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Abstract

In this paper we are interested in the Quartapelle—Napalit@pproach to calculation of
forces in viscous incompressible flows in exterior domakWve study the possibility of

deriving a simpler formulation of this approach which midéad to a more convenient
expression for the hydrodynamic force, but conclude thahsisimplification is, within

the family of approaches considered, impossible. This shibat the original Quartapelle—
Napolitano formula is in fact “optimal” within this class approaches.
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1 Introduction

Calculation of hydrodynamic forces acting on an object inrsed in a fluid is one
of the central objectives in many applied problems in FlughBmics. In this in-
vestigation we analyze the possibility of extending therapph to calculation of
forces proposed by Quartapelle and Napolitano (1983). Weébwiiconcerned with
incompressible flows in unbounded exterior domains (Fide In some deriva-
tions we will also consider truncatiori®; of the domainQ obtained by imposing
an exterior boundarf/1 (Figure 1b). We will fix the origin of the coordinate system
at the obstacle and will assume that the obstacle remainsmhets with the fluid
velocity vanishing on its boundary. We will also assume thate is a uniform flow
Us€e; at infinity (g1 is the unit vector corresponding to the OX axis). The fluid mo-
tion is governed by the Navier—Stokes system representingarvation of mass
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(a) O

Fig. 1. Schematic of the flow past an obstalclein (a) an unbounded exterior domeih
and (b) an exterior domaif21 with an outer boundary ;.

and momentum. This system of equations will be assumed te tie/following
form

%—ltj—uxw—l-lilu—;-i—l]p-i—vl]xwzo inQ x [0,T] (1a)
O-u=0 inQ x[0,T] (1b)
ul,_g= "o inQ (1c)
ul, =0 in [0, T] (1d)
U — Uw€ in [0, T] for [x| — e,  (1le)

where:u = [ug, U, us] is the velocity field,w = O x u is the vorticity, p is the
pressurey represents the coefficient of the kinematic viscosity (teesity of the
fluid is assumed equal to unityp is the initial condition,T represents the end
of the time interval considered amd= [x1, X2, 3] is the position vector. Given an
object with a boundary ¢ characterized by the local unit normal vectofacing
into the object (Figure 1a,b), the hydrodynamic force actm this object is, by
definition, given by the following expression

F:FP+FV:]{ pndo—vy{ [Du+(Du)T]nd0:j{
ro I—O

pnd0+vy{ n x wdo.
Mo

Mo
2)

The velocity gradient is defined g8ul;; = g—)‘j; and the two forms of the viscous
termFV are equivalent due to the identiWO(Du)Tndo = 0 valid for all incom-
pressible fieldsl. The arguments that we will elaborate in this paper will bidva
in both 2D and 3D domains; for the sake of simplicity of expiosi, however, the
main proof will be restricted to the 2D case with its genesaiion to 3D being
quite straightforward.

It is often convenient to solve equations of fluid motion {1pne of the so—called
“non—primitive” formulations involving only vorticity ad velocity, or streamfunc-
tion [see, e.g. Gresho (1991); Quartapelle (1993)]. In siad®es one does not have
direct access to the pressure required to evalBateSimilar situation arises also



in experimental investigations where the Particle Imag®dimetry (PIV) mea-
surements are capable of extracting instantaneous weknwit vorticity fields with
systematically increasing resolution in space and time,[sgy. Rockwell (2000)].
Unavailability of pressure in such approaches motivatesrtbed for alternative
ways of calculating the hydrodynamic force in which pressamot needed. In the
literature several methods have been proposed, all retyirgpuitable manipulation
of the Navier—Stokes system (1). Below we will briefly revidve most important
results; derivation of some of these approaches will beyaedl in detail in the
following Section. We also remark that, in view of the asstions made, these ex-
pressions will not include terms corresponding to the motbthe obstacle. This
lack of generality, however, does not affect the main poirthe paper.

