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Abstract

In this paper we are interested in the Quartapelle–Napolitano approach to calculation of
forces in viscous incompressible flows in exterior domains.We study the possibility of
deriving a simpler formulation of this approach which mightlead to a more convenient
expression for the hydrodynamic force, but conclude that such a simplification is, within
the family of approaches considered, impossible. This shows that the original Quartapelle–
Napolitano formula is in fact “optimal” within this class ofapproaches.
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1 Introduction

Calculation of hydrodynamic forces acting on an object immersed in a fluid is one
of the central objectives in many applied problems in Fluid Dynamics. In this in-
vestigation we analyze the possibility of extending the approach to calculation of
forces proposed by Quartapelle and Napolitano (1983). We will be concerned with
incompressible flows in unbounded exterior domains (Figure1a). In some deriva-
tions we will also consider truncationsΩ1 of the domainΩ obtained by imposing
an exterior boundaryΓ1 (Figure 1b). We will fix the origin of the coordinate system
at the obstacle and will assume that the obstacle remains motionless with the fluid
velocity vanishing on its boundary. We will also assume thatthere is a uniform flow
U∞e1 at infinity (e1 is the unit vector corresponding to the OX axis). The fluid mo-
tion is governed by the Navier–Stokes system representing conservation of mass
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Fig. 1. Schematic of the flow past an obstacleΓ0 in (a) an unbounded exterior domainΩ
and (b) an exterior domainΩ1 with an outer boundaryΓ1.

and momentum. This system of equations will be assumed to have the following
form

∂u
∂t

−u×ωωω +∇∇∇
u2

2
+∇∇∇p+ν∇∇∇×ωωω = 0 in Ω× [0,T] (1a)

∇∇∇ ·u = 0 in Ω× [0,T] (1b)

u
∣

∣

t=0 = u0 in Ω (1c)

u
∣

∣

Γ0
= 0 in [0,T] (1d)

u −→U∞e1 in [0,T] for |x| → ∞, (1e)

where:u = [u1,u2,u3] is the velocity field,ωωω = ∇∇∇ × u is the vorticity, p is the
pressure,ν represents the coefficient of the kinematic viscosity (the density of the
fluid is assumed equal to unity),u0 is the initial condition,T represents the end
of the time interval considered andx = [x1,x2,x3] is the position vector. Given an
object with a boundaryΓ0 characterized by the local unit normal vectorn facing
into the object (Figure 1a,b), the hydrodynamic force acting on this object is, by
definition, given by the following expression

F = Fp+Fν =
I

Γ0

pndσ−ν
I

Γ0

[

∇∇∇u+(∇∇∇u)T]

ndσ =
I

Γ0

pndσ+ν
I

Γ0

n×ωωωdσ.

(2)
The velocity gradient is defined as[∇∇∇u]i j = ∂ui

∂x j
and the two forms of the viscous

term Fν are equivalent due to the identity
H

Γ0
(∇∇∇u)Tndσ = 0 valid for all incom-

pressible fieldsu. The arguments that we will elaborate in this paper will be valid
in both 2D and 3D domains; for the sake of simplicity of exposition, however, the
main proof will be restricted to the 2D case with its generalization to 3D being
quite straightforward.

It is often convenient to solve equations of fluid motion (1) in one of the so–called
“non–primitive” formulations involving only vorticity and velocity, or streamfunc-
tion [see, e.g. Gresho (1991); Quartapelle (1993)]. In suchcases one does not have
direct access to the pressure required to evaluateFp. Similar situation arises also
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in experimental investigations where the Particle Image Velocimetry (PIV) mea-
surements are capable of extracting instantaneous velocity and vorticity fields with
systematically increasing resolution in space and time [see, e.g. Rockwell (2000)].
Unavailability of pressure in such approaches motivates the need for alternative
ways of calculating the hydrodynamic force in which pressure is not needed. In the
literature several methods have been proposed, all relyingon suitable manipulation
of the Navier–Stokes system (1). Below we will briefly reviewthe most important
results; derivation of some of these approaches will be analyzed in detail in the
following Section. We also remark that, in view of the assumptions made, these ex-
pressions will not include terms corresponding to the motion of the obstacle. This
lack of generality, however, does not affect the main point of the paper.

