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In this paper we use the Föppl point vortex system as a reduced-order model for stabilization of the
steady symmetric solution in an unstable laminar wake. The downstream location of the Föppl
vortices is chosen so as to produce the same recirculation length as in the actual flow at a given
Reynolds number. When the cylinder rotation is used as flow actuation, the linearized Föppl system
is shown to be stabilizable, but not controllable. With centerline velocity measurements as the
system output, the linearized Föppl model is also shown to be fully observable. The
Linear-Quadratic-Gaussian(LQG) control design is performed based on the linearized Föppl system
which has only four degrees of freedom. Computational results show that thus designed LQG
compensator stabilizes the stationary solution of the nonlinear Föppl system. When applied to an
actual cylinder wake at Re=75, the LQG compensator stabilizes the downstream region of the flow.
Possibilities and limitations of flow control strategies based on point vortex systems as
reduced-order models are discussed. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1808773]

I. INTRODUCTION

Massively separated flows display complex physical
phenomena and at the same time arise in many important
technical applications. Characterized by geometrical simplic-
ity, the cylinder wake flow is often regarded as a prototype of
massively separated flows, since it exhibits many generic
phenomena occurring in such flows. Consequently, the cyl-
inder wake flow has also been an appealing testbed for ex-
ploration of various flow control strategies. From the appli-
cation perspective, control of separated flows usually seeks
to stabilize the wake by eliminating, or at least weakening,
organized vortical structures which coalesce from the sepa-
rated boundary layer with the objective of decreasing veloc-
ity fluctuations in the flow, reducing the mean drag force and
the lift force oscillations, etc.(see Ref. 1 for a review). Of
particular interest areactive control strategieswhich attempt
to modify the flow by injecting or extracting energy. As re-
gards the specific form of the flow actuation, various tech-
niques have been investigated in the context of wake flows,
including distributed blowing and suction, transverse oscilla-
tions and rotation of the obstacle. In the present study we
will focus on the rotary control which is one of the simplest
forms of flow actuation available in the considered flow con-
figuration. One of the first implementations of cylinder rota-
tion for the purpose of flow control was the experimental
study by Tokumaru and Dimotakis2 which was followed by a
series of numerical(e.g., Refs. 3–9) and experimental inves-
tigations(e.g., Refs. 10–12). Recent advances in integration
of optimization and control theory with computational fluid
dynamics(see, Bewley,13 for a review) have made it possible
to determine optimal and suboptimal control scenarios for a
number of wake control problems(Refs. 14–18). Apart from

a very large computational cost, these approaches have the
disadvantage that their performance heavily relies on com-
plete and accurate knowledge of the system, its initial con-
dition and the absence of external disturbances. Conse-
quently, such strategies usually serve as optimal benchmarks
for other algorithms and it is rather unlikely that they will
soon find real-time applications in flow control. Some of the
aforementioned difficulties can be mitigated in the frame-
work of the feedback controlwhere the actuation dynami-
cally responds to an evolving flow state and incoming distur-
bances. Earlier approaches to feedback control were
heuristically motivated, such as, for instance, the investiga-
tions by Park,19 Park et al.,20 and Gunzburger and Lee.21

Recently significant strides were made applying the linear
optimal control theory to stabilization of transitional and tur-
bulent flows(see Refs. 22–25). These results are very en-
couraging, however, when the full Navier–Stokes equation is
used as the system model, the problem is computationally
tractable only in a few special cases(unfortunately, the cyl-
inder wake flow is not one of them). This motivates the
search for reduced-order models that can provide a simpler
representation of the system dynamics relevant from the con-
trol perspective. Among the variety of approaches(see, e.g.,
Ref. 26 for a recent review), we choose to focus here on
point vortex models which are often used to represent
vortex-dominated flows such as wakes. Unlike Galerkin
model reduction techniques, which attempt to find projec-
tions of solutions of the Navier–Stokes system on some suit-
ably chosen sets of basis functions(e.g., proper orthogonal
decomposition modes, see Ref. 15), point vortex models rely
on weak solutions of the Euler equations as a point of depar-
ture (see Ref. 27 for details). Properties of ensembles of
point vortices are reviewed by Newton in his monograph.28

In the context of flow control such systems were studied bya)Electronic mail: bprotas@mcmaster.ca
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Cortelezziet al.,29–31Chernyshenko,32 Péntek,33 Zannetti and
Iollo,34 Noack et al.,35 and Vainchtein and Mezić.36 In the
present investigation we focus on yet another point vortex
model known as the Föppl system,37 as it provides a particu-
larly simple, yet relatively realistic, representation of the on-
set of the vortex shedding instability in the cylinder wake.
The purpose of this paper is to characterize the Föppl model
from the control-theoretic perspective and then, based on this
model, design a Linear-Quadratic-Gaussian(LQG) compen-
sator that can be used to stabilize the Föppl system and an
unstable laminar wake flow. Stabilization of the cylinder
wake will be studied at the Reynolds number Re=75 which
is slightly above the critical value of Re marking transition to
vortex shedding. This will ensure that the system behavior is
reasonably well captured by the linearized Föppl model used
as a basis for the LQG compensator design, thereby creating
a clean setting for investigation of the proposed approach. In
fact, the Föppl system has already been used for flow control
purposes(see Refs. 38 and 39), however, none of these in-
vestigations relied on systematic methods of control theory.
The structure of the paper is as follows: in Sec. II we intro-
duce the Föppl model and describe its relevance to wake
flow instabilities, in Sec. III we use control-theoretic meth-
ods to characterize its properties relevant from the control
point of view and in Sec. IV we derive the LQG compensa-
tor, computational results concerning stabilization of the
Föppl model and an actual wake flow are presented in Sec.
V, final conclusions are deferred to Sec. VI, in Appendix A
we derive an analytical result concerning the Föppl model,
whereas in Appendices B and C we generalize the control
framework to account for other forms of actuation and ob-
servations.

