s criteria [65] discussed in Section 2.4, does not admit equilibrium solutions.
Only a limited section of the equilibrium locus was shown to be linearly stable, and the
associated basin of attraction represents the vortex configurations that can be stabilized with
this approach. Numerical simulations performed for a flow with a periodically oscillating free
stream velocity indicated that the system approached a limit cycle with the vortex on a closed
trajectory circumscribing the equilibrium position corresponding to a steady free stream. A
similar behavior will later be shown to occur also in other controlled vortex systems. An
interesting extension of this control approach was proposed in [98] where the authors studied
the possibility of transferring a control strategy determined for a simpler (“lower–order”)
model to a more complex (“higher–order”) model. This is in fact a very relevant problem,
because given the complexity of the mathematical techniques involved, a rigorous design
of the controller is often possible only for significantly simplified models, whereas accurate
description of the system usually requires that more complete models be used. In terms of the
higher–order model, the authors proposed in [98] a vortex “blob” system which, comparing
to the model introduced in [97], consisted of a larger numberof particles, each of which was
characterized by a finite core size (i.e., a desingularized point vortex). A “bridge” linking
the lower–order and higher–order models is thecollective coordinatewhich determines the
state of the lower–order model corresponding to the state ofthe higher–order model, thereby
making it possible to apply to the latter a control law derived for the former. For vortex
systems such a collective coordinate can be the position of avortex that represents a “cloud”
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of vortex blobs used in the higher–order model. The locus of such a substitute point vortex can
be determined by enforcing the conservation of the total circulation and the linear momentum
which in the presence of solid boundaries is a somewhat delicate matter, as it requires one to
also take into account the image vortices. Numerical computations employing this approach
and reported in [98] confirmed that the structure of the equilibrium loci in the lower-order
model and the higher–order model (expressed in terms of the collective coordinates) are
qualitatively equivalent. Likewise, the behavior of the controlled system in the presence
of free–stream fluctuations was quite similar in both cases and featured vortex trajectories
approaching a limit cycle (Figure 10d).

The nonlinear controllers investigated in [96, 97, 98] provide closed–form expressions
for the actuation, but requirecompleteinformation about the state of the system and the
mathematical model which in practical situations may be difficult to obtain. An approach
which relaxes these requirements was studied in [100] wherethe problem of controlling
the higher–order model from [98] was considered. The goal was to design a “black–box”
controller that will not require any information about the mathematical model of the system,
and will only use the systemoutput in the form of some measurements, for instance of the
velocity at some point at the rear side of the plate, so that the observation operatorc in (12b)
is given by

c(X) = [−ℑ[V(zm)]]−DU, (33)

wherezm , xm+ iym is a measurement point located downstream of the plate, whereasD =

ℑ
[

zm+1
zm(zm−1)

]

represents the velocity induced at the measurement point bythe source / sink and
is included in (33) in order to remove the feed–through effect. A generic framework for such
feedback control is provided by the Proportional–Integral–Differential (PID) controller [7]. In
[100] the authors employed a simplified version of this approach, namely, the Proportional–
Integral (PI) controller in which the instantaneous actuation U(t) was assumed proportional to
a measure of the instantaneous errorε(t) between the actual outputY(t) [cf. (12b) with (33)]
and the prescribed outputỸ(t), and also proportional to the error accumulated over some time
window and represented by an integral ofε(t), Thus, denotingtk the current time step and
settingε(t) = ‖Y(t)− Ỹ(t)‖, the discrete PI control algorithm yields

U(tk) = −KPε(tk)−KI

k

∑
l=1

ε(tl)+ ε(tl−1)

2
∆t

= U(tk−1)−
(

KP +KI
∆t
2

)

ε(tk)−
(

−KP +KI
∆t
2

)

ε(tk−1), (34)

where KP and KI are proportionality constants and the trapezoidal rule wasused to
approximate the integral. We emphasize that the simple PID /PD approach does not guarantee
optimality of the control in any sense. With a steady free stream at infinity, the PD approach
performed similarly to the controller derived by Cortelezzi et al. in [98], i.e., it was able
to stabilize the system and contain the wake to a pair of counter–rotating vortices attached
to the obstacle (analogous performance was also obtained when the total circulation, or
the circulation centroid was used as the system output). However, when the free stream
was allowed to oscillate, the resulting state of the system and the system output exhibited
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(a) (b)

Figure 11. (a) Instantaneous positions of vortex blobs and (b) the corresponding time–
dependent trajectory of the center of circulation in the flowpast a flat plate broadside to the
oncoming stream with a steady suction applied at the real wall [101]. [Figures reproduced
from [101] with kind permission of the publisher (Springer Science and Business Media).]

significant oscillations, an effect not observed when the nonlinear controller of [98] was
applied. As a step towards resolving this problem, the authors developed in [100] a system
identification (SI) strategy. In an effort to keep the present Section focused, we defer the
discussion of this strategy to Section 5.

The problem of controlling vortices interacting with a flat plate was also addressed by
Zannetti and Iollo [101] who considered the more general configuration of the plate at an
arbitrary angle with respect to the oncoming flow. The principal finding of this investigation
was that a forced vortex equilibrium can in fact be established applyingsteadysuction at the
rear side of the plate, i.e., no feedback is necessary. The authors also argued that applying such
steady actuation has a similar effect to replacing a straight plate with a cambered one, in the
sense that the resulting breaking of the symmetry with respect to the Y–axis makes it possible
for the equilibrium solutions to also satisfy the Kutta conditions at the separation point (cf. the
discussion of the relationship between the symmetry of the domain and the existence of
intersection points of the Föppl and Kutta manifolds in Section 2.4). The results of the
mathematical analysis were illustrated applying the steady actuation to a time–dependent
vortex–blob model of the wake past a plate oriented broadside to the oncoming flow, i.e.,
a problem analogous to the higher–order model studied in [98]. The computations confirmed
the feasibility of this approach and in Figure 11 we reproduce a sample result concerning
the evolution of the vortex blobs (Figure 11a) and the corresponding trajectory of the center
of circulation in the controlled flow, i.e., the collective coordinate (Figure 11b). We remark
that this center of circulation approaches a circular trajectory circumscribing the equilibrium
position of the point vortex system, a generic behavior already observed in Figure 10b.

Several investigations addressed the problem of controlling chaotic trajectories of point
vortices advected by the free stream and interacting with a circular cylinder in uniform
rotation. While a single point vortex in such a configurationfollows a regular trajectory
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(a) (b) (c)

Figure 12. (a) Streamlines of a system consisting of a single vortex interacting with a cylinder
considered in [102]; the intersection point of the dotted line represents the unstable equilibrium
of this system, (b) trajectory of the center of vorticity of achaotic vortex pair in an analogous
configuration as in (a); the dotted line represents the trajectory of one of the vortices [102], (c)
convergence of the point vortices (denoted by empty circles) to the unstable equilibrium under
the action of the OGY control scheme [103] (note that the flow in Figures (a)–(c) is from
the right to the left). [Figures (a) and (b) reprinted with permission from [102]. Copyright
(1994), American Institute of Physics. Figure (c) reproduced from [103] with permission of
the publisher (Elsevier).]

(Figure 12a), when the system integrability is destroyed byimposing a time–dependent
perturbation to the free stream [102], or replacing the point vortex with a vortex pair [103],
the trajectories of the vortex (pair) become chaotic. A signature of this chaotic behavior are
the “capture events” during which the time of interaction between the vortex (pair) and the
cylinder is significantly longer then otherwise (Figure 12b). The unperturbed system has
an unstable equilibrium (a saddle) located directly below the cylinder (for the free stream
approaching from the right and the cylinder rotating in the counterclockwise direction).
The problem of stabilizing this equilibrium was studied by Chernyshenko in [104] who
used a zero mass flux transpiration, modeled as a point source–sink pair, as the actuation.
Employing methods of asymptotic analysis similar to the averaging technique investigated
by Vainchtein and Mezić [86] (see Section 3), it was demonstrated that a high–frequency
alternating blowing and suction can modify the type of stability of this equilibrium from a
saddle to a center, thereby rendering the equilibrium neutrally stable. Another method to
stabilize this equilibrium, based on the OGY approach [92],was proposed by Kadtke, Péntek
and Pedrizzetti [103] who applied the cylinder rotation as the actuation. A result indicating
the success of this approach is reproduced in Figure 12c. TheOGY control approach derived
in [103] based on a simple point vortex system was then applied in a similar setting to control
the flow of a viscous fluid described by the Navier–Stokes equation, and the computations
reported in [105] showed a good performance of this control method.

