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Abstract. Adjoint equations arise in many problems of optimal flow control and
estimation. This paper discusses the ‘vorticity’ (i.e. non-primitive) formulation
of such equations in the case of the wake control problem. First we derive the
‘vorticity’ form from the primitive form of the adjoint equations, and then show
how it can be efficiently solved using the vortex method. We also discuss some
implementation issues and present sample results.
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1. Introduction

In this paper we study the non-primitive formulation of the momentum adjoint equations arising
in flow control problems solved using optimal control theory methods (see [1] for a review). The
particular problem we address here is rotary wake control for drag reduction in the laminar
regime. Wakes are open flow systems characterized by concentrated vorticity distribution,
consequently computation of such flow using vorticity (i.e. non-primitive) formulations of
the Navier–Stokes system appears particularly attractive. In this paper we focus on some
computational issues arising when one is using the vortex method to solve both the Navier–
Stokes system and the associated adjoint equations resulting from the optimization problem
specified in what follows. Here we consider 2D flows of viscous incompressible liquids governed
by the Navier–Stokes equations (1) and taking place in an unbounded domain Ω. For the purpose
of solving this equation with the use of the vortex method we also express it here in the vorticity
form (2) 



∂�V

∂t
+ (�V · ∇)�V = −∇p + µ∆�V ,

∇ · �V = 0,

�V |t=0 = �V0 in Ω,

�V = �b(ϕ̇) on Γ0,

�V → �V∞ for |x| → ∞,

(1)




∂ω

∂t
+ (�V · ∇)ω = µ∆ω,

ω =
∂v

∂x
− ∂u

∂y
,

∂u

∂x
+

∂v

∂y
= 0,

�V |t=0 = �V0 in Ω,

�V = �b(ϕ̇) on Γ0,

�V → �V∞ for |x| → ∞,

(2)

where �V = [u, v] is the velocity field, ω is the vorticity, p is the pressure and µ denotes viscosity.
The problems are supplemented with the initial condition �V0, the boundary condition �b(ϕ̇) (ϕ̇
is the rotation rate of the obstacle) and the velocity at infinity �V∞. We remark here that the
initial and boundary conditions for vorticity are also expressed in terms of velocity. Under
certain technical assumptions (cf [2]), the two formulations (1) and (2) can be shown to be
equivalent.

2. Optimal control algorithm

In this investigation we are interested in using the rotary motion of the circular obstacle to obtain
drag reduction, while keeping the control effort as low as possible. Here we use the mathematical
framework laid out in the seminal work of Abergel and Temam [3]. We also build on the results
of Bewley et al [4] obtained using a similar approach applied to the channel flow problem. The
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goal stated above can be expressed as minimization of the following cost functional depending
on the rotation rate ϕ̇ as the control variable

J(ϕ̇) = 1
2

∫ T

0

{[
power related to
the drag force

]
+

[
power needed to
control the flow

]}
dt

= 1
2

∫ T

0

∮
Γ0

{[p(ϕ̇)�n − µ�n · ¯̄D(�V (ϕ̇))] · [ϕ̇(�ez × �r) + �V∞]} dσ dt, (3)

where ¯̄D(�V ) = [∇�V + (∇�V )T ] and �ez is the versor of the Z-axis (perpendicular to the
plane of motion). The minimum of the functional is characterized by the vanishing of its
Gâteaux differential J ′(ϕ̇; h) for all arbitrarily chosen h. The Gâteaux differential is defined as
J ′(ϕ̇; h) = limε→0 [J(ϕ̇ + εh) − J(ϕ̇)]/ε, where h represents the direction in which the control is
perturbed. In the actual optimization the expression for J ′(ϕ̇; h) is used to extract the functional
gradient ∇J according to J ′(ϕ̇; h) = (∇J, h)L2([0,T ]). The gradient of the functional obtained in
this way can now be used in a conjugate gradient algorithm to iteratively find the minimizer
starting from some initial guess for the control variable (taken here as ϕ̇0 ≡ 0). Due to space
limitations, we are not able to present the complete derivation here and have to restrict ourselves
to stating the main results only. The reader is referred to the works of Protas [5] and Protas and
Styczek [6] for further details. The adjoint calculus is used to obtain a convenient expression for
the functional gradient

∇J(t) = 1
2µR2

∫ 2π

0
[(s0

12 + s∗
12) cos(2θ) − (s0

11 + s∗
11)(sin(2θ))] dθ, (4)

where s0
11, s0

12, s∗
11 and s∗

12 are the components of the rate-of-strain tensor for the primal and
adjoint fields, �V0 and �w∗, respectively. The adjoint velocity and pressure {�w∗, q∗} solve the
following adjoint system:


N∗ �w∗ =

[
−∂ �w∗

∂t − �V0 · [∇�w∗ + (∇�w∗)T ] − µ∆�w∗ + ∇q∗

−∇ · �w∗

]
=

[
0
0

]

�w∗|t=T = 0 in Ω,

�w∗ = �r × (ϕ̇�ez) + �V∞ on Γ0, �w∗ → 0 for |x| → ∞.