The best known approach, popularized by Saffman (1992), expresses the force in
terms of the vorticity impulse as

F = − 1
D−1

d
dt

Z

Ω
x×ωωωdΩ, (3)

whereD = 2,3, is the spatial dimension. While providing an interestinginsight
into the relationship between the force and vorticity dynamics, this approach has
the disadvantage that integration is extended over the whole infinite domain. Conse-
quently, vorticity at very large distances from the obstacle must be included which
can be quite difficult in both numerical simulations and PIV measurements. In ad-
dition, the time derivative present in (3) tends to amplify noise. As an alternative,
Noca, Shiels, and Jeon (1997, 1999) proposed a family of formulas with the generic
form

F = − 1
D−1

d
dt

Z

Ω1

x×ωωωdΩ+
[

integral overΓ1

]

+
[

integral overΓ0

]

, (4)

where integration is restricted to the truncated domainΩ1 and the far field con-
tribution is contained in the integral overΓ1. These formulas no longer require
integration over an infinite domain, but still suffer from the presence of the time
derivative. Furthermore, evaluation of the fluxes involvedin the integrals overΓ1

may be complicated.

A different approach was proposed by Quartapelle and Napolitano (1983) where,
before integrating over the domain, the momentum equation (1a) is multiplied by
the gradient∇∇∇ηa of a harmonic functionηa which satisfies a Neumann–type bound-
ary conditionn ·∇∇∇ηa =−n ·a onΓ0 and whose gradient decays to zero at the outer
boundary. As a result, the hydrodynamic force in the direction of the vectora∈ RD

is given by the expression

Fa = F ·a = −
Z

Ω
∇∇∇ηa · (u×ωωω)dΩ+ν

I

Γ0

(∇∇∇ηa+a) · (n×ωωω)dσ. (5)

We remark that in the above expression the two terms involving the functionηa

represent the contributions from the pressure forceFp ·a. Formula (5) has the ad-
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vantage that, apart from the absence of the time–derivative, the integrand expression
in the area integral includes a factor that rapidly decays with the distance from the
obstacle. As a result, formula (5) is much more convenient toapply in numerical
simulations where resolution of the velocity and vorticityfields is usually decreased
far from the obstacle, and/or PIV measurements where data isusually confined to
a finite domain. This method has been further developed by Chang (1992); Howe
(1995); Chang and Lei (1996), Chang, Su, and Lei (1998) whichincluded a general-
ization for the compressible case, Protas, Styczek, and Nowakowski (2000) and Pan
and Chew (2002). This approach has also been the method of choice for force cal-
culations in several investigations employing the Vortex Methods [see, e.g. Smith
and Stansby (1988); Chang and Chern (1991); Stansby and Slaouti (1993); Clarke
and Tutty (1994); Protas, Styczek, and Nowakowski (2000); Cheng, Liu, and Lam
(2001)] and appears as a promising possibility for calculating force based on data
obtained from PIV measurements (Wesfreid, private communication). A similar ap-
proach has been used by Wells for theoretical investigations (Wells, 1996, 1998).
It has been recognized, however, that the approach leading to formula (5) has cer-
tain shortcomings. We note that the expression for the pressure forceFp involves
a boundary integral term proportional to the viscosityν. In order to evaluate this
term and the term representing viscous stresses, the distribution of vorticity on the
boundary must be available which in many applications is rather inconvenient (in
grid–based numerical methods and in PIV this may require construction of com-
plicated differentiation stencils, whereas in vortex methods complex interpolation
schemes may be needed). The purpose of the present paper is toexamine the pos-
sibility of simplifying the Quartapelle–Napolitano approach in a way to alleviate
these difficulties, i.e., express the force with a formula akin to (5), but without
boundary terms involving data other than the boundary conditions for problem (1).
We will attempt this by replacing∇∇∇ηa in the derivation of (5) with a more gen-
eral function. It will be proven, however, that such a simplification is not, in fact,
possible. Therefore, the Quartapelle–Napolitano formula(5) can be regarded as
“optimal” within this family of variational approaches (the term “optimal” is not
used here in its strictly mathematical sense, but rather implies that formula (5) rep-
resents an approach more convenient than other from the computational point of
view).