Next we go on to discuss investigations concerning the control of the classical Föppl
system described in Section 2.4. In our opinion, out of all the vortex dynamics problems,
this configuration has received the most complete characterization from the control–theoretic
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point of view. The first control study concerning this problem was the work of Tang and Aubry
[106] who considered apassivetechnique based on including in system (10) a symmetric pair
of counter–rotating control vortices with the circulations±Γc andfixedlocationszc = xc+ iyc

andzc = xc− iyc (Figure 13a). Thus, the actuation functionb(X)U in (11a) was given by

b(X)U = b(X) =
Γc

2π
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. (35)

Interestingly, the classical Föppl system augmented withactuation (35) was shown to possess,
for sufficiently large values ofΓc, two new families of solutions (Figure 14). Remarkably,
one of these new families was shown to be neutrally stable with the JacobianA = ∇f(X0)+

∇b(X0) characterized by purely imaginary eigenvalues only. Thus,by introducing in the
flow a suitably chosen pair of control vortices, the originallinearly unstableconfiguration
(cf. Section 2.5) could be replaced with a modifiedneutrally stableconfiguration, a behavior
that, as was demonstrated in [106] using numerical computations, also occurs for the
viscous fluid flow governed by the 2D Navier–Stokes equation.However, a disadvantage
of this control strategy from the practical point of view is the difficulty of introducing and
maintaining control vortices with fixed circulations and locations.

The next investigation concerning the control of the Föpplsystem, carried out by Li
and Aubry [107], employed a slow and small–amplitude transverse motion of the cylinder
described by the vertical displacementδ(t) as the flow actuation (Figure 13b). The goal was
to construct afeedbackcontrol algorithm that would instantaneously adjust this actuation in
order to cancel the lift force at every instant of time. As is well known [109], the lift force is
intrinsically related toasymmetryof the vorticity distribution in the wake, and therefore can
be considered a signature of a developing symmetry–breaking instability. In the context of
the controlled point vortex model (11a) the cylinder displacement was represented as a vortex
sheet with the strengthΓe(t,γ), whereγ is the azimuthal angle (Figure 13b), appearing on the
cylinder boundary in response to the perturbation of the velocity boundary condition resulting
from the displacementδ(t) (cf. our discussion of the different methods for enforcing boundary
conditions in potential flows in Section 2.2). Noting that, in the first–order approximation,
Γe(t,γ) = −2cos(γ)∂δ(t,γ)

∂t , the actuation term in (11a) takes the form [107]

b(X)U =
1
2π
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∂
∂t

δ(t,γ), (36)

wherezδ(γ) , eiγ + iδ(t) is a point on the boundary of the displaced cylinder. The control
input δ(t) was determined by the condition that the lift be equal to zeroat every instant of
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Figure 13. Different forms of actuation considered in the stabilization studies of the Föppl
system: (a) control vortices atzc and zc introduced in [106], (b) transverse motion of the
cylinder studied in [107], (c) cylinder rotation represented by a vortexΓC inside the contour
and (d) blowing and suction modeled by a source–sink pair with intensityΛ investigated in
[108]. [Figures (a) and (b) reprinted with permission from [106] and [107], respectively.
Copyright (2000,2003), American Institute of Physics.]

Figure 14. (Squares) The equilibrium locus of uncontrolled system (15) (the “Föppl line”)
and (triangles, circles, and diamonds) the three equilibrium loci obtained in the Föppl system
using the passive control developed in [106] with the circulation of the control vortices equal
to Γc = 0.06π and the locationszc = 5.392+1.35i, zc = 5.392−1.35i. The circulationsΓ of
the Föppl vortices are as indicated [106]. [Figure reproduced with permission of the publisher
(Elsevier).]
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time which, after using asymptotic expansions in (36) and retaining the leading–order (linear)
terms only, resulted in the following closed–form expression for the displacement

δ(t) = a(X0)ρA(t)+b(X0)αA(t), (37)

wherea(X0) andb(X0) are functions determined by the equilibrium stateX0 and available in
closed forms, whereasρA(t) ,

√

(x′1)
2+(y′1)

2−
√

(x′2)
2+(y′2)

2 andαA(t) , arctan(y′1/x′1)−
arctan(y′2/x′2). We emphasize that the form of feedback relation (37) is suchthat the
displacementδ(t) depends on theasymmetricpart only of the perturbation from equilibrium
(15) and described by the quantitiesρA(t) andαA(t). While investigation [107] did not furnish
any a priori control–theoretic guarantees concerning the performance of this controller, the
computational results concerning its application to a 2D viscous wake flow governed by the
Navier–Stokes equation indicated that it was essentially able to eliminate the lift force in that
case as well.

Control problems for the Föppl system were investigated using methods of the modern
control theory by the present author [108, 110, 111]. The goal of this research effort has
been to design optimal output–feedback control algorithmsto stabilize system (12a) and
at the same time extremize some measure of performance represented by a suitable cost
functional. In terms of the actuation, these investigations primarily focused on using the
cylinder rotation represented by a point vortex with the circulationU = ΓC(t) located inside
the cylinder (Figure 13c). We remark that a vortex system with such an actuation does not in
fact satisfy Kelvin’s principle [30, 31] which stipulates that in an inviscid flow the circulation
along any material contour is conserved (when a time–dependent actuationΓC(t) is applied,
the circulation along the cylinder boundary is equal toΓC(t) and hence is not constant). Since
Kelvin’s principle is applicable toinviscidflows only, deviations from this principle may be
regarded as a way of accounting qualitatively for viscous effects (after all, actuating a real
flow via cylinder rotation is essentially a viscous effect).This admittedly simple form of
actuation was also employed in [103]. Another form of actuation considered briefly in [108]
used wall transpiration distributed over the cylinder boundary and modeled as a source–sink
pair (Figure 13d). The source–sink pair was assumed to have azero net flux, hence at every
instant of timet it is fully determined by a single parameterU = Λ(t). As shown in [108], the
control matrices corresponding to the two forms of actuation are given by (Figure 13c,d)

BΓ ,
1

2π|z0|2
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, (38)

BΛ , − sin(σ)

π(χ2+κ2)











κ
χ
κ
χ











, (39)

whereχ , x2
0 − y2

0 − 2x0cos(σ) + 1 andκ , −2y0[x0 − cos(σ)]. In order to formulate an
optimal control problem we need to identify a cost functional that the control algorithm will
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seek to minimize. This cost functional will be expressed in terms of system outputs, i.e.,
certain measurable quantities that characterize the system evolution [cf. (13b)], and the system
input, i.e., the controlU. Investigation [108] focused on attenuation of vortex shedding as the
control objective which was quantified by measuring the velocity at a pointzm = xm+ i0 on
the flow centerline. Choosing this quantity as the system output, equation (11b) becomes

Y ,

[

ℜ[V(xm)]

−ℑ[V(xm)]

]

+DΓC, (40)

where the matrixD , 1
2πx2

m
[0 xm]T represents the feed–through effect of the control on

the measurements (i.e., the control–to–measurements map). This particular choice of the
observation operatorc(X) was motivated by practical considerations, as pointwise velocity
measurements are relatively easy to implement in a laboratory experiment (for instance, using
a hot wire). Linearizing relation (40) around the Föppl equilibrium X0 we obtain (12b) in
which the linearized observation operator is given by

Cv =
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, (41)

where u(xm) + iv(xm) = V(xm). In investigation [108] we also considered other possible
forms of the system output, such as the pressure difference∆p(ϕ) , p(ϕ)− p(−ϕ) between
two points located symmetrically above and below the flow centerline and making with it an
angleϕ and−ϕ, respectively. The quantity∆p(ϕ) is important, since−