(5)

The primal field �V0 is the state around which linearization is performed when computing the
Gâteaux differential. Evidently, the adjoint system (5) is forced on the boundary by the quantity
‘measured’ in the linearized version of functional (3) (i.e. its Gâteaux differential). On the other
hand, the quantities derived from the adjoint field �w∗ and represented in the gradient (4) give
information about the sensitivity of functional (3) to the rotary control ϕ̇(t). The adjoint
system (5) is a terminal value problem and has to be marched backwards in time. Using the
substitution t = T −τ we, however, obtain a well-posed initial value problem in the time variable
τ . In order to obtain the functional gradient ∇J(t) at every iteration of the conjugate gradient
algorithm, we first solve the primal system (1) forward in time, then based on that, the adjoint
system (5) backward in time and finally evaluate expression (4). Given the gradient, we perform
line minimization of the functional to determine the optimal amplitude of the control. When
the primal problem is solved in the vorticity form (2) using the vortex method, it is natural to
use a similar approach to solve the adjoint system (5). In order to do this, below we derive the
corresponding ‘vorticity’† form.

† We use the term ‘vorticity’ in quotes, because this quantity is the curl of a field which is not, strictly speaking,
a velocity field.
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3. ‘Vorticity’ form of the adjoint equations

As is the case with the vorticity system (2), the ‘vorticity’ form of the adjoint system (5) is
obtained by applying the curl operator to the first equation in (5). We define the adjoint
‘vorticity’ as �ω∗ = ∇ × �w∗ and note that the curl operator commutes with the time derivative
and the Laplacian, whereas the pressure term vanishes altogether. For the ‘advection’ term we
obtain

[∇ × {�V0 · [∇�w∗ + (∇�w∗)T ]}]m = εmkj
∂

∂xk

[
V0i

(
∂w∗

j

∂xi
+

∂w∗
i

∂xj

)]

= V0i
∂

∂xi
εmkj

∂w∗
j

∂xk︸ ︷︷ ︸
(�V0·∇)�ω∗

+εmkj
∂V0i

∂xk

(
∂w∗

j

∂xi
+

∂w∗
i

∂xj

)
. (6)

Putting together these observations and denoting ω∗ = �ω∗ ·�ez we obtain in 2D (extension to 3D
being straightforward) the ‘vorticity’ form of the adjoint system (5)


−∂ω∗

∂t
− (�V0 · ∇)ω∗ − µ∆ω∗ + 2

[
∂w∗

y

∂y

(
∂V0y

∂x
+

∂V0x

∂y

)
+

∂V0x

∂x

(
∂w∗

y

∂x
+

∂w∗
x

∂y

)]
= 0,

ω∗ =
∂w∗

y

∂x
− ∂w∗

x

∂y
,

∂w∗
x

∂x
+

∂w∗
y

∂y
= 0,

�w∗ = �r × (ϕ̇�ez) + �V∞ on Γ0, �w∗ → 0 for |x| → ∞,

�w∗|t=T = 0 in Ω.

(7)

The source term (i.e. the last one) in the first equation above can be expressed using the
components of the rate-of-strain tensors of the primal and the adjoint fields as s0

11s
∗
12−s∗

11s
0
12. The

above system has the form of an advection–diffusion equation with a source term. In this sense
it resembles a linearization of the 2D vorticity system (2) in which the velocity is decoupled
from vorticity and which is supplemented with a source term mentioned above. As was the
case with the vorticity system (2), the boundary conditions are given in terms of the primitive
adjoint variable and are unchanged with respect to the primitive form of the adjoint system.
The meaning of the adjoint ‘vorticity’ ω∗ is consistent with the definition of the adjoint state
�w∗: it is used to evaluate expression (4) for the functional gradient. This expression involves the
adjoint ‘strains’ s∗

11 and s∗
12 which are obtained by differentiating the field �w∗ calculated from

ω∗ by inverting the curl operator. The velocity field �V0 in (7) also affects the adjoint ‘vorticity’
through the source term involving the strains s0

11 and s0
12. We emphasize here that using the

‘vorticity’ form (7) of the adjoint system (5) does not change the problem that is solved. It only
modifies the way in which the sensitivity of the functional is calculated.

4. Numerical solution of the primal and adjoint systems in the vorticity form

In this work both problems are solved with the use of the vortex method. In what follows we
give a few details concerning the solution of the primal system, and in addition we show how
this approach can be applied to the adjoint system (7) in an efficient manner. In both cases
the vorticity field is represented as a superposition of particles (i.e. vortex blobs) with Gaussian
cores. The particles move in their own induced velocity field complemented by some potential
contribution which accounts for the free stream at infinity and the effect of the boundary
conditions. The induced velocity is computed using the fast multipole method of Greengard
and Rokhlin [7] in the implementation developed by Wald and Styczek [8]. The general idea
is to compute only the closest interactions with the use of the exact formulae, whereas the far
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GR mesh

PRIMAL

GR mesh

ADJOINT

Figure 1. A schematic showing the transfer of information from the primal to
the adjoint part of the code (see the text for explanations).

interactions are accounted for with the use of hierarchical series expansions. These expansions
can be clustered in an adaptive fashion resulting in the operation count decrease from O(N2)
to O(N log N). This approach is very flexible and also allows for an efficient computation of all
velocity derivatives. Viscous diffusion is calculated using the modified redistribution method of
Shankar and van Dommelen [9]. The velocity boundary conditions are enforced at every time
step by creating on the boundary a vortex sheet that cancels the deviation of the boundary
velocity from the prescribed value. The new circulation in then diffused to the particles in the
flow field. The number of particles used in the simulations of the flows at Re = 150 was of the
order O(105). For further details concerning implementation and several benchmark tests of the
method we refer the reader to the works [5] and [10].