The structure of the paper is as follows: in Section 2 we revisit the derivation of
formula (5) in a more general setting and suggest formally the new approach, in
Section 3 we state and prove a theorem showing that the desired simplification is not
in fact possible; some consequences of the presented arguments and conclusions are
discussed in Section 4.
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2 The Variational Formulation — A General Approach

In this Section we analyze the derivation of the Quartapelle–Napolitano formula
(5) with the purpose of modifying this derivation in such a way that the boundary
terms involving vorticity would no longer be present. We will investigate this pos-
sibility as a generalization of the standard approach introduced by Quartapelle and
Napolitano (1983). First we show that the different approaches to calculation of
forces mentioned in Section 1 and the approach we are about toinvestigate can in
fact be derived using the following general procedure:

Procedure 1 (1) choose a functionγγγ ∈ [H1(Ω)]D, where[H1(Ω)]D denotes the
Sobolev space of vector–valued functions with square–integrable derivatives
in Ω, such that

Bγγγ
∣

∣

Γ0
= Ba, (6)

whereB : γγγ
∣

∣

Γ0
→ Bγγγ

∣

∣

Γ0
is a linear operator acting on the boundary values

(traces) of the functionγγγ,
(2) multiply the momentum equation(1a) by γγγ and integrate over the truncated

domainΩ1

Z

Ω1

γγγ ·
[

∂u
∂t

−u×ωωω +∇∇∇
u2

2

]

dΩ =

Z

Ω1

γγγ · [−∇∇∇p−ν∇∇∇×ωωω] dΩ, (7)

(3) use integration by parts and relation(6) valid on the boundary to extract from
(7) the terms corresponding to(2),

(4) assume thatΓ1 → ∞ which, given the assumptions on the behavior ofγγγ andu
for large |x| will remove the integrals defined onΓ1.

More specifically, step 4 of Procedure 1 requires an assumption that the decay of
the field(u−U∞e1) for |x| → ∞ be sufficiently rapid [O(|x|−2) in 2D andO(|x|−3)
in 3D]. We remark thatsteadysolutions of the Navier–Stokes system do not nec-
essarily satisfy these assumptions [see, e.g. Galdi (1994)]. As a result, some of
following expressions may, somewhat paradoxically, be inapplicable in the case of
steady flows.

In order to obtain a unique functionγγγ, condition (6) has to be supplemented with
an additional condition defined in the domainΩ. We will illustrate now how the
above general procedure can lead, for different choices of this additional condition,
and hence the functionγγγ, to formulas (3), (4) and (5). Then, a new approach will be
formulated by requiring of the functionγγγ to be characterized by still more general
properties. In all cases we will calculate the projection ofthe force on an arbitrary
vectora (by choosinga = ei , i = 1, . . . ,D, whereei is the unit vector associated
with the i–th axis of the coordinate system, we will obtain componentsof the force
in the corresponding directions).
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The impulse formula(3) is obtained trivially by choosing

γγγ = a in Ω, hence, by extension,B = Id ⇒ γγγ
∣

∣

Γ0
= a, (8)

i.e., the functionγγγ is constant and given by the vectora everywhere. Following
Procedure 1 and using standard vector identities [see, e.g.Noca, Shiels, and Jeon
(1999)] we obtain

F ·a = − a
D−1

· d
dt

Z

Ω
x×ωωωdΩ (9)

which is in fact equivalent to formula (3) dotted with the vector a. By abandoning
step 4 of the procedure, i.e., retaining a truncated domainΩ1, we would obtain an
expression forF ·a equivalent to dotting (4) with the vectora.

The Quartapelle–Napolitano formula(5) is obtained by choosing the functionγγγ in
the formγγγ = −∇∇∇ηa, whereηa satisfies the following Neumann problem for the
Laplace equation











∇∇∇ ·γγγ = −∆ηa = 0 in Ω,

B = (n, ·) ⇒ (n,γγγ
∣

∣

Γ0
) = −n ·∇∇∇ηa

∣

∣

Γ0
= n ·a,

γγγ → 0 for |x| → ∞.