R π
0 ∆p(ϕ)sin(ϕ)dϕ

represents the form lift. In a potential flow with known velocity field the pressure at a given
boundary point can be calculated from the Bernoulli equation aspϕ = p0 + 1

2(|V0|2−|Vϕ|2),
wherep0 andV0 are the pressure and the complex velocity at some arbitrary point belonging
to the streamline which coincides with the boundary, andVϕ is the complex velocity at the
boundary point. Thus, the vertical pressure difference canbe expressed as∆p = 1

2(|V−ϕ|2−
|Vϕ|2) and the corresponding linearized observation operator is [cf. (12b)]

C∆p =

[
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]

. (42)

Our objective is to find afeedbackcontrol lawU = −KX ′, whereK is a [1× 4] feedback
matrix, that will stabilize system (13a) while minimizing a performance criterion represented
by the following cost functional

J (U) , E

[

Z ∞

0
(Y′TQY′+UTRU)dt

]

, (43)

whereE denotes the expectation,Q is a symmetric positive semi–definite matrix andR is
a symmetric positive–definite matrix. Cost functional (43)is defined in a statistical sense
(i.e., using an expectation), because governing system (13a)–(13b) may include stochastic
disturbances. We remark that cost functional (43) balancesthe linearized system outputY′

[i.e., the linearized velocity at the sensor location(xm,0), or the linearized pressure difference
on the cylinder boundary] and the control effort, whereas the feedback control law provides a
recipe for determining the actuation (i.e., the circulation of the control vortexΓC representing
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Figure 15. Schematic of a compensator composed of an estimator and a controller.

the cylinder rotation, or the intensityΛ of the mass transpiration) based on the state of the
linearized system (i.e., the perturbationX′ of the equilibriumX0). In practice, however,
the stateX′ will not be known. Instead, some noisy and possibly incomplete measurements
Ỹ ∈RK of the actual system [i.e., nonlinear Föppl model (11a) or another plant that the control
strategy is applied to] are available and can be used in anestimation procedureto construct a
time–dependent estimateX′

e of the model stateX′. The evolution of the state estimateX′
e is

governed by theestimatorsystem [1, 7]

d
dt

X′
e = AX ′

e+BU+L(Ỹ −Ye), (44a)

Ye = CX′
e+DU, (44b)

whereL is a feedback matrix that can be chosen in a manner ensuring that the expectation of
the estimation error vanishes in the infinite time horizon, i.e., thatE[‖X′

e−X′‖]→ 0 ast → ∞.
Thus, the estimator assimilates available observations into the system model, so as to produce
an evolving estimate of the state of the system. Finally, thecontroller and the estimator can
be combined to form acompensatorin which the feedback control is determined based on the
state estimateX′

e as

U = −KX ′
e, (45)

rather than the actual stateX′. The flow of information in a compensator is shown
schematically in Figure 15. The compensation problem can thus be stated as follows:

Problem 5 (compensation)Assuming that the disturbances w andm in (13a) and (13b) are
white, zero–mean and Gaussian, determine the feedback gainsK andL for the controller and
estimator systems (13a)–(13b) with (45) and (44a)–(44b), respectively, that will minimize cost
functional (43) in addition to stabilizing the controller and estimator systems.

Before we set out to design a compensator for system (13a)–(13b), we need to analyze the
control system in order to verify that this is in fact feasible given the internal structure of the
Föppl system with its different possible inputs and outputs. This can be done by investigating
controllability and observability of system (13a)–(13b).
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For a linear time–invariant system such as (12a) it is possible to assess controllability by
examining a simple algebraic condition for the matrix pair{A,B}, and in [108] it was shown
that

NΓ , rank
[

BΓ ABΓ A2BΓ A3BΓ
]

= 2, (46)

NΛ , rank
[

BΛ ABΛ A2BΛ A3BΛ
]

= 4. (47)

SinceNΓ < N = 4, linearized Föppl system (12a) with the cylinder rotation (BΓ) used as the
actuation isnot controllable. On the other hand, sinceNΛ = N = 4, when the blowing and
suction (BΛ) is used as the actuation, linearized system (13a) is fully controllable.

By the same token, it is possible to assess observability of system (12a)–(12b) by
examining a simple algebraic condition for the matrix pair{A,C}, and in [108] it was shown
that

Nv , rank
[

CT
v ATCT

v (AT)2CT
v (AT)3CT

v

]

= 4, (48)

N∆p , rank
[

CT
∆p ATCT

∆p (AT)2CT
∆p (AT)3CT

∆p

]

= 2. (49)

Thus, sinceNv = N = 4, linearized system (12a)–(12b) with the centerline velocity
measurements (Cv) is observable. On the other hand, when the pressure difference on the
cylinder boundary∆p is used as the system output (C∆p), the linearized Föppl system is not
observable. Hereafter we will focus on the case when the cylinder rotation is used as the
control (i.e.,U = ΓC andB = BΓ) and the centerline velocity measurements are used as the
system output (i.e.,C = Cv). We note that the differenceN−NΓ = 2 is equal to the number
of modes which are not controllable [7], and it is illuminating to see which modes cannot
actually be controlled. For this purpose we can deduce aminimal representationof system
(13a)–(13b) consisting of those modes only which are both controllableand observable. This
can be done by introducing an orthogonal transformation matrix

Tc ,
√

2











1/2 0 −1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 −1/2











(50)

and making the following change of variablesX′
ab ,

[

X′
a

X′
b

]

= TcX′. The corresponding

form of system (13a)–(13b) is

d
dt

[

X′
a

X′
b

]

=

[

Aa 0
0 Ab

][

X′
a

X′
b

]

+

[

Ba

0

]

ΓC +

[

Ga

Gb

]

w, (51a)

[

Yb

Ya

]

=

[

0 Cb

Ca 0

][

X′
a

X′
b

]

+

[

D1

D2

]

ΓC +

[

H1

H2

]

w+m. (51b)

Our minimal representation is thus given by the upper row in equation (51a) and the lower
row in (51b), i.e.,

d
dt

X′
a = AaX′

a +BaΓC +Gaw, (52a)

Ya = CaX′
a +D2ΓC +H2w+m2. (52b)
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We remark that the state vector in minimal representation (52a)–(52b) is expressed as

X′
a = [x′a y′a]

T =
[

x′1+x′2
2

y′1+y′2
2

]T
which means that the new variables are simply averages

of the original ones. Eigenvalue analysis of the matricesAa andAb reveals thatAa has two
real eigenvalues (positive and negative) corresponding tothe growing and decaying modes
α andβ, whereas the matrixAb has a conjugate pair of purely imaginary eigenvalues which
correspond to the neurally stable modeγ (Figure 6b). This observation allows us to conclude
that the uncontrollable part of the system dynamics is associated with the neutrally stable
oscillatory modeγ. In other words, the actuation (i.e., the cylinder rotation) can affect the
growing and decaying modes (α andβ), but has no authority over the neutrally stable mode
γ. Consequently, original system (13a) is stabilizable, but is notcontrollable. As will be
shown below, this fact will have important consequences when our linear control strategy is
eventually applied to stabilize nonlinear Föppl system (11a).

We now proceed to discuss the synthesis of the control. The most common approach to
solution of such problems offered by the control theory is the Linear–Quadratic–Gaussian
(LQG) compensator. Construction of an LQG compensator is a standard result and we
outline it below only briefly referring the reader to the classical monographs [1, 7] for
further details. Assuming that all the stochastic variables w andm are white, zero–mean and
Gaussian, theseparation principlecan be applied which means that the control and estimation
problems can in fact be solved independently of each other. Based on the above assumptions,
solution of the control problem can be further simplified by invoking the principle ofcertainty
equivalencestating that the optimal feedback matrixK for stochastic system (13a) with cost
function (43) is exactly the same as for deterministic system (12a)–(12b) with a corresponding
cost functional (i.e., defined without the expectation). Since original system (13a) is not

controllable, the optimal feedback matrix is determined asK =

[

Ka

0

]

Tc, whereKa is the

feedback matrix obtained for minimal representation (52a)– (52b). It is computed as

Ka = R−1BT
a P (53)

in which the matrixP is a symmetric positive–definite solution of thealgebraic Riccati
equation

AT
a P+PAa+CT

a0QCa0−PBaR−1BT
a P = 0, (54)

whereCa0 =

[

0

Ca

]

. We note that the feedback matrixKa, and therefore alsoK , will depend

on the choice of the matricesQ and R weighting the system output and control in cost
functional (43).