II. THE FÖPPL SYSTEM

Our presentation of the Föppl system and its stability
properties in the uncontrolled setting is largely derived from
the study by Tang and Aubry.40 Originally proposed by L.
Föppl in 1913, this system37 is constructed based on the po-
tential flow theory where the classical symmetric solution,
consisting of a superposition of a uniform free stream and a
dipole, is supplemented with a pair of point vortices with
opposite circulations placed above and below the centerline
(Fig. 1). In order to enforce the boundary conditions for the
wall-normal velocity component, two image vortices need to
be placed at suitable locations inside the cylinder. The cylin-
der rotation, which serves as the flow actuation, is repre-
sented by placing another point vortex at the origin(note that
it does not affect the wall-normal velocity at the boundary).
For the sake of compactness, hereafter we will use the com-
plex notation with i representing the imaginary unit. The
total complex velocity fieldVszd,u− iv induced by the
Föppl system at the pointz=x+ iy is given by

Vszd = 1 −
1

z2 −
G1

2pi
S 1

z− z1
−

1

z− 1/z̄1
D

+
G2

2pi
S 1

z− z2
−

1

z− 1/z̄2
D +

GC

2piz
, s1d

wherehz1,G1j andhz2,G2j are, respectively, the position and

circulation of the vortex above and below the centerline(zk

=xk+ iyk, k=1,2), whereasGC represents the circulation of
the control vortex(Fig. 1). In the above expression it is as-
sumed that the cylinder has unit radiusR0=1 and the free
stream at infinity has unit magnitudeU`=1. Hereafter we
will assume that all quantities are nondimensionalized using
these values. The Föppl model can be regarded as a nonlin-
ear dynamical system with evolution described by

d

dt
X = FsXd + bsXdGC

, 3
RefV1sz1,z2,G1,G2dg

− ImfV1sz1,z2,G1,G2dg
RefV2sz1,z2,G1,G2dg

− ImfV2sz1,z2,G1,G2dg
4 + bsXdGC, s2d

whereX, fx1 y1 x2 y2gT and the control matrixbsXd is ex-
pressed as

bsXd,
1

2p3
− y1/uz1u2

x1/uz1u2

y2/uz2u2

x2/uz2u2
4 . s3d

The expressionsV1 and V2 in (2) are given by the velocity
field (1) evaluated atz1 and z2 with the singular “self-
induction” terms 1/sz−z1d and 1/sz−z2d, respectively omit-
ted. At this point we are concerned with the properties of the
Föppl system without control, therefore in this section we
will assume thatGC;0, which renders(2) autonomous.
When looking for a reduced-order model of a stationary
wake flow, we are interested in the fixed-point solutions of
(2) which are symmetric with respect to the centerline, i.e.,
obtained withz1=z0=x0+ iy0, z2= z̄0=x0− iy0, G1=−G, and
G2=G, where G.0. Consequently, the fixed point of the
Föppl system is characterized by the system of two equations

FIG. 1. Schematic of the Föppl system. The dashed line represents the
separatrix streamline delimiting the recirculation bubble.
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RefV1sz0,z̄0,− G,Gdg = 0,

s4d
ImfV1sz0,z̄0,− G,Gdg = 0,

for the unknownshx0+ iy0,Gj which has an implicit-form
solution

sr0
2 − 1d2 = 4r0

2y0
2,

s5d

G = 2p
sr0

2 − 1d2sr0
2 + 1d

r0
5 ,

where r0=sx0
2+y0

2d1/2. We note that solution(5) may be re-
garded as depending on one parameter, for instance, the
downstream coordinatex0. Thus,x0 will determine bothy0

andG, and further below we will present an argument allow-
ing us to fix this parameter.

Stability properties of the stationary solution of the
Föppl model and their relevance for the modeling of transi-
tion to vortex shedding were thoroughly analyzed by Tang
and Aubry.40 In an earlier study, Smith41 identified an error in
Föppl’s original derivation which concerned the stability of
the stationary solution with respect to symmetric perturba-
tions. This issue was again revisited by Caiet al.42 who also
derived a more general stability criterion and employed it to
study the stability of point vortices behind elliptic cylinders
and circular cylinders with splitter plates. de Laat and
Coene43 analyzed the frequency of the neutrally stable oscil-
latory mode as a function of the downstream coordinatex0.
In another work, Saffman and Sheffield44 showed the exis-
tence of an equilibrium solution for a single vortex attached
to an airfoil. The stability analysis of the Föppl system is
performed by adding the perturbationssx18 ,y18d andsx28 ,y28d to
the coordinates of the upper and lower vortex of the station-
ary solution and then linearizing the system(2) around
X0, fx0 y0 x0 −y0gT assuming small perturbations(Fig. 2).
Thus, evolution of the perturbations is governed by the sys-
tem

d

dt
X8 = AX 8, s6d

whereX8, fx18 y18 x28 y28g
T and the system matrixA is given

by (see Ref. 40)

A = 3
a b c d

e − a f c

c − d a − b

− f c − e − a
4 s7d

with the following entries:

a =
3x0

r0
6 −

2x0

r0
8 ,

b =
1

r0
9 −

5

2r0
7 +

1

2r0
5 +

2

r0
3 +

1

r0
,

c = −
x0

r0
4 ,

s8d

d = −
1

2r0
5 −

1

2r0
3 −

1

r0
,

e=
1

r0
9 −

5

2r0
7 −

3

2r0
5 +

1

r0
,

f =
1

2r0
5 −

3

2r0
3 −

1

r0
.

We remark that(6) is a linear time-invariant system. Eigen-
value analysis of the matrixA reveals the presence of the
following modes of motion(Fig. 3):

(i) unstable(growing) modea corresponding to a posi-
tive real eigenvaluel1=lr .0,

(ii ) stable(decaying) modeb corresponding to a negative
real eigenvaluel2=−lr ,0,

FIG. 2. Schematic indicating perturbationsX8 of the stationary solutionX0

of the Föppl system. The big dots represent the stationary solution and the
small dots represent the perturbed positions.