(10)

where(·, ·) represents the standard Euclidean inner product. Following the steps
outlined in Procedure 1 and employing transformations described in detail in Pro-
tas, Styczek, and Nowakowski (2000), we can express the pressure force as

Fp ·a = −
Z

Ω
∇∇∇ηa · (u×ωωω)dΩ+ν

I

Γ0

∇∇∇ηa · (n×ωωω)dσ. (11)

The second term on the right–hand side in (11) is similar, butnot equal, to the term
representing the viscous stresses in (2). In order to obtainan expression for the total
force, the viscous termFν ·a must be added to (11) which will result in formula (5).
The form of second term on the right–hand side in (5), which can be rewritten as

ν
I

Γ0

(∇∇∇ηa+a) · (n×ωωω)dσ = −ν
I

Γ0

ωωω · [n× (∇∇∇ηa +a)] dΩ, (12)

may suggest that we could redefine the functionγγγ by adjusting the boundary con-
dition (6) in such a way as to get rid of this term altogether. This is the motivation
for a more general approach that we consider formally below.

In this approach we will thus employ a functionγγγ which should satisfy the following
set of conditions



















∇∇∇×γγγ = 0 in Ω,

∇∇∇ ·γγγ = 0 in Ω,

B = Id ⇒ γγγ = a onΓ0,

γγγ → 0 for |x| → ∞.

(13)

6



We notice that this problem in fact represents an augmented version of the original
problem (10) in which the constraint of a vanishing curl is added and the boundary
conditions are specified for all components ofγγγ, rather than just the wall–normal
component. The hope is that these additional assumptions would make it possible to
derive an expression for the hydrodynamic force simpler than the original formula
(5). The important issue of consistency of system (13) will be specifically addressed
in Section 3. In principle, solution to problem (13) can be constructed using the
Helmholtz–Hodge decomposition (Quartapelle, 1993)

γγγ = −∇∇∇ϕ−∇∇∇×ψψψ, (14)

where the two functionsϕ andψψψ, corresponding to the potential and the solenoidal
part, can be found by solving the system of equations



































−∆ϕ = 0 in Ω,

−∇∇∇×∇∇∇×ψψψ = 0 in Ω,

∇∇∇ ·ψψψ = 0 in Ω,

n ·∇∇∇ϕ+n · (∇∇∇×ψψψ) = −n ·a onΓ0,

n×∇∇∇ϕ+n×∇∇∇×ψψψ = −n×a onΓ0,

∇∇∇ϕ, ∇∇∇ψψψ → 0 for |x| → ∞,

(15)

where the third equation is a “gauge” condition added to close the system. We re-
mark that system (15) is equivalent to (13)–(14). As is well known (Quartapelle,
1993; Richardson and Cornish, 1977), in general decomposition (14) is not unique,
but there are several ways to make it unique by prescribing appropriate boundary
conditions for the potentialsϕ andψψψ. However, for our purposes here it is suffi-
cient to leave the boundary conditions in the coupled form present in (15). In the
remaining part of this Section we willformally use solutions of system (15) to-
gether with Procedure 1 to derive an apparently very appealing expression for the
hydrodynamic force.

Since the derivations to follow are new, we will present themin some detail. We
begin by integrating by parts the terms on the right–hand side of (7)

−
Z

Ω1

γγγ ·∇∇∇pdΩ =

Z

Ω1

p∇∇∇ ·γγγdΩ−
I

Γ0
S

Γ1

pn ·γγγdσ

= −
I

Γ0

pn ·adσ−
I

Γ1

pn ·γγγdσ,

−ν
Z

Ω1

γγγ · (∇∇∇×ωωω)dΩ = −ν
Z

Ω1

ωωω · (∇∇∇×γγγ)dΩ−ν
I

Γ0
S

Γ1

γγγ · (n×ωωω)dσ

= −ν
I

Γ0

a · (n×ωωω)dσ−ν
I

Γ1

γγγ · (n×ωωω)dσ.

WhenΓ1 → ∞, the assumptions concerning the asymptotic behavior ofγγγ andu for
large|x| imply that the integrals onΓ1 vanish. Thus, we obtain for the terms on the
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right–hand side in (7)
Z

Ω
γγγ · [−∇∇∇p−ν∇∇∇×ωωω] dΩ = −a ·

I

Γ0

pndσ−νa ·
I

Γ0

n×ωωωdσ = −F ·a. (16)

We now proceed to analyze the terms on the left–hand side in (7) and begin with the
time–derivative term in which we express the velocity field in terms of the stream
vectorΨΨΨ asu = ∇∇∇×ΨΨΨ
Z