Since original system (13a)–(13b) with the observation operator given in (41) is
completely observable, the estimation problem is solved based on full representation (13a)–
(13b), rather than minimal representation (52a)–(52b). Thus, the optimal estimator feedback
matrix needed in (44a) is given by

L = SCTM−1, (55)



Vortex Dynamics Models in Flow Control 36

where the matrixS is a symmetric positive–definite solution of the algebraic Riccati equation

AS+SAT +WGGT −SCTM−1CS= 0, (56)

in which the following disturbance structure is assumedE[w(t)w(τ)T ] = Wδ(t − τ) and
E[m(t)m(τ)T] = Mδ(t − τ). Such estimator feedback gainL , depending on the covariances
of the system and measurement disturbancesW and M , yields an estimator known as the
Kalman filterwhich is an optimal recursive filter designed to estimate thestate of a dynamic
system from a series of incomplete and noisy measurements [7]. The gainL blends the
information from system model (13a) with actual measurements̃Y and is optimal in the
sense that it minimizes the expected mean square estimationerror E[‖X′(t)− Xe(t)‖] for
t → ∞. Evidently, the key step required to determine the feedbackgainsK andL is solution
of the algebraic Riccati equations, respectively, (54) and(56). For the case of the simple
vortex system studied here these equations can be solved using standard techniques [112].
As a matter of fact, equation (54), corresponding to two–dimensional minimal representation
(51a), represents a system of three coupled quadratic equationswhich can be reduced to
a scalar quartic equation that, in principle, can be solved in a closed form. However, the
analytical expressions obtained are extremely complicated and in practice it is much more
convenient to use a numerical solution. The LQG compensatoris an example of anH2

controller / estimator design in which disturbances are assumed Gaussian and uncorrelated
with the state and control. Robustness of the compensator can be enhanced by performing
anH∞ controller / estimator design where disturbances are allowed to have the worst–case
form [113]. In regard to the problem of determining an optimal value ofxm in (40) (i.e., the
“sensor placement problem”), we remark that it can be solved, for instance, by choosingxm

to maximize the observability of the unstable modeα [108]. Finally, we mention that here
the estimation problem is considered under the assumptionsof an infinite time horizon and
time–invariance of system (44a)–(44b). Solution of the estimation problem for vortex systems
formulated in a more general setting will be discussed in Section 5.

We will now discuss some aspects of the application of the linear control strategy
developed above to stabilize the originalnonlinear problem (10). In order to make the
mathematical analysis more tractable [110], instead of considering the LQG compensator,
we will focus on the simpler case of the state–feedback controller (i.e., we drop the estimator,
cf. Figure 15) applied to deterministic system (11a). Thus, settingb(X) = −K we can now
rewrite (11a) as

d
dt

X̌ = (A −BK)X̌ +G(X̌), (57)

whereX̌ , X−X0 is notassumed small andG(X̌) , f(X0+X̌)−AX̌ [this change of variables
shifts the equilibrium of system (11a) to the origin]. The fact that the uncontrollable modeγ
is onlyneutrallystable has important consequences, both theoretical and practical, as regards
the behavior of the closed–loop nonlinear system (57). As iswell known (see, e.g., [87]),
when the Jacobian of a nonlinear system calculated at an equilibrium has purely imaginary
eigenvalues in addition to stable eigenvalues, it may not bepossible to determine the local
stability of this equilibrium based on this Jacobian alone.The reason is that in such situations
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the leading–order behavior of the nonlinear system in a neighborhood of the equilibrium
is determined by effects not captured in the Jacobian. Therefore, in order to characterize
completely the behavior of system (57) near the origin we will take into account the nonlinear
partG(X̌). We will prove below that the uncontrollable modes of system(12a) span in fact
a center manifold of system (57). We begin by stating the Hamiltonian form of uncontrolled
system (10). This representation will be needed below in theproof of the stability of the
reduced system on the center manifold. As is well known (see,e.g., [102]), the Hamiltonian
of two point vortices interacting with the free stream and the circular cylinder of unit radius
is given by

H (x1,y1,x2,y2) =
Γ2

4π
ln |x2

1 +y2
1−1|+ Γ2

4π
ln |x2

2 +y2
2−1|+ Γ2

2π
ln
√

(x1−x2)2+(y1−y2)2

−Γ2

2π
ln
√

1−2(x1x2 +y1y2)+(x2
1+y2

1)(x
2
2+y2

2)−Γ
(

y1−
y1

x2
1 +y2

1

)

+Γ
(

y2−
y2

x2
2 +y2

2

)

,

(58)

so that equations of motion of the vortices (10) can be expressed as


















































(−Γ) ẋ1 =
∂H
∂y1

,

Γ ẋ2 =
∂H
∂y2

,

(−Γ) ẏ1 = −∂H
∂x1

,

Γ ẏ2 = −∂H
∂x2

.

(59)

We now shift the equilibrium to the origin using the substitution X = X0 + X̌ and introduce
the followingsymplectictransformation

Ξ = [η1 ξ2 ξ1 η2]
T

, ZX̌ (60)

defined by the matrix

Z ,
1√
2











1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1











(61)

(the reason for the special ordering of the elements of the vector Ξ will become apparent
below). As a result of these transformations, system (59) can be rewritten as



























































Γη̇1 =
∂Ĥ
∂ξ1

,

Γξ̇2 =
∂Ĥ
∂η2

,

Γξ̇1 = −∂Ĥ
∂η1

,

Γη̇2 = −∂Ĥ
∂ξ2

,

, (62)
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where the new Hamiltonian iŝH (Ξ) , H (X0 + ZTΞ). We now remark that by exchanging
the rows one and three in the matrixZ we in fact recover the transformationTc [cf. (50)]
introduced earlier in order to convert perturbation system(12a) to the minimal representation
in which the controllable and uncontrollable parts are uncoupled. Hence, making this
rearrangement in (62) and restoring the feedback control terms we can rewrite system (57)
as

d
dt

[

ξ
η

]

=

[

A0 0
0 As

][

ξ
η

]

+

[

g1(ξ,η)

g2(ξ,η)

]

, (63)

whereξ , [ξ1 ξ2]
T andη , [η1 η2]

T . The linear and nonlinear parts of system (63) are
obtained as

[

A0 0
0 As

]

= T(A −BK)TT , (64)

[

g1(ξ,η)

g2(ξ,η)

]

= TG

(

TT

[

ξ
η

])

. (65)

The first row of (63) corresponds to the uncontrollable part of linearized system (12a) and the
matrix A0 has a conjugate pair of purely imaginary eigenvalues, whereas the second row of
(63) corresponds to the controllable part of system (12a) and, due to the effect of the feedback
control term, the matrixAs has eigenvalues with negative real parts only.

TransformationTc splits the state spaceR4 into two subspacesWc andWs, i.e.,Wc×Ws =

R4, such thatξ ∈Wc andη ∈Ws. We now recall (see, e.g., [114]) that aninvariantmanifold,
characterized by a smooth functionΦ : Wc → Ws, is a setM ⊂ Wc such that ifξ(0) ∈M
andη(0) = Φ(ξ(0)), thenξ(t) ∈M andη(t) = Φ(ξ(t)) for all timest ∈ R+. The following
theorem, proven in [110], shows that system (63) has an invariant manifold with a particularly
simple structure:

Theorem 2 System (63) possesses an invariant manifold given by

Φ(ξ) =

[

0
0

]

. (66)

Thus, this invariant manifold coincides with the subspaceWc. We note that, since the
matrix A0 has only purely imaginary eigenvalues, the invariant manifold is in fact acenter
manifold(see, e.g., [115]). Given (66), we can now perform an invariant reduction of system
(63) and the reduced system on the center manifold is given by

ξ̇0 = A0ξ0+g1(ξ0,0). (67)

We remark that application of the feedback control represented by the termBKX̌ in (57), while
stabilizing locally this system, may in general break its Hamiltonian structure. However, we
recall thatT represents a transformation to the minimal representation, so that

TBKT T =

[

0 0
0 B0K0

]

,
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whereB0K0 is a 2×2 block. This, together with Theorem 2, implies that reducedsystem
(67) is in fact invariant with respect to the feedback control. This observation will play an
important role in the assertion that reduced system (67) hasin fact periodic solutions and that
its origin is stable. The first part of this result is made precise in the following theorem proven
in [110]:

Theorem 3 Reduced system (67) has a one–parameter family of closed orbits (periodic
solutions) in a open neighborhood of the origin.