FIG. 3. The three modes of motion characterizing the linearized Föppl sys-
tem (6). Note that another pair of the modesa and b can be obtained by
reversing the direction of the corresponding eigenvectors.
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(iii ) neutrally stable oscillatory modeg corresponding to a
conjugate pair of purely imaginary eigenvaluesl3/4

= ± ili

These qualitative properties are independent of the
downstream coordinatex0 characterizing the fixed-point so-
lution. The linearized system is neutrally stable to symmetric
perturbations and unstable to certain asymmetric perturba-
tions. Furthermore, analysis of the orientation of the unstable
eigenvectors carried out in Ref. 40 revealed that the initial
stages of instability of the Föppl system closely resemble the
onset of vortex shedding in an actual cylinder wake under-
going Hopf bifurcation. In most wake control problems one
is concerned with attenuation of vortex shedding, an objec-
tive which can be alternatively regarded as stabilization of
the steady symmetric solution. Consequently, we propose
here to use the stationary point(5) of the Föppl system as a
reduced-order model for the unstable base flow and the lin-

earized Föppl system(6) as a reduced-order model for the
Navier–Stokes dynamics at the onset of vortex shedding.
This reduced-order model will be used in Sec. IV as a basis
for the systematic design of a linear feedback stabilization
strategy that can be applied to control an actual wake flow.
As remarked in the Introduction, the Föppl system has al-
ready been used as a reduced-order model in the design of
some heuristically motivated flow control techniques. In the
first such study Tang and Aubry38 showed that by adding two
small control vortices the stability properties of the Föppl
system can be favorably modified(additional neutrally stable
equilibria appear). In another study, Li and Aubry39 applied
perturbation methods to derive a linear feedback control al-
gorithm using the transverse cylinder motion as the actuation
and the lift force as the system output. Both of these control
techniques were investigated in two-dimensional numerical
simulations yielding encouraging results.

As mentioned earlier, the Föppl model involves one free
parameter(i.e., the coordinatex0) which must be fixed. This
can be done so as to obtain quantitative agreement of certain
properties of the stationary point of the Föppl model and the
actual symmetric base flow. One such important characteris-
tic is the lengthLR of the recirculation bubble(see Zielińska
et al.45 and Protas and Wesfreid46) defined as the downstream
coordinatexR where the streamwise velocityusxR,0d changes
sign from negative to positive(in unsteady flows the defini-
tion of LR is based on time-averaged streamwise velocity).
The recirculation length characterizing the stationary solu-
tion (5) of the Föppl model is a function of the coordinatex0

shown in Fig. 4(see Appendix A for derivation details). The
functional relationship betweenLR andx0 allows us to deter-
mine the value ofx0 that results in the desired recirculation
length. For instance, an unstable base flow at Re=75 has the
recirculation lengthLR>8.4 which can be reproduced in the
Föppl model by settingx0=4.32 in(5). Streamline patterns in

FIG. 4. Dependence of the recirculation lengthLR on the coordinatex0 of
the Föppl vortices in the stationary configuration.

FIG. 5. Streamline patterns in the recirculation bubble in(a) the actual base flow at Re=75, and(b) the corresponding stationary solution of the Föppl model
with x0=4.32.
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the unstable base flow at Re=75 and the corresponding
Föppl model withx0=4.32 are shown in Figs. 5(a) and 5(b).
We note that the recirculation bubble in the Föppl model is
significantly wider than in the actual flow. Other possibilities
for fixing the coordinatex0 may be based, for instance, on
imposing a specific separation angle(cf. Cai et al.42).

III. CONTROL-THEORETIC CHARACTERIZATION OF
THE REDUCED-ORDER MODEL

In the present study we focus on the circular cylinder
rotation GC=GCstd as our control variable(Fig. 1). Other
choices of flow actuation are also possible and in Appendix
B we outline the framework corresponding to blowing and
suction at the boundary as an alternative system input. The
effect of cylinder rotation is represented by the last term in
Eq. (1). Rederiving the linearized system with this term re-
tained, i.e.,GCÞ0, we obtain

d

dt
X8 = AX 8 + BGC, s9d

where

B, bsX0d =
1

2pr0
23

− y0

x0

y0

x0

4 . s10d

In order to formulate a meaningful control problem we need
to identify a physical objective that the control algorithm will
seek to achieve. This objective will be expressed in terms of

system outputs, i.e., certain measurable quantities that char-
acterize the system evolution and the system input, i.e., the
control GC. We choose attenuation of vortex shedding as the
control objective which can be quantified by measuring the
velocity at a point on the flow centerline with the streamwise
coordinatexm (note that in the stationary symmetric solution
the transverse velocity component vanishes on the center-
line). Choosing this quantity as an output of system(2) we
obtain the following output equation:

hsz1,z2d, F RefVsxmdg
− ImfVsxmdg G + DGC, s11d

where the matrixD,1/s2pxm
2 df0 xmgT represents the direct

effect of the control on the measurements(i.e., the control-
to-measurements map). This particular choice of the obser-
vation operatorh is motivated by practical considerations, as
pointwise velocity measurements are relatively easy to
implement in a laboratory experiment(for instance, using a
hot wire). Other choices for the observation operator are also
possible and in Appendix C we outline the corresponding
framework for the case when the observation operator is
based on two-point measurements of pressure difference on
the cylinder boundary. When considering the evolution of
small perturbationsX8 of the fixed-point solution, Eq.(11)
can be linearized which yields

hsz0 + z18,z̄0 + z28d > hsz0,z̄0d + CX8, s12d

wherezk8=xk8+ iyk8, k=1,2, and thelinearized observation op-
eratorC is given by

C = 3U
]usxmd

]x1
U

sx0,y0d
U ]usxmd

]y1
U

sx0,y0d
U ]usxmd

]x2
U

sx0,y0d
U ]usxmd

]y2
U

sx0,y0d

U ]vsxmd
]x1

U
sx0,y0d

U ]vsxmd
]y1

U
sx0,y0d

U ]vsxmd
]x2

U
sx0,y0d

U ]vsxmd
]y2

U
sx0,y0d

4 . s13d

Since our linearized reduced-order model reproduces the
Navier–Stokes dynamics only approximately, the difference
between its predictions and the actual flow behavior can be
regarded as disturbances which can be accounted for by in-
troducing a stochastic variablew referred to as the system
(plant) noise. It affects the linearized system dynamics via a
f431g matrix G and the linearized system output via a
f231g matrix H. Furthermore, we assume that the velocity
measurements may be additionally contaminated with noise
m, fm1 m2gT, where m1 and m2 are stochastic processes.
With these definitions we can now put the linearized
reduced-order model in the standard state-space form(see
Ref. 47)

d

dt
X8 = AX 8 + BGC + Gw, s14ad

Y = CX8 + DGC + Hw + m. s14bd

Before we set out to design a controller for system(14)
it has to be verified that this is in fact feasible given the
internal structure of the system with its inputs and outputs.
This can be done by analyzing controllability and observabil-
ity of system (14). Controllability is characterized by the
number of modesNc that can be affected by the control
authority available. The difference between the system di-
mension(4 in the present case) andNc gives the number of
uncontrollable modes. In the present caseNc can be calcu-
lated as(see Ref. 47)