The best known approach, popularized by Saffman (1992)essps the force in
terms of the vorticity impulse as

SN d/xxo.)dQ, 3)
Q

D—1dt
whereD = 2,3, is the spatial dimension. While providing an interestingight
into the relationship between the force and vorticity dyr@nthis approach has
the disadvantage that integration is extended over theavhbhite domain. Conse-
guently, vorticity at very large distances from the obstaunlust be included which
can be quite difficult in both numerical simulations and PI¥asurements. In ad-
dition, the time derivative present in (3) tends to amplifige. As an alternative,
Noca, Shiels, and Jeon (1997, 1999) proposed a family ofdtaswith the generic
form
1 d . .
F=———— | XxxwdQ+ [lntegral oven'l] + [lntegral oveflgl, (4)
D—1dt/g,

where integration is restricted to the truncated donjnand the far field con-
tribution is contained in the integral ovér. These formulas no longer require
integration over an infinite domain, but still suffer frometipresence of the time
derivative. Furthermore, evaluation of the fluxes involwedhe integrals over
may be complicated.

A different approach was proposed by Quartapelle and Negoali(1983) where,
before integrating over the domain, the momentum equatfiajh i€ multiplied by
the gradientdn, of a harmonic functiomg which satisfies a Neumann—type bound-
ary conditionn-0na = —n-aonl g and whose gradient decays to zero at the outer
boundary. As a result, the hydrodynamic force in the dimectf the vectorn € RP

is given by the expression

FaZF'aZ—[)Dﬂa‘(wa)dQ+V?€ (Ona+a) - (n x w)do. (5)

We remark that in the above expression the two terms invglitre functionn,
represent the contributions from the pressure fdf€ea. Formula (5) has the ad-



vantage that, apart from the absence of the time—derivatigentegrand expression
in the area integral includes a factor that rapidly decayh ttie distance from the
obstacle. As a result, formula (5) is much more convenierpyly in numerical
simulations where resolution of the velocity and vortidiglds is usually decreased
far from the obstacle, and/or PIV measurements where datsuially confined to
a finite domain. This method has been further developed byn@kE992); Howe
(1995); Chang and Lei (1996), Chang, Su, and Lei (1998) wihicluded a general-
ization for the compressible case, Protas, Styczek, andakowski (2000) and Pan
and Chew (2002). This approach has also been the method ioedoo force cal-
culations in several investigations employing the Vortegthbds [see, e.g. Smith
and Stansby (1988); Chang and Chern (1991); Stansby andt5|a893); Clarke
and Tutty (1994); Protas, Styczek, and Nowakowski (2000, Liu, and Lam
(2001)] and appears as a promising possibility for caloodatorce based on data
obtained from PIV measurements (Wesfreid, private comuoatian). A similar ap-
proach has been used by Wells for theoretical investigat{@vells, 1996, 1998).
It has been recognized, however, that the approach leadifuyrhula (5) has cer-
tain shortcomings. We note that the expression for the predserceFP involves
a boundary integral term proportional to the viscosityin order to evaluate this
term and the term representing viscous stresses, thebdistm of vorticity on the
boundary must be available which in many applications isarinconvenient (in
grid—based numerical methods and in PIV this may requiresttoation of com-
plicated differentiation stencils, whereas in vortex noeth complex interpolation
schemes may be needed). The purpose of the present papexemine the pos-
sibility of simplifying the Quartapelle—Napolitano apph in a way to alleviate
these difficulties, i.e., express the force with a formulanak (5), but without
boundary terms involving data other than the boundary dardi for problem (1).
We will attempt this by replacin@ln, in the derivation of (5) with a more gen-
eral function. It will be proven, however, that such a sirfigdition is not, in fact,
possible. Therefore, the Quartapelle—Napolitano forn{@lacan be regarded as
“optimal” within this family of variational approaches @herm “optimal” is not
used here in its strictly mathematical sense, but ratheli@mhat formula (5) rep-
resents an approach more convenient than other from the watignal point of
view).

The structure of the paper is as follows: in Section 2 we rethe derivation of
formula (5) in a more general setting and suggest formakyrtew approach, in
Section 3 we state and prove a theorem showing that the desinglification is not
in fact possible; some consequences of the presented anggiara conclusions are
discussed in Section 4.