The reduced HamiltonianĤ0(ξ1,ξ2) , Ĥ (0,ξ2,ξ1,0) may thus serve, after some
trivial modifications, as the Lyapunov function for system (67) and its invariance along the
trajectories implies stability of the origin. We conclude this part by stating a corollary, also
proven in [110], addressing the stability of the fully nonlinear Föppl system with feedback
control:

Corollary 1 For initial conditions sufficiently close to equilibrium (15), solutions of the
closed–loop F̈oppl system (57) converge as t→ ∞ to periodic orbits.

We are now ready to analyze computational results illustrating the application of the LQG
compensator to stabilize equilibrium (15) of the Föppl system. In investigations [108, 111]
the downstream coordinate of this equilibrium was chosen asx0 = 4.32 which ensures that
the length of the recirculation bubble in the Föppl potential flow is the same as in the unstable
equilibrium solution of the Navier–Stokes system atRe= 75 [116]. In Figure 16a we show the
trajectories of the vortices in system (10), i.e., without the control, as they escape to infinity
when the equilibriumX0 is perturbed with a small perturbationX′(0). We remark that the
directions along which the initial escape takes place are inqualitative agreement with the
unstable eigendirections shown schematically in Figure 6b. In Figure 16b,c we show how the
system evolution resulting from the same perturbation is stabilized by the LQG compensator.
In Figure 16c we also show the corresponding estimator trajectory Xe(t) , X0+X′

e(t) which
starts from the equilibriumX0 and then, after some transient, rapidly converges to the actual
system trajectoryX(t). We remark that, while the action of the LQG compensator prevents the
state of the system from escaping to infinity, it does not succeed in stabilizing asymptotically
the equilibriumX0. Instead, the state of the system lands on a circular trajectory which
circumscribes the equilibrium (Figure 16c). This circularorbit is precisely the center manifold
whose existence and properties were stipulated by Theorems2 and 3. Thus, we see that, in
agreement with Corollary 1, the long–time behavior of the controlled system is determined
by the properties of reduced system (67) on the center manifold which was proved to sustain,
for bounded initial data, periodic oscillations. We emphasize also that, as is evident from
Figure 16b,c, the LQG compensator is able to stabilize the system for fairly significant
magnitudes of the initial perturbationX′(0).

As was also done in several other studies discussed in the present review [98, 101, 106,
107], the controller derived based on an inviscid vortex dynamics model was subsequently
applied to stabilize a viscous fluid flow governed by the Navier–Stokes system. In the context
of the LQG compensator this was done by replacing nonlinear Föppl system (10) with a
Navier–Stokes solver as the “plant” (cf. Figure 15). A sample vorticity field, obtained at the
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Figure 16. Trajectories of the vortices in the Föppl system resultingfrom a small
perturbation of equilibrium: (a) uncontrolled case, (b) case with control performed by the LQG
compensator (57), (c) same as (b), but showing magnificationof the neighborhood of the lower
equilibrium locus; in Figure (c) the dotted line representsthe corresponding estimateXe(t) of
the vortex trajectory; the equilibrium points are indicated by solid circles, (d) trajectories of the
state of (solid line) the classical and (dotted line) higher–order Föppl system stabilized with
an LQG compensator in the neighborhood of the correspondingequilibrium solutions [111].

Figure 17. The vorticity field in a viscous wake flow atRe= 75 under the action of the LQG
compensator. The black circles represent the instantaneous positions of the Föppl vortices
estimated by the Kalman filter based on velocity measurements [108]. (multimedia animation)
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Reynolds numberRe= 75 some time after the LQG compensator was turned on, is shownin
Figure 17 [108]. We remark that the downstream part of the wake is remarkably symmetrized
by the action of the compensator. On the other hand, the levelof the velocity fluctuations
in the part of the flow close to the cylinder was in fact increased, as was the average drag
force [108]. We emphasize that in this case too the time evolution of the Föppl vortices as
estimated by the Kalman filter also exhibits the center manifold behavior already observed in
Figure 16b,c.

Evidently, solution of the Riccati equation, either the oneassociated with the controller
[cf. (54)], or the one associated with the estimator [cf. (56)], requires storage of orderO(N2).
Thus, when the system model is high–dimensional, as are those resulting, for example, from
discretizations used in the direct numerical simulations (DNS) of high–Reynolds number
turbulent flows, determination of the feedback kernels becomes computationally intractable.
This motivates the pursuit of vortex models which, while remaining low–dimensional, could
approximate infinite–dimensional solutions of Euler equations with desired accuracy. As
an example of such a model we developed the family of the higher–order Föppl systems
discussed in Section 2.4. Remarkably, the uncontrollable modes of the linearizations of the
higher–order Föppl systems around their equilibriaare asymptotically stable. Consequently,
the center manifold behavior is no longer present in higher–order Föppl systems with a
linear feedback stabilization, and therefore the higher–order equilibria zN0 can now be
asymptoticallystabilized by an LQG compensator (Figure 16d). The disappearance of
the center–manifold behavior results from the fact that purely imaginary eigenvalues are a
structurally unstable property of a linear operator which is not preserved when this operator
is perturbed in an arbitrary manner.

We now proceed to discuss the work of Iollo and Zannetti [120,121] who employed
the methods of adjoint–based optimization to control vortices trapped in cavities. These
investigations were motivated by the problem of stability of the high–lift vortex configurations
discussed earlier in Section 2.4. While both investigations used unsteady mass transpiration,
modeled by a point source / sink, as the actuation, the study [120] focused on the generic case
of a cornice–shaped cavity on an unbounded flat wall, whereasthe study [121] specialized
these results for the case of a cavity on the surface of a modified Joukowski airfoil. In
both cases the vortex equilibrium located inside the cavityis neutrally stable and the control
problem consisted in determining a time–dependent sink / source intensityΛ : [t1, t2]→R that,
given an initial perturbation of the vortex position away from the equilibriumX0, will bring
the vortex back to the equilibrium location. The optimal control Uopt = Λopt was determined
by solving a minimization problem of the type (1), where the cost functional

J (Λ) = j(X(Λ),Λ) =
1
2

Z t2

t1
‖X(t)−X0‖2dt (68)

represents the integrated distance of the actual vortex position X(t) from the equilibriumX0,
whereas the constraint equationE(X,Λ) = 0 is given by governing system (11a). The optimal
control Λopt and the corresponding optimal trajectoryXopt , X(Λopt) can be characterized
using the method of the Lagrange multipliers [7]. Defining anadjointstateλ : [t1, t2] → RN,
we can construct the LagrangianL(X,Λ,λ) by augmenting cost functional (68) with the
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constraint equation as follows

L(X,Λ,λ) , j(X,Λ)+

Z t2

t1
λT ·

(

dX
dt

− f(X)−b(X)Λ
)

dt. (69)

The optimal controlΛopt, the optimal trajectoryXopt and the adjoint stateλ are then
determined by the following conditions

∂L
∂Λ

(Xopt,Λopt,λopt) = 0 =⇒ b(Xopt)λ = 0, (70)

∂L
∂X

(Xopt,Λopt,λopt) = 0 =⇒ −dλ
dt

−
[

∇f(Xopt)
]T λ = −Xopt−X0 (71)