Nc, rankfB AB A 2B A3Bg = 2, s15d

which means that the matrix pairhA ,Bj is not controllable
and only two out of four modes present in the system can be
controlled. In a similar spirit,observabilityis characterized
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by the number of modesNo that can be reconstructed based
on the measurements available and the difference between
the system dimension andNo gives the number of unobserv-
able modes. In the present caseNo can be calculated as

No, rankfCT ATCT sATd2CT sATd3CTg = 4, s16d

which means that the matrix pairhA ,Cj is completely ob-
servable. It is useful to determine which modes are in fact
controllable. For this purpose we can deduce aminimal rep-
resentationof system(14) consisting of those modes only
which are both controllable and observable. This can be done
by introducing an orthogonal transformation matrix

Tc, Î23
1/2 0 − 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 − 1/2
4 s17d

and making the following change of variablesXab8 ,fXa8
Xb8

g
=TcX8. The corresponding form of system(14) is

d

dt
FXa8

Xb8
G = FAa 0

0 Ab
GFXa8

Xb8
G + FBa

0
GGC + FGa

Gb
Gw,

s18ad

FYb

Ya
G = F 0 Cb

Ca 0
GFXa8

Xb8
G + FD1

D2
GGC + FH1

H2
Gw + m.

s18bd

Our minimal representation is thus given by the upper row in
Eq. (18a) and the lower row in Eq.(18b), i.e.,

d

dt
Xa8 = AaXa8 + BaGC + Gaw, s19ad

Ya = CaXa8 + D2GC + H2w + m2. s19bd

We remark that the state vector in the minimal representation
(19) is expressed asXa8=fxa8 ya8g

T=fx18+x28 /2 y18+y28 /2gT

which means that the new variables are simply averages of
the original ones(i.e., the perturbations to the stationary so-
lution). Eigenvalue analysis of the matricesAa and Ab re-
veals thatAa has two real eigenvalues(positive and nega-
tive) corresponding to the growing and decaying modesa
andb, whereas the matrixAb has a conjugate pair of purely
imaginary eigenvalues which correspond to the neurally
stable modeg (Fig. 3). This observation allows us to con-
clude that the uncontrollable part of the model system
dynamics is associated with the neutrally stable oscillatory
mode g. In other words, the control actuation(i.e., the
cylinder rotation) can affect the growing and decaying modes
(a and b), but has no authority over the neutrally stable
modeg. Consequently, the original system(14) is stabiliz-
able, even though it is not controllable. This fact can be
leveraged by designing the feedback control algorithm based
on the minimal representation(19).

We conclude this section with a brief discussion of an
optimal sensor placement, i.e., the best choice ofxm in (11).
This is an important issue from the implementation point of

view, as a judicious choice ofxm will maximize the informa-
tion that can be extracted from the measurements available.
DecomposingXa8 in terms of the eigenvectorsj1 and j2 of
Aa, we can express the linearized observations of the trans-
verse velocity component(19b) as

Ya = Ca o
k=1,2

lakjk + D2GC + H2w + m2

= o
k=1,2

lakck + D2GC + H2w + m2. s20d

The quantitiesc1,Caj1 and c2,Caj2, referred to as the
modal observation residuals,22 are therefore related to ob-
servability of the growing and decaying mode. Whenck=0,
k=1,2, this implies unobservability of the corresponding
mode. On the other hand, whenck is large, the corresponding
mode leaves a large imprint on the measurements. Conse-
quently, in the presence of disturbances it is advantageous to
maximize c1, i.e., the observation residual of the unstable
mode, by making a suitable choice ofxm. The dependence of
uc1u on xm for fixed x0=4.32 is shown in Fig. 6. The optimal
position of the sensorxm

opt can be determined numerically and
is found to bexm

opt=5.53. This is the sensor position that will
be used in all subsequent calculations.

IV. LQG CONTROL DESIGN

In this section we derive our control algorithm for the
reduced-order model based on linear optimal control
theory.47 Our objective is to find a feedback control law
GC=−KX 8, whereK is af431g feedback matrix, which will
stabilize system(14) while minimizing a performance crite-
rion represented by the following cost functional:

JsGCd, EFE
0

`

sYTQY + GCRGCddtG , s21d

whereE denotes the expectation,Q is a symmetric positive
semidefinite matrix, andR.0. Note that the cost functional
(21) balances the linearized system outputY [i.e., the veloc-
ity at the sensor locationsxm,0d] and the control effort,

FIG. 6. Dependence of the absolute value of the observation residualc1 of
the unstable mode on the downstream sensor positionxm. We note thatuc1u
attains its maximum forxm

opt=5.53. The vertical dotted line corresponds to
x0.
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whereas the feedback control law provides a recipe for de-
termining the actuation(i.e., the circulation of the control
vortex GC representing the cylinder rotation) based on the
state of the reduced-order model(i.e., the perturbationX8 of
the stationary solution). In practice, however, the stateX8 of
the model(14) is not known. Instead, noisy measurements

Ỹ =fỸb ỸagT of the actual system[i.e., the nonlinear Föppl
model(2) or the wake flow] are available and can be used in
an estimation procedureto construct an estimateXe8 of the
model stateX8. The evolution of the state estimateXe8 is
governed by the estimator system

d

dt
Xe8 = AX e8 + BGC + L sỸ − Yed, s22ad

Ye = CXe8 + DGc, s22bd

whereL is a feedback matrix that will be chosen below in a
manner ensuring that the estimation error vanishes in the
infinite time horizon, i.e., thatXe8→X8 as t→`. Thus, the
estimator assimilates available observations into the system
model, so as to produce an evolving estimate of the system
state. Finally, the controller and the estimator can be com-
bined to form acompensatorin which the feedback control
is determined based on the state estimateXe8 as

GC = − KX e8. s23d

The flow of information in a compensator is shown sche-
matically in Fig. 7.