2 The Variational Formulation — A General Approach

In this Section we analyze the derivation of the Quartap&lbgpolitano formula

(5) with the purpose of modifying this derivation in such aythat the boundary

terms involving vorticity would no longer be present. We Mnlvestigate this pos-

sibility as a generalization of the standard approach thtoed by Quartapelle and
Napolitano (1983). First we show that the different appheacto calculation of

forces mentioned in Section 1 and the approach we are abautdstigate can in

fact be derived using the following general procedure:

Procedure 1 (1) choose a functioy € [H(Q)]P, where[H1(Q)]P denotes the
Sobolev space of vector—valued functions with squaregtialtde derivatives
in Q, such that

By, = Ba, (6)

whereB : y\ ro fo\ M is a linear operator acting on the boundary values
(traces) of the functiow,

(2) multiply the momentum equatié¢ba) by y and integrate over the truncated
domainQ

2

/y. N eornd dQ:/ y-[Op—vOxw dQ, (7)
Ql at 2 Ql

(3) use integration by parts and relati¢f) valid on the boundary to extract from
(7) the terms corresponding (@),

(4) assume thdt; — oo which, given the assumptions on the behavioy ahdu
for large |x| will remove the integrals defined dn.

More specifically, step 4 of Procedure 1 requires an assompiiat the decay of
the field (u — Uxe;) for |x| — o be sufficiently rapid Q(|x|~2) in 2D andO(|x|~3)

in 3D]. We remark thasteadysolutions of the Navier—Stokes system do not nec-
essarily satisfy these assumptions [see, e.g. Galdi (1984)a result, some of
following expressions may, somewhat paradoxically, bejhaable in the case of
steady flows.

In order to obtain a unique function condition (6) has to be supplemented with
an additional condition defined in the domd&n We will illustrate now how the
above general procedure can lead, for different choicesiefidditional condition,
and hence the functiop to formulas (3), (4) and (5). Then, a new approach will be
formulated by requiring of the functiopto be characterized by still more general
properties. In all cases we will calculate the projectionha&f force on an arbitrary
vectora (by choosinga =g, i = 1,...,D, whereg is the unit vector associated
with thei—th axis of the coordinate system, we will obtain componehtke force

in the corresponding directions).



The impulse formulé3) is obtained trivially by choosing
y=ain Q, hence, by extensiorg =1d = y| =& (8)

i.e., the functiory is constant and given by the vectareverywhere. Following
Procedure 1 and using standard vector identities [seeNecp, Shiels, and Jeon

(1999)] we obtain

a d
which is in fact equivalent to formula (3) dotted with the t@@. By abandoning
step 4 of the procedure, i.e., retaining a truncated dorfajrwe would obtain an

expression foF - a equivalent to dotting (4) with the vectar

The Quartapelle—Napolitano formu(&) is obtained by choosing the functigin
the formy = —0n,, wheren, satisfies the following Neumann problem for the
Laplace equation

O.y=-Ana=0 inQ,
B = (nf) = <n7y‘r0> =N Dﬂa‘ro =n-a, (10)
y—0 for [x| — oo.

where (-,-) represents the standard Euclidean inner product. Folipuhe steps
outlined in Procedure 1 and employing transformations idesd in detail in Pro-
tas, Styczek, and Nowakowski (2000), we can express theymeforce as

Fp~a:—/Dna-(u><w)dQ+vf Ona- (n x w)do. (11)
Q )

The second term on the right—hand side in (11) is similarpbbtiequal, to the term
representing the viscous stresses in (2). In order to obtaaxpression for the total
force, the viscous terfR” - a must be added to (11) which will result in formula (5).
The form of second term on the right—hand side in (5), whiahlarewritten as

v?{ (Elr]a-l-a)-(nxw)do:—v?{ @ [nx (Ona+a)dQ,  (12)
Mo Mo

may suggest that we could redefine the funciydoy adjusting the boundary con-
dition (6) in such a way as to get rid of this term altogethdrisTis the motivation
for a more general approach that we consider formally below.

In this approach we will thus employ a functigwhich should satisfy the following
set of conditions

Oxy=0 inQ,

O.y=0 inQ,

B=Id =y=a onTly, (13)
y—0 for |x| — co.



We notice that this problem in fact represents an augmerdesion of the original
problem (10) in which the constraint of a vanishing curl isled and the boundary
conditions are specified for all componentsypfather than just the wall-normal
component. The hope is that these additional assumptionlshwake it possible to
derive an expression for the hydrodynamic force simplen tt@ original formula
(5). The importantissue of consistency of system (13) vélspecifically addressed
in Section 3. In principle, solution to problem (13) can bexstoucted using the
Helmholtz—Hodge decomposition (Quartapelle, 1993)

y=—-0¢-0Oxy, (14)

where the two function$ andy, corresponding to the potential and the solenoidal
part, can be found by solving the system of equations