∂L
∂λ

(Xopt,Λopt,λopt) = 0 =⇒ dXopt

dt
− f(Xopt)−b(Xopt)Λopt = 0, (72)

where Equation (71) is supplemented with a terminal condition λ(t2) = 0, whereas Equation
(72) is supplemented with an initial conditionX(t1) = XP, with XP denoting the initial
perturbed position of the vortex. We emphasize that the partial derivatives on the LHS in
(70)–(72) are to be understood in the sense of Fréchet and the RHS in (70)–(72) are defined for
(almost) allt ∈ [t1, t2]. Since solution of system (70)–(72) in one shot is usually impossible, the
optimal controlΛopt can be determined using an iterative gradient–based descent algorithm

Λ(k+1) = Λ(k) − τ(k)∇J (Λ(k)), k = 0,1, . . . (73)

asΛopt(t) = limk→∞ Λ(k)(t), wherek is the iteration count,Λ(0)(t) is an initial guess for the
control andτ(k) is the length of the step in the descent direction (in practice, one may use
a more advanced version of algorithm (73), such as, e.g., theconjugate gradients method,
or a variant of the quasi–Newton method [122]). A critical element of descent algorithm
(73) is determination of the cost functional gradient∇J (Λ(k)). As a matter of fact, it can be
conveniently expressed in terms of the adjoint and state variables as

∇J (Λ(k)(t)) = b(X(k)(t))λ(k)(t), t ∈ [t1, t2]. (74)

Relationship (74) illustrates the important fact that awayfrom the saddle point characterized
by (70)–(72), the adjoint variables (i.e., the Lagrange multipliers) encode information about
the sensitivitiesof cost functional (68) to perturbations of the controlΛ. We remark that
λ = λ(t) is given as a solution of adjoint system (71) which is aterminalvalue problem and,
as such, has to be integratedbackwardsin time. This is a standard approach to computational
solution of optimization problems constrained by differential equations and we refer the reader
to the monograph [10] for an in–depth discussion. A sample result from [121] is presented
in Figure 5b which illustrates the convergence of the point vortex from some initial perturbed
positionXP (P) to the equilibriumX0 (S) under the action of the optimal controlΛopt(t). As
recognized by the authors, this vortex model suffers from the limitation that a system with the
vortex perturbed away from the equilibrium no longer satisfies the Kutta condition.

We conclude this Section by discussing the recent investigations by Shashikanth et al.
[117, 118] who considered the control of a more general problem, namely, when the cylinder
is allowed to move freely in response to the forces exerted onit by the fluid withN vortices
in it, thereby mimicking a fluid–structure interaction problem. These investigations rely on a
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compact Hamiltonian description of the coupled system, comprised of the cylinder and allN
vortices, which was developed earlier in [84] and revisitedrecently in [119]. The actuation
is assumed to have the form of a force applied to the center of mass of the cylinder and
have magnitude constrained by a lower and upper bound,Umin andUmax, respectively. As
compared to the problems considered above, this problem is made more complicated by the
presence of inequality constraints on the controlU. As a result, in particular the adjoint–based
optimization approach of Iollo and Zannetti [121, 120] is inapplicable, and more general
methods, such as Pontryagin’s maximum principle [6] need tobe employed. Thus, after
rewriting the governing system in a form consistent with (11a), the authors analyzed in [117]
the properties of the optimal controlUopt determined using Pontryagin’s technique, i.e., as

Uopt = argmaxUHP(X,U,λ), (75)

whereHP(X,U,λ) , λT f(X) + λTb(X)U + λ0 f0 is Pontryagin’s Hamiltonian withλ ∈ RN

and λ0 ∈ R denoting the adjoint variables and the cost functional is given by J (X,U) =
R t2
t1

f0(t,X(t),U(t))dt. Considering the point–to–point transfer problem (corresponding to
f0≡ 1), in [117] the authors used methods of the geometric control to study general conditions
under which the optimal control will be of the “bang–bang” type, i.e., switching between the
lower and upper boundsUmin andUmax. In [118] the author used the methods of Hamiltonian
mechanics to obtain reduced descriptions of the same systemwhich made it then possible to
develop expressions for controllers designed to alter the vortex orbit from the bound to the
scattering type and vice versa.

5. Estimation of Vortex Flows

In this Section we discuss the problem ofstate estimationfor vortex systems, i.e., the problem
of determining the state of the systemX(t) based on some incomplete and possibly noisy
measurements obtained via (12b). Since most feedback control algorithms require full state
information, such estimation methods are necessary in practice when partial measurements are
only available. In most situations, the goal is to use measurements of velocity [cf. (40)], or
pressure in the flow domain, or on the domain boundaries, to estimate the positionsz1, . . . ,zN

of the vortices in the system. While this problem has alreadybeen partially addressed in
Section 4.2 in the context of the Föppl system, here we seek to present a more complete
picture. A first attempt at solving the estimation problem for a vortex system was made
by Cortelezzi et al. in the study [96] concerning the controlof a vortex interacting with
a semi–infinite plate (Figure 10a). Based on an analysis of the velocity signature at the
plate, the authors showed that the position of the vortex could be uniquely determined using
measurements of the Y–component of the velocity and its derivative at the tip of the plate.
Then, the vortex circulationΓ can be determined using the Kutta condition. This setting,
however, represents a rather simple situation in which the measurements are “complete”, in
the sense that their number matches the number of degrees of freedom (i.e., 2) and they are not
contaminated by noise. In such situations an exact reconstruction is possible at every instant
of time.
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A more complicated problem, from the point of view of the estimation theory, was
considered by Anderson et al. in [100] where the authors usedsystem identification techniques
to construct an approximate mathematical model for the input–output map in a higher–order
vortex model proposed in [98]. The input for the system has the form of suction at the base
of the plateU(t) = Λ(t), whereas the output has the form of the velocity measurements given
in (33). The system identification method used in [100] was the auto–regressive model with
exogenous input (ARX) defined by the formula

Y(t)+
n

∑
l=1

al Y(t− l∆t) =
n

∑
l=1

bl U(t− l∆t), (76)

wheren is the order of the model and{al ,bl}n
l=1 are coefficients determined by performing a

least–squares fit to the data. The ARX model is a technique forconstructing a mathematical
description of a process based on measured data which accounts also for the presence of a
zero–mean white noise in the measurements. The data necessary to identify the coefficients
in input–output relation (76) was obtained by actuating thevortex system with zero–mean
white noise as the controlU. An optimal value of the order of the model was determined
by requiring that it give the most accurateL2 system response to harmonic input with a
range of frequencies. The ARX model of the input–output map for the vortex system was
thoroughly validated which included analysis of the frequency response, mean value (“DC
gain”) response and step response.

The state estimation problem was also considered in investigation [93] concerning the
control of the “corner flow” (Figure 9). In that study the observation operator corresponded
to the measurements of the tangential velocity component ata boundary pointzm = xm+ i0

Y ,

[

ℜ[V(xm)]
]

+DΓC, (77)

whereD = [kxm] represents the feed–through effect of the control on the measurements. The
estimation problem was solved in [93] using the governing system written in terms of flat
coordinates (30) and employing the method developed earlier in [123]. This approach is
based on deriving an estimator system corresponding to (30), namely

d
dt

[

ẑ1

ẑ2

]

=

[

ẑ2

p(ẑ1, ẑ2)

]

+

[

0
q(ẑ1, ẑ2)

]

U+

[

L1

L2

]

(Y − Ỹ), (78)

whereẑ1 andẑ2 are estimates of the flat coordinatesz1 andz2, L = [L1 L2]
T is the feedback

operator, whereas(Y − Ỹ) represents the difference between the actual and estimated
measurements. The feedback gainsL1 and L2 are chosen to ensure that the linearization
of (78) around the equilibrium is stable, so that the estimation errors(ẑ1− z1) and(ẑ2− z2)

decrease with time if the initial estimates ˆz1 andẑ2 are sufficiently good. While this approach
does not guarantee the optimality of the estimates in any sense, the computational results
reported in [123, 93] showed good performance of the estimator in a neighborhood of the
equilibrium.