Ω1

γγγ · ∂u
∂t

dΩ =
Z

Ω1

γγγ · (∇∇∇× ∂ΨΨΨ
∂t

)dΩ =
Z

Ω1

∂ΨΨΨ
∂t

· (∇∇∇×γγγ)dσ+
I

Γ0
S

Γ1

γγγ · (n× ∂ΨΨΨ
∂t

)dσ

=
I

Γ0

a · (n× ∂ΨΨΨ
∂t

)dσ+
I

Γ1

γγγ · (n× ∂ΨΨΨ
∂t

)dσ

Letting againΓ1 → ∞, by (1e) we haveΨΨΨ → ΨΨΨ∞ , [0,−1
2U∞x3,

1
2U∞x2] which is

time–independent, so that the integral onΓ1 vanishes and we obtain

Z

Ω
γγγ · ∂u

∂t
dσ =

I

Γ0

(n×a) · ∂ΨΨΨ
∂t

dσ. (17)

The streamvectorΨΨΨ is defined via the system of equations


















∆∆∆ΨΨΨ = −ωωω in Ω,

∇∇∇ ·ΨΨΨ = 0 in Ω,

n · (∇∇∇×ΨΨΨ) = 0 onΓ0,

ΨΨΨ →ΨΨΨ∞ for |x| → ∞.

(18)

In order to evaluate (17) we need the boundary valueΨΨΨ
∣

∣

Γ0
of the stream vector.

It is known [see, e.g. Quartapelle (1993)] that the boundaryvalueΨΨΨ
∣

∣

Γ0
can be

expressed, up to a time–dependent constant, entirely in terms of the boundary data
for velocity (this construction is illustrated for the simpler 2D case in Appendix).

We keep the form of the second term on the left–hand side in (7)unchanged,
whereas as regards the third term we proceed using integration by parts as follows

Z

Ω1

γγγ ·∇∇∇
(

u2

2

)

dΩ = −
Z

Ω1

(∇∇∇ ·γγγ)u2

2
dΩ+

I

Γ0
S

Γ1

n ·γγγu2

2
dσ

=
I

Γ0

n ·au2

2
dσ+

I

Γ1

n ·γγγu2

2
dσ.

As before, whenΓ1 → ∞, the integral overΓ1 vanishes and we obtain

Z

Ω
γγγ ·∇∇∇

(

u2

2

)

dσ =

I

Γ0

n ·au2

2
dσ. (19)

Thus, putting together (7), (16), (17) and (19), we obtain what appears to be a
new expression for the hydrodynamic force in which the boundary integrals are
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expressedentirely in terms of the boundary conditions for the problem (1)

F ·a =
Z

Ω
γγγ · (u×ωωω)dΩ−

I

Γ0

(n×a) · ∂ΨΨΨ
∂t

dσ+
I

Γ0

n ·au2

2
dσ.

Assuming, as we do in this investigation, that the boundary velocity vanishes and
invoking arguments presented in Appendix reduces this expression to a particularly
simple form

F ·a =

Z

Ω
γγγ · (u×ωωω)dΩ, (20)

where the functionγγγ should satisfy (13). We emphasize that, in contrast to (5),
expression (20) does not contain any boundary integrals involving vorticity which,
as argued in Section 1, are awkward to evaluate in numerical simulations and using
data from PIV measurements. In Section 3 we will prove that, regrettably, a function
γγγ required to derive (20) cannot in fact be constructed, because system (13) does
not admit any solutions.

3 Proof of Non–Existence of the Functionγ

In this Section we present a simple proof that, ifa is constantvector, system (13)
does not in fact admit any solutions. It is a well–known fact of vector analysis
(Girault and Raviart, 1979) that, given the divergence and curl of a vector field in
a bounded domain, this vector field can be reconstructed so that it will satisfy only
onescalar boundary condition. As a matter of fact, this vector field may satisfy
boundary conditions on other components as well, but only when the divergence
and curl are “special”, in the sense that they satisfy additional constraints, e.g., they
come from solutions of the Navier–Stokes equation. Thus, ingeneral, problems
(13)–(15) are overdetermined. Below we show that for the choice of the boundary
data in (13) (a constant vector) required for the derivationof (20), the solution does
not indeed exist. For the sake of simplicity of the proof, we restrict our attention
here to the 2D case:

Theorem 1 Given a constant vectora∈ R2, system(13)has no solutions in 2D.