(—Ap =0 inQ,

—OxOxygp=0 inQ,
O-¢p=0 inQ,
n-O¢+n-(OxP)=-n-a onlo, (15)
nNxOp+nxOxP=—-nxa onlo,

( 0¢,0¢p—0 for X[ — o,

where the third equation is a “gauge” condition added toelbe system. We re-
mark that system (15) is equivalent to (13)—(14). As is welbkn (Quartapelle,
1993; Richardson and Cornish, 1977), in general decompngit4) is not unique,
but there are several ways to make it unique by prescribipgogpiate boundary
conditions for the potential¢ andy. However, for our purposes here it is suffi-
cient to leave the boundary conditions in the coupled foresent in (15). In the
remaining part of this Section we wifbormally use solutions of system (15) to-
gether with Procedure 1 to derive an apparently very appgakpression for the
hydrodynamic force.

Since the derivations to follow are new, we will present thensome detail. We
begin by integrating by parts the terms on the right—hane efd7)

—/ y-IZIde:/ pIZI-de—]{ pn-ydo
Qq Q1 MUl

=— pn-ado—f pn-ydo,
Mo M
—v/ YV (Oxw)dQ = —v w-(ny)dQ—vy{ Y- (n xw)do
Q1 MoUl

:—vf a-(n xw)do—vf Y- (n xw)do.
IG) M

O

Whenl 1 — oo, the assumptions concerning the asymptotic behavigraoidu for
large x| imply that the integrals ofi; vanish. Thus, we obtain for the terms on the



right—hand side in (7)

/y~[—l]p—v|:|><o.)] dQ = — pndo—vaoy{ nxwdo=-F-a. (16)
Q

Mo Mo

We now proceed to analyze the terms on the left—hand sidg an(rbegin with the
time—derivative term in which we express the velocity fielderms of the stream
vectorW asu =0 x W

o¥ -(Oxy)do+ y(nx%)do

dQ / EI>< 0 =
Y Q at MoUr: ot

= d0+7{y n><—

Letting againl; — oo, by (1e) we havdl — W, = [0, —%wae,, %Umxz] which is
time—independent, so that the integrallanvanishes and we obtain

/y Mo = ]{(nxay%do. a7

The streamvectd¥ is defined via the system of equations

AY = —w inQ,

O-w=o0 inQ,

n-(OxW¥Y)=0 onlo, (18)
Y-y, for [x| — oo.

In order to evaluate (17) we need the boundary valqp. of the stream vector.

It is known [see, e.g. Quartapelle (1993)] that the boundmi;ae\P\ can be
expressed, up to a time—dependent constant, entirelyrirstef the boundary data
for velocity (this construction is illustrated for the sitep2D case in Appendix).

We keep the form of the second term on the left—-hand side irufichanged,
whereas as regards the third term we proceed using integrayi parts as follows

2

u? u? u
/ y-O dQ:—/ @-y) L da + n-y— do
2 Q1 2 MoUrs 2

2 2
u u

=¢ n-a—do+ ¢ n-y—do.
) M 2

As before, when 1 — o, the integral ovef ; vanishes and we obtain

u? u?
/Qyﬂ(?) dczygona?do. (29)

Thus, putting together (7), (16), (17) and (19), we obtairatvippears to be a
new expression for the hydrodynamic force in which the ba@mdntegrals are



expresseentirelyin terms of the boundary conditions for the problem (1)

2
F-a:/y-(u xwW)dQ— ¢ (nx a)-@do—i— n-a—do.
Q Mo ot Mo 2
Assuming, as we do in this investigation, that the boundatgaity vanishes and
invoking arguments presented in Appendix reduces thisesgion to a particularly
simple form

F-a:/gy-(uxw)dQ, (20)

where the functiory should satisfy (13). We emphasize that, in contrast to (5),
expression (20) does not contain any boundary integratdvimg vorticity which,

as argued in Section 1, are awkward to evaluate in numerioallations and using
data from PIV measurements. In Section 3 we will prove tlegfrettably, a function

y required to derive (20) cannot in fact be constructed, beeaystem (13) does
not admit any solutions.