A solution to the state estimation problem for an LTI system that is optimal in the sense
that E[‖X′(t)−X′

e(t)‖] = min for t → ∞ can be obtained using the Kalman filter. Such an
approach, developed in the context of a vortex stabilization problem in [108], was already
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discussed in Section 4.2, and here we present some extensions of this idea. A more general
problem of state estimation for vortex systems was considered in [124, 125] where the authors
used anExtended Kalman Filter(EKF) over a sliding time window[t, t + T] [7]. EKF is
usually used in the time–discrete setting and consists of the following steps

(i) Dynamic forecast:

X̄e(t +∆t) = Xet +∆tf(Xe(t))+∆tb(Xe(t))U(t), (79)

P̄e(t +∆t) = A(t)Pe(t)+Pe(t)[A(t)]T +Q, (80)

whereA(t) , ∇f(Xe(t)) is the Jacobian off computed at a specific trajectoryXe(t). Here
we use system model (11a) to advance the state estimateXe and its error covariancePe

over one time step fromt to t +∆t. We note that in the extended Kalman filter equation
(79), but not (80), uses the nonlinear functionf(Xe), rather than its linearizationA.

(ii) Update:

Xe(t +∆t) = X̄e(t +∆t)+L(t +∆t)
[

Ỹ(t +∆t)−c(X̄e(t +∆t))
]

, (81)

Pe(t +∆t) = P̄e(t +∆t)−L(t +∆t)C(t +∆t)P̄e(t +∆t), (82)

whereC(t +∆t) = ∇c(Xe(t +∆t)) is the Jacobian of the observation operatorc computed
at a specific trajectoryXe and the time–dependent feedback gain is obtained as

L(t +∆t) = Pe(t +∆t)[C(t +∆t)]T
{

C(t +∆t)Pe(t +∆t)[C(t +∆t)]T +R
}−1

.(83)

Here one uses the actual measurementsỸ to update the state estimateXe and, in the spirit
of the extended Kalman filter, in (81) the nonlinear observation operatorc is used instead
of its linearizationC.

While EKT does not ensure optimality of the estimate, it is the most commonly used estimator
for nonlinear problems. The investigations [124, 125] demonstrated the possibility of using
EKF to solve the estimation problem for systems consisting of two and four vortices with
measurements̃Y in the form of Lagrangian tracer positions. Another application of EKF to
a vortex dynamics problem was developed in [88] and concerned the vortex pair problem
considered in [85] and discussed in Section 3 of the present paper. In [85, 88] the system
measurements were also assumed in the form (40) with the velocity components recorded at
a pointzm = 0+ i0. Assuming a sliding temporal window[t−T, t], the measurements̃Y were
expanded as

Ỹ(t + τ) = a0 +∑
l

al cos(lϖτ)+bl sin(lϖτ), (84)

whereτ ∈ [t −T, t], ϖ is the instantaneous frequency andT = 2π
ϖ . The estimation problem in

[88] was then formulated in terms of thephasorsal andbl corresponding to the dominating
harmonics. This problem was solved using an EKF approach given by (79)–(80) and (81)–
(82), and the computational results demonstrated the applicability of the extended Kalman
filtering technique to the considered estimation problem for a point vortex system.
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(a) (b)

Figure 18. Prandtl–Batchelor solutions of Euler equation (2) with theRHS given by (14)
corresponding to (a) homogeneous and (b) nonhomogeneous velocity boundary conditions.
The thick line in Figure (b) represents a possible target shape of the vortex regionA in the
optimization problem.

6. Towards Optimal Control of Flows with Finite–Area Vortic es

Most of the discussion presented in Sections 3 and 4 concerned control and estimation of
point vortex systems and, as such, was motivated by the need to reduce the dimensionality
of the flow model, making it possible in this way to apply methods of the control theory
in a straightforward manner. In the present Section we wouldactually like to step outside
this paradigm and revisit solutions of Euler equation (2) discussed in Section 2.4. More
specifically, we will formulate an optimal control problem for the family of Prandtl–Batchelor
flows [61] depicted in Figure 2 (top row, second column). Thisproblems remain a subject of
the current research and below we only outline a solution strategy highlighting some novel
mathematical ingredients required to solve such problems.We remark that passive control of
rotating finite–area vortex regions in unbounded domains, the so–called “V–states” [126], was
considered by Friedland et al. [127, 128, 129] who used a time–dependent external strain field
as the actuation to obtain autoresonance conditions. In Figure 18 we present two solutions of
problem (2) featuring the Prandtl–Batchelor vortices: thesolution in Figure 18a corresponds
to the homogeneous velocity boundary conditions in (2), i.e., u · n|Σ = ∂ψb

∂s |Σ = 0, whereas
the solution in Figure 18b corresponds to an arbitrarily selected wall transpiration given by
u ·n|Σ = ∂ψb

∂s |Σ = 1
2U∞ cos(2θ). The symbolΣ denotes the part of the domain boundary (i.e.,

the surface of the obstacle) where the control is applied (Σ ⊆ ∂Ω), whereasθ is the azimuthal
angle in the polar coordinates. We note that, as a result of this passive actuation, the shape
and location of the vortex regionA is significantly changed. The control problem we propose
consists in determining the distribution of the wall–normal velocity u · n|Σ, or equivalently
the streamfunctionψb, such that the vortex region will have a prescribed shape, e.g., the
shape indicated with a thick line in Figure 18b. Given the importance of vorticity for mixing
processes (see, e.g., [130]), such a problem is relevant to optimization of regions where mixing
occurs in high–Reflows. Moreover, the mathematical tools required to solve this problem
are also representative of a broad family of similar problems. Denoting∆A(ψb) the region
enclosed between the prescribed and actual patch boundaries, we state this problem as follows
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[cf. (1)]

min
ψ,ψb

j(ψ,ψb),

subject to Equation(2),
(85)

where

j(ψ,ψb) =
1
2

Z Z

∆A(ψb)
dxdy (86)

is the area of the region∆A(ψb). While this problem can be solved using the method of
Lagrange multipliers described in Section 4.2 [cf. (68)–(72)], for illustration purposes we
adopt here an alternative approach that has been frequentlyused in the context of flow control
problem (in the continuous setting the two formulations areequivalent and lead to the same
solution). Since from (2) we haveψ = ψ(ψb), we can eliminate the state variableψ from the
cost functionalj(ψ,ψb) by defining areducedcost functionalJ (ψb) , j(ψ(ψb),ψb), so that
constrained minimization problem (85) can be replaced withan unconstrained one

min
ψb
J (ψb). (87)

A local minimizer ψopt
b of problem (87) is characterized by the vanishing of the Gâteaux

differential, defined asJ ′(ψb;ψ′
b) , limε→0

1
ε [J (ψb+ εψ′

b)− J (ψb)] whereψ′
b is an arbitrary

perturbation, of the cost functionalJ (ψb) as

∀ψ′
b
J ′(ψopt

b ;ψ′
b) = 0. (88)

Differentiation of expressions such as (86) with respect toψb is a delicate matter, because the
area∆A(ψb) is defined by the boundary of the vortex regionA coinciding with a level set of
the solution of Euler equation (2). Rewriting (2) with RHS (14) in the following equivalent
form

|A(ψb)|∆ψ1 = Γ in A(ψb), (89)

∆ψ2 = 0 in Ω\A(ψb), (90)

ψ1 = ψ2 = ψ0 on ∂A(ψb), (91)
∂ψ1

∂n
=

∂ψ2

∂n
on ∂A(ψb), (92)

ψ2 = ψb on ∂Ω (93)

whereψ1 = ψ|A(ψb)
andψ2 = ψ|Ω\A(ψb)

are the solutions defined, respectively, in the interior
and exterior of the vortex region, it is evident that system (2) with (14) is in fact afree–
boundaryproblem, i.e., one in which the internal boundary∂A separating the two subdomains
needs to be determined as a part of the solution of the problem. Differentiation of such
equations with respect to a parameter such as the boundary conditionψb requires care, because
perturbingψb also changes thelocation where boundary conditions (91)–(92) are imposed.
A suite of mathematical techniques making it possible to differentiate solutions of PDEs
defined in variable domains is referred to as theshape differentialcalculus [131]. We will use
below a number of specific results belonging to the shape differential calculus to re–express
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the Gâteaux differentialJ ′(ψb;ψ′
b), and refer the reader to the original source for derivation

details. Thus, this Gâteaux differential can be computed as

J ′(ψb;ψ′
b) =

I

∂A(ψb)
z(ψb;ψ′

b) ·ndσ = −
I

∂A(ψb)