The design of an LQG compensator can be accom-
plished using standard methods of linear control theory(see,
e.g., Ref. 47) and is outlined below only briefly. Assuming
that all the stochastic variables are white and Gaussian, the
separation principle can be applied which means that the
control and estimation problems can be solved independently
of each other. Based on the above assumptions, solution of
the control problem can be further simplified by invoking the
principle of certainty equivalence stating that the optimal
feedback matrixK for the stochastic system(14) with the
cost function(21) is exactly the same as for the correspond-
ing deterministic system obtained by setting to zero the sto-
chastic disturbancesw andm. Since the original system(14)
is not controllable, the optimal feedback matrix is deter-
mined asK =fK a

0
g Tc, whereK a is the feedback matrix ob-

tained for the minimal representation(19) as

K a =
1

R
Ba

TP s24d

in which the matrixP is a symmetric positive-definite solu-
tion of the algebraic Riccati equation

Aa
TP + PAa + Ca0

T QCa0 −
1

R
PBaBa

TP = 0, s25d

whereCa0=f 0
Ca

g. We note that the feedback matrixK a, and
therefore alsoK , will depend on the choice of the output
weighting matrixQ and the control penaltyR in the cost
functional (21). As is evident from Eq.(18b), the system
outputYb, corresponding to measurements of the streamwise
velocity component, does not depend on the minimal state
vectorXa8. This, however, does not affect the calculation of
the feedback matrices. Since the original system(14) is com-
pletely observable, the estimation problem is solved based on
the full representation(14), rather than the minimal represen-
tation (19). Thus, the optimal estimator feedback matrix
needed in(22a) is given by

L = SCTM −1, s26d

where the matrixS is a symmetric positive-definite solution
of the algebraic Riccati equation

AS+ SAT + WGGT − SCTM −1CS= 0, s27d

in which the following disturbance structure is assumed
EfwstdwstdTg=Wdst−td andEfmstdmstdTg=Mdst−td. Thus,
the optimal estimator feedbackL depends on the covariances
of the system and measurement disturbances,W andM , re-
spectively, and yields an estimator is known as the Kalman
filter. For the case of the simple reduced-order model studied
here the algebraic Riccati equations(25) and (27) can be
solved using standard techniques. As a matter of fact, Eq.
(25) which represents a system of three coupled quadratic
equations can be reduced to a scalar quartic equation that, in
theory, can be solved in a closed form. However, the analyti-
cal expressions obtained are extremely complicated and in
practice it is much more convenient to use a numerical solu-
tion.

The LQG compensator is an example of anH2

controller/estimator design in which disturbances are as-
sumed Gaussian and uncorrelated with the state and control.
Robustness of the compensator can be enhanced by perform-
ing anH` controller/estimator design where disturbances are
allowed to have the worst-case form. In the present study,
however, the reduced-order model has a very simple struc-
ture and robustness can be achieved by hand tuning the com-
pensator. Consequently, we do not pursue theH` compensa-
tor design here and refer the reader to the review paper13 for
a discussion of the utility of theH` design in the context of
flow control problems.

V. COMPUTATIONAL RESULTS

In this section we present computational results concern-
ing LQG-based stabilization of the stationary base flow in
the Föppl system(2) and in the unstable cylinder wake flow

FIG. 7. Schematic of a compensator composed of an estimator and a
controller.
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governed by the two-dimensional Navier–Stokes system
(with the fluid densityr;1)

]u

]t
+ su · = du + = p − mDu = 0 in V,

= ·u = 0, in V,

u = ub on ]V,

u → fU`,0g for uxu → `,

u = u0 at t = 0,

s28d

whereu=fu,vg is the velocity field,p is the pressure,m the
coefficient of viscosity,V is the flow domain, and]V its
boundary[cf. Figs. 5(a) and 5(b)]. The Reynolds number is
defined as Re=2R0U`r /m. The stationary base flow[Fig.
5(a)] is obtained by setting to zero the time-derivative term
]u /]t in (28). This solution, which is known to be unstable
and undergo a Hopf bifurcation when Re.46 (e.g., Ref. 45),
is also taken as the initial conditionu0 for system(28). The
boundary conditions for system(28) are determined using
the feedback control algorithm outlined in Sec. IV and are
given by

ub
n, ub ·n = 0, s29ad

ub
t , ub · t =

GCstd
2pR0

, s29bd

wheren and t are the versors normal and tangential to the
cylinder boundary. In the simulations presented below the
Navier–Stokes system(28) was solved with a vortex method
which was described and validated in Ref. 46. In the solution
of the estimation problem(27) we made the following as-
sumptions about the covariances of the plant and measure-
ment disturbances

W = 1.0, M = F10 0

0 0.1
G , s30d

which means that transverse velocity measurements are to a
lesser degree contaminated with noise, and therefore have a
larger effect on the state estimation than streamwise velocity

measurements. In the solution of the control problem(25) we
chose

R= 10−3, Q = F1 0

0 1
G . s31d

We now proceed to discuss the results concerning stabi-
lization of the perturbed stationary point of the Föppl system
(2). We focus on the configuration obtained forx0=4.32
which is characterized by the same lengthLR of the recircu-
lation bubble as the actual unstable base flow at Re=75 to be
discussed next. In Fig. 8(a) we show the trajectories of the
vortices as they escape to infinity when the stationary posi-
tion is perturbed with a random perturbation. We remark that
the directions along which the initial escape takes place are
in qualitative agreement with the unstable eigendirections
shown schematically in Fig. 3. In Figs. 8(b) and 8(c) we
show how the system evolution ensuing from the same per-
turbation is stabilized by the LQG compensator described in
Sec. IV. We note that the trajectories are now bounded and
the vortices eventually land on quasi-elliptic orbits encircling
the stationary points. These orbits are related to the neutrally
stable oscillatory modesg which in Sec. III were found to be
uncontrollable. This explains why the compensator, while
preventing the system from blowing up, is unable the sup-
press completely the instability. In Fig. 8(c) we also show the
corresponding estimator trajectoryXestd,X0+Xe8std which
starts from the stationary point and then, after some transient,
converges to the actual system trajectoryXstd. We emphasize
that, as is evident from Figs. 8(b) and 8(c), the LQG com-
pensator is able to stabilize the system for fairly significant,
albeit finite, magnitudes of the initial perturbationX8s0d.