3 Proof of Non—Existence of the Functiory

In this Section we present a simple proof tha& i constantvector, system (13)
does not in fact admit any solutions. It is a well-known fattvector analysis
(Girault and Raviart, 1979) that, given the divergence amtl@f a vector field in
a bounded domain, this vector field can be reconstructedagat thill satisfy only
onescalar boundary condition. As a matter of fact, this vecteldfimay satisfy
boundary conditions on other components as well, but onlgnuine divergence
and curl are “special”, in the sense that they satisfy aold#i constraints, e.g., they
come from solutions of the Navier—Stokes equation. Thugeneral, problems
(13)—(15) are overdetermined. Below we show that for theaghof the boundary
data in (13) (a constant vector) required for the derivatib(20), the solution does
not indeed exist. For the sake of simplicity of the proof, wstrict our attention
here to the 2D case:

Theorem 1 Given a constant vecta € R?, systen(13) has no solutions in 2D.

PROOF. Assume for the moment that a functigsatisfying (13) exists. Since the
2D case is considered, we haye- [y1,Y>,0] andaix3 = 0. The first two equations
in (13) now reduce to

_0y1 | Oy2

0y =5 o =0 (21a)
[0y dyr\

IZI><y_e3,<aX1 axz) =0. (21b)



We define nowz £ x; +ix» as a point in the complex plaiig wherei = /—1 is the
imaginary unit. Thus, relations (21) represent the CauBlgmann conditions for
two conjugate functiong; andy, which can therefore be regarded as the real and
imaginary part of an analytic functiow(z) £ y; +iy>. In an unbounded exterior
domainQ this analytic function can be represented as a Laurentsserie

00

W=y o

k=—0o0

with the expansion coefficientg € C, k=...,—1,0,1,.... Without loss of gen-
erality, we assume that the contdUg is a unit circle (the exterior of any other
sufficiently regular contour can be transformed into theeggt of a unit circle us-
ing a suitable conformal mapping). The boundary conditimnshe problem (13)
are equivalent to

W(E® = +c e 1c e+t +c?®+..—a  (22a)
W(z) - 0 forz— oo, (22b)

wherea = a; + iap. We observe that, because of (226),= 0 for k > 0. Then,
however, there is no choice of the remaining expansion aoefiiscy, k < 0, that
can make the series (22a) equal to a constant for all valu@sTdfus, an analytic
function satisfying conditions (22) does not exist, fromiethwe conclude that
system (13) in 2D does not admit any solution§]

The proof in the 3D case can be constructed using analogailmadseof the poten-
tial theory.

4 Conclusions

In this paper we showed how a family of well known approaclesaiculation of
forces in viscous incompressible flows in exterior domamduding the Quartapelle—
Napolitano formula, can be derived in a generic way by makiffgrent choices of

the vector fieldy on which the momentum equation is projected. We then consid-
ered a potentially appealing simplification of the Quartisélapolitano approach

in which the terms involving the boundary vorticity are aisdét was obtained for-
mally by requiring that the functiog have more general properties than used in
the original approach. It was, however, proved that a famctvith such properties
cannot be constructed, hence indicating that the originer@pelle—Napolitano
formula is “optimal” within this family of approaches.
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Appendix  Boundary Value of the Streamfunction

In 2D flows velocity can be expressed in terms of streamfonapi asu = [u,v| =

e3 x Oy, wherees is the unit vector associated with the OZ axis. The boundary
value of the streamfunction can be determined, for instafioen the boundary
condition%—iJ = u-n, wheres s the arc—length coordinate along the boundary.

|
Hence o

w(t,s) :/Sun(t,s’)d§+C(t), (23)

%

wheresy is some arbitrarily chosen arc—length coordinate ané u - n. As shown
in Girault and Raviart (1979), while the const&it) may be determined requiring
the pressure to be single—valued in the don@jit will in general remain a func-
tion of time. Hence, in the 2D case, integral (17) can be esq@é for a stationary
contourl g as

0 o[ s
fro(nxay—nyax)a—ttpdcz%ro(nxay—nyax)a _/50 Un(t,s)ds +C(t) | do

a [ S
= ¢ (nay—nyay) = / Un(t,s)ds | do
o 6t S
' . . (24)
+C(t) 7{0(nxay —nyay) do

a [ rS
:7{ro(nxay_nyax>a /un(t,s’)dé do,

L/ S0

where we observed that (nxay — r_1ya)_<) do= ay r,Mxdo—ax fro_ r_1yd0 = 0. Hence,
expression (24) may be nonvanishing only if the boundanditams for problem
(1) are time—dependent.
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