ψ′

∂ψ
∂n

∣

∣

∣

∣

∂A(ψb)

dσ, (94)

where z(ψb;ψ′
b) is the perturbation (displacement) of the boundary∂A(ψb) and ψ′ the

perturbation ofψ obtained as a result of perturbing the boundary conditionψb with ψ′
b. The

last term in (94) arises from the shape differentiation of Dirichlet boundary condition (91) as
follows [131]

dψ
dψb

∣

∣

∣

∂A(ψb)
= ψ′|∂A(ψb)

+
∂ψ
∂n

∣

∣

∣

∂A(ψb)
(z·n) =

dψ0

dψb
= 0. (95)

The perturbation variableψ′ satisfies the following linear PDE obtained from shape–
differentiation of (2) with (14), or equivalently (89)–(93)

Lψ′ , |A(ψb)|∆ψ′− Γ
∂ψ
∂n

∣

∣

∣

∣

∂A(ψb)

δ
(

x−x|∂A(ψb)

)

ψ′

+
Γ

|A(ψb)|

(

I

∂A(ψb)

ψ′

∂ψ
∂n

∣

∣

∣

∣

∂A(ψb)

dσ

)

H(ψ0−ψ) = 0, in Ω (96)

ψ′ = ψ′
b on ∂Ω.

Note that for convenience this system is now written in the whole domainΩ. Our goal now is
to identify the gradient∇J : Σ → R is the cost functionalJ (ψb) with respect to the boundary
condition ψb, so that we would use it in an iterative minimization algorithm as described
in Section 4.2 [cf. (73)]. Existence of such gradient is guaranteed by the Riesz theorem
[132] which, under the assumption of square integrability of ψb, allows one to re–express the
Gâteaux differential as follows

J ′(ψb;ψ′
b) =

(

∇J ,ψ′
b

)

L2(Σ)
=

Z

Σ
∇J ψ′

bdσ, (97)

where (·, ·)L2(Σ) is an L2 inner product of functions defined on the cylinder boundaryΣ.
Representation (94) is, however, incompatible with (97), because the perturbation variable
ψ′

b is hidden in the boundary condition for problem (96). Expression (94) can be transformed
into a suitable form by introducing anadjoint stateψ∗ : Ω → R and using the following
identify

(

Lψ′,ψ∗)
L2(Ω)

=
(

ψ′,L∗ψ∗)
L2(Ω)

+b (98)

where the adjoint operatorL∗ψ∗ is defined as

L∗ψ∗ , |A(ψb)|∆ψ∗ +
Γ

∂ψ
∂n

∣

∣

∣

∂A(ψb)

(

R

A(ψb)
ψ∗dΩ

|A(ψb)|
+ψ∗

)

δ
(

x−x|∂A(ψb)

)

=
|A(ψb)|

∂ψ
∂n

∣

∣

∣

∂A(ψb)

δ
(

x−x|∂A(ψb)

)

, in Ω (99)

ψ∗ = 0 on∂Ω.
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Performing integration by parts implied by identity (98) yields the following form of the term
b

b = −
I

∂A(ψb)

ψ′

∂ψ
∂n

∣

∣

∣

∣

∂A(ψb)

dσ−
Z

Σ
ψ′

b
∂ψ∗

∂n
dσ = 0 (100)

from which, by noting (94) and (97), we finally obtain a simpleexpression for the cost
functional gradient

∇J =
∂ψ∗

∂n

∣

∣

∣

Σ
. (101)

This gradient represent thesensitivityof the cost functionalJ (ψb) with respect to the boundary
control ψb and can be used in combination with algorithm (73) to “design” an optimal
Prandtl–Batchelor vortex. The derivation shown is intended only to illustrate the general
framework, and work is ongoing to use this approach to solve an actual “vortex design”
problem. Exhaustive analysis of this problem together withcomputational results are going
to be presented in a forthcoming paper [133]. Finally, we note that owing to the presence of
Dirac measures on the vortex boundary∂A, adjoint system (99) may be nontrivial to solve
numerically.

7. Summary, Conclusions and Discussion of Future Perspectives

In this final Section we summarize the main themes discussed in this review. The utility
of point vortex models for solution of flow control problems stems from the very fact
that they offer a low–dimensional description of the flow system that preserves some of
its key nonlinear features. As was illustrated with severalexamples in this paper, such
simplified “reduced–order” models often lend themselves toan explicit design of controllers
and estimators which can be carried out using rigorous methods of the modern control theory,
an impossible task for most problems described by the full Navier–Stokes system [12]. A
good example was offered in Section 4.2 where a fairly complete analysis and design of
a linear control approach could be carried out for the Föpplsystem [108, 63, 110, 111].
Control algorithms developed using point vortex models areoften subsequently employed
to control “real” flows of viscous fluids, and we presented several examples illustrating this
approach. As regards the analysis of flow control systems, point vortex models might be
proposed as a simple paradigm for studying controllabilityand observability of flows. For
example, the fact that the Föppl system with the cylinder rotation used as the actuation is
uncontrollable, whereas the same system with the blowing and suction used as the actuation is
controllable, might explain why the latter form of actuation tends to be more effective in many
real applications. As regards the control synthesis, the use of low–dimensional vortex models
bypasses the problems related to the numerical solution of the algebraic Riccati equation. This
operator equation, whose solutions are needed in order to determine the feedback gains for
optimal linear controllers and estimators, can be exceedingly difficult to solve for problems
with a high dimension of the state space.

Our comparison of different controlled point vortex systems reveals certain generic
behaviors. In several problems involving stabilization ofunstable equilibria [98, 101, 108] the
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trajectories of the controlled vortex systems would converge to circular orbits circumscribing
the equilibrium. Rigorous mathematical analysis carried out in [110] showed that, at least
for the Föppl system with a linear state feedback control, this orbit had the structure of a
center manifold, and the stability of the system motion on this manifold had origins in the
Hamiltonian structure of the point vortex system. While in other cases this has not been
established rigorously, it is plausible that a center manifold structure may also be present in
other systems in which such behavior was observed.

One area omitted in this review are applications of “vortex methods”, understood as
numerical techniques for certain classes of PDEs rather than “flow models”, to solution of
flow control problems formulated in a traditional manner, i.e., with no reference to vortex
dynamics (see, e.g., [134, 135]).

We close this paper by commenting on some possible future research directions. We have
seen evidence that solution of control problems for point vortex systems is now relatively well
understood, so that problems of practical importance can actually be tackled, as was done
for example in a recent experimental study [136]. In Section6 we presented some initial
developments concerning the control of Euler flows with finite 2D vorticity distributions.
While specific cases have yet to be solved, a general mathematical framework required to
handle such problems already exists. Work on this problem isunderway and results will
be reported in the near future. Another area of vortex dynamics where virtually no control
problems have been formulated and solved in a systematic manner are 3D flows. The reason
is that point vortices do not in fact have a simple 3D counterpart. If such 3D vortex models
could be established, we anticipate that they would be amenable to treatment using control
methods analogous to those described in this review in the context of 2D flows. Yet another
area of vortex dynamics that remains a largely uncharted territory from the point of view of
control are 2D flows with vorticity distributed along 1D objects (vortex sheets). Recently
there have been some exciting new developments [47, 48, 49] concerning the mathematical
modeling and computation of these flows, in addition to control–theoretic investigations [137].
Such vortex models are relevant for problems of animal propulsion, and in our opinion in the
near future this area will be the stage for many interesting flow control problems. Given the
nature of the vorticity support in such flows, we expect that solution of the resulting control
problems will require shape–differential tools quite similar to those introduced in Section 6.
From the point of view of the control theory, other promising, albeit mostly unexplored, topics
include applications of nonlinear control methods [138, 139], especially methods of geometric
control, dynamic programming methods based on the Hamilton–Jacobi–Bellmann equation as
well as the Ensemble Kalman Filtering to vortex systems.
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Naturf. Ges. Z̈urich 2237–82
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