In Fig. 9 we present the time history of the measure-

mentsỸa and Ỹb of the nonlinear system(2) and the corre-
sponding feedback controlub

t [see(29b)]. We note that the

quantitiesỸa and Ỹb represent the measurements of the ve-
locity componentsv andu at the pointsxm,0d in the nonlin-

ear system. We remark that, as is evident from(18b), Ỹa is a
signature of the controllable modesa and b and therefore

FIG. 8. Trajectories of the vortices in the Föppl system(2) resulting from a random perturbation of the stationary point:(a) uncontrolled case,(b) case with
control performed by the LQG compensator,(c) same as(b), but showing magnification of the neighborhood of the lower stationary point. In(c) the dotted
line represents the corresponding estimateXestd of the vortex trajectory. The stationary points are indicated by solid circles.
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decays in time. On the other hand,Ỹb is a signature of the
uncontrollable modeg and for large times reveals oscillatory
behavior with a nonvanishing amplitude. After the initial
transient, the controlub

t decays to zero as well.
We now turn to the discussion of the results obtained

applying the same LQG compensator to stabilization of an
actual cylinder wake at Re=75. In the uncontrolled regime
the symmetry of the initial condition[see Fig. 5(a)] is imme-
diately broken and the usual vortex shedding instability de-
velops. In the results to follow all the parameters of the es-
timator and the controller are the same as used in

stabilization of the Föppl system described earlier in this
section. First, in Fig. 10 we show the estimated positions
Xestd of the Föppl vortices obtained in the flow with the
LQG stabilization. As in the previous case, the estimated
trajectories are stable and have the form of circular orbits
circumscribing the stationary points of the Föppl system. In
fact, now these orbits reveal a slight drift in the upstream
direction. This, however, does not destabilize the feedback
control, as the effect of the upstream drift is subtracted off in
the minimal representation[cf. Eq. (17)].

Next, in Fig. 11 we present the time histories of the

FIG. 9. Top figure presents the time
history of the measurements of the
Föppl system(2) with the LQG-based

control: (solid) transverse velocityỸa,

(dotted) streamwise velocityỸb. Bot-
tom figure presents the time history of
the corresponding feedback controlub

t.

FIG. 10. Estimated trajectoriesXestd of the Föppl vortices obtained in the LQG stabilization of the cylinder wake at Re=75:(a) view of the near wake region,
(b) magnification of the neighborhood of the upper stationary point. In(b) the stationary point is marked with a solid circle.
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measurementsỸa and Ỹb of the transverse and streamwise
velocity in the stabilized wake flow at the pointsxm,0d and
the corresponding feedback control. Relation between the

controlub
tstd and the transverse velocity measurementsỸastd,

which in the formulation of the estimation problem are con-
sidered more “credible”[cf. Eq. (30)], is shown in Fig. 12.
We note in Figs. 11 and 12 that, after an initial transient
related to developing instability, both the measurements and
the control settle in a quasiperiodic cycle.

The flow patterns corresponding to the natural vortex
shedding and the flow stabilized with the LQG compensator
are shown in Fig. 13. It is evident that the flow pattern is
much more symmetric in the controlled case, an effect which

becomes more pronounced further downstream. This effect
can be analyzed in a quantitative fashion by comparing in
Fig. 14 the behavior of the transverse velocity componentv
on the centerline and different downstream stations in the

uncontrolled and controlled flows[note thatỸa in Fig. 11
(top) represents the data forx=xm

opt]. We observe that in the
near wake the actuation in fact increases the transverse ve-
locity oscillations as compared to the uncontrolled flow[Fig.
14(a)]. Further downstream, however, the transverse velocity
oscillations are significantly reduced by the feedback stabili-
zation as compared to the corresponding levels in the uncon-
trolled flow [Figs. 14(b)–14(d)]. This trend is evident in Fig.
15 which shows the dependence of the amplitude of the
transverse velocity oscillations at the centerline on the down-
stream distance from the obstacle. We note that the feedback
stabilization manages to reduce transverse velocity oscilla-
tions only downstream from the pointx* >7.6. Somewhat
surprisingly, this point is located downstream fromxm

=5.53 which is where the transverse velocity oscillations are
penalized in the cost functional(21). In Fig. 16 we show that
the feedback control increases the mean value of the drag
coefficientcD and the oscillation amplitude of the lift coef-
ficient cL as compared to the corresponding levels in the
uncontrolled flows.

VI. CONCLUSIONS

In this paper we investigated the use of the Föppl system
as a reduced-order model for an unstable wake flow under-
going transition to vortex shedding. Utility of the linearized
Föppl system for the purpose of wake stabilization was char-
acterized using methods of Control Theory. For the case of
the cylinder rotation acting as the flow actuation and the

FIG. 11. The top figure shows the time
histories of the measurements of(solid

line) the transverseỸa and (dotted

line) the streamwiseỸb velocity com-
ponents obtained in the LQG stabiliza-
tion of the cylinder wake at Re=75.
The bottom figure shows the time his-
tory of the corresponding feedback
control ub

t.