The vortex method used to solve the adjoint problem is, in the main, the same as the
approach outlined above; there are, however, two important novelties: the adjoint field evolves
in the velocity field �V0 obtained during the forward sweep of the primal system (2) and the
vorticity form of the adjoint equations includes a source term that must be properly accounted
for. The source term s0

11s
∗
12 − s∗

11s
0
12 represents the second, besides viscous diffusion, mechanism

resulting in modifications of the strengths of the particles. When the particle representation
is used, the strain fields s11 and s12 have essentially the same localizations as the vorticity
field of the vortex blob. This, in particular, means that the source term practically vanishes
away from the support of both the primitive and the adjoint vorticities ω and ω∗. As a result,
new adjoint ‘vorticity’ due to the source term is created only by modifying the strengths of
the existing particles, but not away from their support. The source term involves the strain
components s0

11 and s0
12 computed by differentiating the primal velocity field �V0. As already

mentioned, advection of the adjoint ‘vorticity’ ω∗ takes place in the reversed primal velocity field
�V0. Therefore, this field must be transferred to the adjoint part of the code without incurring
prohibitive computational overhead or storage requirements. We accomplish this by transferring
the Taylor series expansion coefficients used to represent the velocity field �V0 on the finest level
in the primal Greengard–Rokhlin algorithm. These coefficients have to be transferred only in
the areas where the velocity field �V0 will have to be evaluated in the adjoint part of the code,
i.e. only from the finest level cells which contain adjoint ‘vorticity’ particles (the shaded areas
in figure 1). Likewise, the data for the primal vorticity particles in these cells will also have to
be transferred to the adjoint part of the code to allow for evaluation of near induction using
exact formulae. In figure 1 such primal particles are marked as circles, whereas crosses represent
the primal particles that do not have to be transferred. The adjoint particles are marked as
squares. With this information available (expansion coefficients and particles), we can efficiently
evaluate the complete primal velocity field �V0 with its derivatives in the neighbourhoods of
all adjoint ‘vorticity’ particles. Due to reversed time, the adjoint ‘vorticity’ field grows in the
upstream direction and the supports of the primal and the adjoint vorticity overlap only in
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 Primal  Adjoint

Figure 2. Fields of the primal (left) and the adjoint (right) vorticities at different
stages during optimization. The arrows indicate the directions of the primal and
the adjoint times, t and τ , respectively.

a small fraction of the computational domain. Consequently, using the expansion coefficients
of the Greengard–Rokhlin algorithm, the amount of information transferred from the primal
to the adjoint part of the code is relatively small and evaluation of the velocity �V0 with its
derivatives in the adjoint part of the code is very fast. We remark here that in the adjoint part
of the code there is a separate Greengard–Rokhlin module handling the adjoint ‘vorticity’. It
is needed to evaluate the adjoint ‘strains’ in the source term and the adjoint ‘velocity’ on the
boundary.

5. Sample results

In figure 2 we present the fields of the primal vorticity ω and the corresponding adjoint
‘vorticity’ ω∗ obtained at different stages during the first iteration in the minimization of
functional (3). Figure 3 (animation) presents the animated evolution of these two fields over the
whole optimization interval [0, T ]. These results correspond to the optimization horizon T = 6
and the Reynolds number Re = 150. Most interestingly, we remark that the adjoint field ω∗

develops in the upstream direction and grows in the reversed time τ = T − t, which is due to the
fact that system (5), and therefore also (7), are terminal value problems. We recall that solutions
of the primal and the adjoint systems are needed to determine the gradient of functional (3)
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Figure 3. Animation showing the evolution of the primal vorticity field ω (top)
and the corresponding adjoint field ω∗ (bottom) over the optimization interval
[0, T ].

with respect to control ϕ̇ defined over the optimization interval [0, T ]. The reader is referred to
the works [5] and [6] for quantitative results concerning drag reduction and changes of the flow
pattern in the controlled flows.

6. Conclusions

In this paper we derived and discussed some properties of the ‘vorticity’ (i.e. non-primitive) form
of the adjoint equations arising in many optimization problems in hydrodynamics. We showed
how the derived system can be solved using a generalization of the 2D vortex method, and how
this approach can be efficiently implemented in the case when the vortex method is also used
to solve the primal system. Some results were presented as regards the behaviour of the adjoint
field obtained in optimization for drag reduction of the rotary control of the 2D cylinder wake
flow.
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