PROOF. Assume for the moment that a functionγγγ satisfying (13) exists. Since the
2D case is considered, we haveγγγ = [γ1,γ2,0] and ∂

∂x3
≡ 0. The first two equations

in (13) now reduce to

∇∇∇ ·γγγ =
∂γ1

∂x1
+

∂γ2

∂x2
= 0, (21a)

∇∇∇×γγγ = e3

(

∂γ2

∂x1
− ∂γ1

∂x2

)

= 0. (21b)
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We define nowz, x1+ ix2 as a point in the complex planeC, wherei =
√
−1 is the

imaginary unit. Thus, relations (21) represent the Cauchy–Riemann conditions for
two conjugate functionsγ1 andγ2 which can therefore be regarded as the real and
imaginary part of an analytic functionW(z) , γ1 + iγ2. In an unbounded exterior
domainΩ this analytic function can be represented as a Laurent series

W(z) =
∞

∑
k=−∞

ckz
k
,

with the expansion coefficientsck ∈ C, k = . . . ,−1,0,1, . . .. Without loss of gen-
erality, we assume that the contourΓ0 is a unit circle (the exterior of any other
sufficiently regular contour can be transformed into the exterior of a unit circle us-
ing a suitable conformal mapping). The boundary conditionsfor the problem (13)
are equivalent to

W(eiθ) = · · ·+c−2e−2iθ +c−1e−iθ +c0 +c1eiθ +c2e2iθ + · · · = a, (22a)
W(z) → 0 for z→ ∞, (22b)

wherea = a1 + ia2. We observe that, because of (22b),ck = 0 for k ≥ 0. Then,
however, there is no choice of the remaining expansion coefficientsck, k < 0, that
can make the series (22a) equal to a constant for all values ofθ. Thus, an analytic
function satisfying conditions (22) does not exist, from which we conclude that
system (13) in 2D does not admit any solutions.2

The proof in the 3D case can be constructed using analogous methods of the poten-
tial theory.

4 Conclusions

In this paper we showed how a family of well known approaches to calculation of
forces in viscous incompressible flows in exterior domains,including the Quartapelle–
Napolitano formula, can be derived in a generic way by makingdifferent choices of
the vector fieldγγγ on which the momentum equation is projected. We then consid-
ered a potentially appealing simplification of the Quartapelle–Napolitano approach
in which the terms involving the boundary vorticity are absent. It was obtained for-
mally by requiring that the functionγγγ have more general properties than used in
the original approach. It was, however, proved that a function with such properties
cannot be constructed, hence indicating that the original Quartapelle–Napolitano
formula is “optimal” within this family of approaches.
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Appendix Boundary Value of the Streamfunction

In 2D flows velocity can be expressed in terms of streamfunctionψ asu = [u,v] =
e3×∇∇∇ψ, wheree3 is the unit vector associated with the OZ axis. The boundary
value of the streamfunction can be determined, for instance, from the boundary
condition ∂ψ

∂s

∣

∣

Γ0
= u ·n, wheres is the arc–length coordinate along the boundary.

Hence
ψ(t,s) =

Z s

s0

un(t,s
′)ds′+C(t), (23)

wheres0 is some arbitrarily chosen arc–length coordinate andun , u ·n. As shown
in Girault and Raviart (1979), while the constantC(t) may be determined requiring
the pressure to be single–valued in the domainΩ, it will in general remain a func-
tion of time. Hence, in the 2D case, integral (17) can be expressed for a stationary
contourΓ0 as

I

Γ0

(nxay−nyax)
∂ψ
∂t

dσ =

I

Γ0

(nxay−nyax)
∂
∂t

[

Z s

s0

un(t,s
′)ds′+C(t)

]

dσ

=

I

Γ0

(nxay−nyax)
∂
∂t

[

Z s

s0

un(t,s
′)ds′

]

dσ

+Ċ(t)
I

Γ0

(nxay−nyax)dσ

=
I

Γ0

(nxay−nyax)
∂
∂t

[

Z s

s0

un(t,s
′)ds′

]

dσ,

(24)

where we observed that
H

Γ0
(nxay−nyax)dσ = ay

H

Γ0
nxdσ−ax

H

Γ0
nydσ = 0. Hence,

expression (24) may be nonvanishing only if the boundary conditions for problem
(1) are time–dependent.
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