FIG. 12. Relation between the feedback controlub
tstd and the transverse

velocity measurementsỸastd with time t serving as a parameter.
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velocity measurements atsxm,0d used as the system output, it
was found that this reduced-order model is observable and
stabilizable, but not controllable. Alternative forms of actua-
tion (i.e., localized at the boundary blowing and suction) and
observations(i.e., pressure difference measurements on the
boundary) were also considered briefly and it was shown that
the resulting linearized reduced-order models are, respec-
tively, controllable and detectable. One should emphasize the
remarkable simplicity of the reduced-order model which has
only four discrete degrees of freedom(or two degrees of
freedom after reduction to a minimal representation). Thus,
the Föppl system may be regarded as occupying a place
somewhere close to the “low-complexity” extreme of the hi-
erarchy of reduced-order models for wake flows(cf. Noack
et al.26). As a result, the design of a stabilizing LQG com-
pensator for this model is a straightforward task. This com-
pensator was found to stabilize the stationary point of the
nonlinear Föppl system and the downstream region of the
actual cylinder wake at Re=75. The fact that it was not pos-
sible to stabilize also the near wake region points to an im-
portant limitation of this reduced-order model. The Föppl
system is constructed based on the potential flow theory and
therefore cannot properly account for vorticity creation at the
boundary and other viscous effects known to dominate the
near wake region. This explains why the feedback stabiliza-
tion not only did not manage to reduce velocity oscillations

in the near wake[Fig. 14(a)], but also increased the mean
drag and lift oscillations(Fig. 16). On the other hand, further
downstream, where the flow is dominated by quasi-inviscid
vortex dynamics, the control algorithm did stabilize the flow.
There are in fact many engineering applications, such as for
instance, mitigation of “wake hazard,”48 where stabilization
of the far wake region is of primary importance. Owing to its
simplicity, the Föppl model appears to provide only qualita-
tive information about the behavior of the actual flow at the
onset of vortex shedding. This is reflected in the fact that the
transverse velocity oscillations were not reduced at the sen-
sor locationxm, but only downstream from that point.

An important question concerns performance of the
LQG compensator developed here at higher values of the
Reynolds number. The linearized Föppl system models the
behavior of the flow at transition to vortex shedding, so the
performance of a stabilization strategy derived based on this
model is likely to deteriorate for Reynolds numbers signifi-
cantly higher. It is possible, however, that useful reduced-
order models can still be devised in such regimes employing
more elaborate constructions such as larger ensembles of
point vortices, or their three-dimensional analogs(i.e., vortex
filaments). These ideas represent interesting avenues for fu-
ture research.

As regards comparisons with other control methodolo-
gies applied to the same problem, precise quantitative assess-

FIG. 13. Vorticity contours in(a) the uncontrolled cylinder wake flow and(b) the cylinder wake flow with the LQG feedback stabilization at Re=75. Solid
lines represent positive vorticity values and dashed lines represent negative vorticity values. For the sake of clarity, isolines corresponding toextreme vorticity
values are not shown.
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ments are difficult to make, unless exactly the same forms of
actuation and the same control objectives, apart from the
same flow conditions, are used in the cases analyzed. These
are necessary to ensure a fair comparison of the control ob-
jectives achieved and the control efforts required in the dif-
ferent cases. In fact, most of the studies concerning wake
control available to date(e.g., Refs. 14–21) were performed
with either different forms of actuation, or different control
objectives. Thus, only qualitative comparisons can be made.
In this connection it should be emphasized that, as indicated
by the results of Sec. III and Appendix B, the wake control

utilizing cylinder rotation as the flow actuation appears more
“difficult” than the wake control employing blowing and
suction at the boundary. The reason is that in the latter case
the resulting reduced-order model is fully controllable,
whereas in the former case it is “only” stabilizable. This may
also explain why wake control approaches based on blowing
and suction tend to be more successful in stabilizing the near
wake region(cf. Refs. 14–21). As regards other flow control
techniques relying on the Föppl system as a reduced-order
model, such as the studies described in Refs. 38 and 39, we
can conclude that the present solution offers the usual advan-

FIG. 14. Comparison of the time evo-
lution of the transverse velocity com-
ponent in (dotted line) the uncon-
trolled flow and in (solid line) the
controlled flow on the flow centerline
and four different downstream stations
(downstream coordinates are indicated
on the insets).
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tages of systematic control-theoretic approaches which in-
clude: optimality(i.e., the control effort is kept as small as
possible), a degree of robustness with respect to system and
measurement disturbances, and ease of generalization for the
case with several different inputs and outputs. Note that none
of these desirable characteristics can bea priori guaranteed
by the heuristic strategy developed in Ref. 39. On the other
hand, that method appears to stabilize the near wake region
as well, however quantitative comparisons are not possible

due to a different form of the actuation used.
Further research possibilities that may be explored in

connection to this problem include application of the same
reduced-order model, but with a different form of actuation
(e.g., blowing and suction on the cylinder boundary, as de-
scribed in Appendix B) and a different system output(e.g.,
measurements of the two-point pressure difference on the
cylinder boundary, as described in Appendix C). It can be
anticipated that such modifications might help alleviate some
of the limitations mentioned above. A different family of
control strategies could be obtained applying to the same
reduced-order model methods of nonlinear and adaptive con-
trol theory. Another interesting problem is to consider wakes
of noncircular obstacles, where the corresponding reduced-
order model could be obtained by transforming the Föppl
system with the use of a suitable conformal mapping. Fi-
nally, we will also attempt to implement the stabilization
strategy developed in the present paper in a real laboratory
experiment.
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APPENDIX A: RECIRCULATION LENGTH IN THE
STATIONARY SOLUTION OF THE FÖPPL MODEL

The lengthLR of the recirculation bubble is characterized
by the downstream distance where the streamwise velocityu
changes sign from negative to positive. Therefore, a closed-

FIG. 15. Amplitude of the transverse velocity oscillations as a function of
the downstream distance from the obstacle in(dotted line) the uncontrolled
flow and (solid line) the controlled flow. The dashed vertical line corre-
sponds to the sensor coordinatexm.

FIG. 16. Comparison of the time evo-
lution of (top) the drag and(bottom)
lift coefficients cD and cL in (solid
lines) the controlled flow and(dotted
lines) uncontrolled flow.
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form relation betweenLR and the downstream coordinatex0

of the Föppl vortices in the stationary configuration can be
obtained by examining the condition

RefVsLRdg = 0, sA1d

whereVszd is given by (1) with −G1=G2=G, z1=z0, z2= z̄0,
andGC=0. Expanding(A1) we obtain

LR
2 − 1

LR
2 −

G

p
F y0

sLR − x0d2 + y0
2 −

y0

sLRx0 − 1d2 + LRy0
2G = 0

sA2d

which can be converted to the following sixth-order polyno-
mial equation forLR

sLR
2 − 1dsjLR

4 + zLR
3 + hLR

2 + zLR + jd = 0, sA3d

where

j = pr0
2,

z = − 2px0sr0
2 + 1d,

h = ps1 + 4x0
2 + r0

4d + Gy0s1 − r0
2d.

Exploiting the symmetry of Eq.(A3), its six roots can be
identified as follows:

LR
s1,2d = ± 1,

LR
s3,4d = 1

2sf − cd ± 1
2
Îsf − cd2 − 4,

LR
s5d = 1

2sf + cd − 1
2
Îsf + cd2 − 4,

LR
s6d = 1

2sf + cd + 1
2
Îsf + cd2 − 4,

where

f =
x0sr0

2 + 1d
r0

2 ,

c =
r0 + 1

r0
3 Îsr0 − 1d2sr0

5 + 2y0r0
4 + x0

2r0
3 − 2y0d

r0
3 .

Note thaty0, r0, andG are related tox0 through(5). The roots
LR

s3,4d form a complex conjugate pair, while all the remaining
roots are purely real. The first four roots correspond to the
streamwise velocity vanishing at the cylinder boundary: at
the front and rear stagnation pointssLR

s1,2dd, and at two points
located symmetrically above and below the flow centerline
sLR

s3,4dd. The fifth rootLR
s5d corresponds to a point inside the

cylinder, whereas the sixth rootLR
s6d represents the end of the

recirculation bubble discussed in Sec. II. We can thus set
LR=LR

s6d. The dependence ofLR on x0 in shown in Fig. 4.

APPENDIX B: ALTERNATIVE ACTUATION—BLOWING
AND SUCTION LOCALIZED ON THE CYLINDER
BOUNDARY

In this appendix we generalize the framework developed
in this paper to account for a different type of flow actuation,
namely blowing and suction localized at the cylinder surface.

In the context of a potential flow model such an actuation
can be represented by a source-sink pair located at the cyl-
inder boundary symmetrically with respect to the flow cen-
terline(Fig. 17). We choose the mass fluxL=Lstd of a single
source(or sink) as the control variable. The complex velocity
field induced at the pointz by such a source-sink pair is

VLszd, L

2p
S 1

z− eis −
1

z− e−isD , sB1d

wheres is the angle characterizing the location of the actua-
tors on the cylinder boundary. Note that the total mass flux
due to the source-sink pair is zero. It can also be verified that
the presence of the source-sink pair does not affect the wall-
normal velocity on the cylinder boundary away from the
singularities, so the new actuation(B1) can be used to re-
place the forcing term in(2). The resulting linearized control
matrix is given by

BL, = −
sinssd

psx2 + k2d3
k

x

k

x
4 , sB2d

where x,x0
2−y0

2−2x0cosssd+1 and k,−2y0fx0−cosssdg.
Controllability of the linearized Föppl system with this new
form of actuation can be characterized by calculating

NcsLd, rankfBL ABL A2BL A3BLg = 4, sB3d

which means that all of the eigenmodes of(6) can be con-
trolled. For a given base flow, the position of the actuators
(i.e., the angles) can be chosen so as to maximize the con-
trol residual of the unstable mode(cf. discussion of the op-
timal sensor placement at the end of Sec. III).

APPENDIX C: ALTERNATIVE MEASUREMENTS—
PRESSURE DIFFERENCE ON THE CYLINDER
BOUNDARY

In this appendix we construct observation operators for
the case when the available observations have the form of

FIG. 17. Schematic showing the Föppl system with a source-sink pair as a
reduced-order model for localized blowing and suction actuation.
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measurements of the pressure difference between two points
on the cylinder boundary. Then we analyze the observability
of the reduced-order model equipped with such an observa-
tion operator. We will consider two configurations

Dvp, pw − p−w, sC1ad

Dhp, pw − pp−w, sC1bd

wherepu represents the pressure at the boundary point with
the azimuthal coordinateu (Fig. 1). Thus,(C1a) and (C1b)
are pressure differences between two boundary points lo-

cated symmetrically with respect to the horizontal and verti-
cal axes, respectively. These quantities are important, since
−e0

pDvpswdsinswddw represents the form lift and
−e−p/2

p/2 Dhpswdcosswddw represents the form drag. In a poten-
tial flow with known velocity field the pressure at a given
boundary point can be calculated from the Bernoulli equa-
tion aspw=p0+ 1

2suV0u2− uVwu2d, wherep0 andV0 are the pres-
sure and the complex velocity at some arbitrary point in the
flow domain, andVw is the complex velocity at the boundary
point. Thus, the vertical pressure difference can be expressed
as Dvp= 1

2suV−wu2− uVwu2d and the corresponding linearized
observation operator is[cf. (13)]

CDvp = FU ]Dvpswd
]x1

U
sx0,y0d

U ]Dvpswd
]y1

U
sx0,y0d

U ]Dvpswd
]x2

U
sx0,y0d

U ]Dvpswd
]y2

U
sx0,y0d

G . sC2d

Observability can now be characterized by calculating

NosDvpd, rankfCDvp
T ATCDvp

T sATd2CDvp
T sATd3CDvp

T g

= 2, sC3d

which means that two(out of four) modes are unobservable.
However, by bringing the new observation operator to the
minimal representation[with the help of the transformation
matrix (17)], one can identify the unobservable modes as the
neutrally stable modeg, which means that the new system is
in fact detectable. When the horizontal pressure difference
Dhp is used as observations, one can verify that the corre-
sponding system is fully observable. Thus, using either ob-
servations(C1a) or (C1b) stable estimation strategies can be
designed employing the techniques described in Sec. IV. The
sensor location(i.e., the anglew) can be chosen so as to
maximize the observation residual of the unstable mode(cf.
discussion at the end of Sec. III).
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