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Abstract This note discusses certain aspects of computationalicolat
optimal control problems for fluid systems. We focus on apphes in
which the steepest descent direction of the cost functiendetermined
using the adjoint equations. In the first part we review tressical for-
mulation by presenting it in the context of Nonlinear Pragnaing. In the
second part we show some new results concerning determinaitdescent
directions in general Banach spaces without Hilbert stmectThe proposed
approach is illustrated with computational examples coming a state es-
timation problem for the 1D Kuramoto—-Sivashinsky equation

1 Introduction

Problems of optimal control arise in very many areas of sseesnd engineering.
Given a (possibly nonlinear) systemix, @) = 0, wherex is the state of the system
and@is an actuation, control problems consist in determinirgdbintrokp, so that
this control and the corresponding state minimize someopmidince criterion, i.e.,

in_7(x.9) (12)
subject tou(x,@) = 0, (1b)

where U represents the set of admissible controls, whepe#sthe space of sys-
tem states. Applications of such problems in Fluid Mechsaare ubiquitous. Here
we mention just some of the most important examples, admgittiat this list is
far from being exhaustive:
e shape optimization with application to aircraft desigg, eMohammadi and
Pironneau (2001); Martins et al. (2004),
o flow control for drag reduction, e.g., Bewley et al. (2001)ptas and Sty-
czek (2002),
e variational data assimilation in dynamic meteorology,,ek@lnay (2003),



e mixing enhancement.

In the above examples the performance criterfoand the controtp may take
different forms reflecting the structure of the problem atndhaThe equation (1b)
governing the state of the system is usually some form of #naéd—Stokes equa-
tion. In fact, from the formal point of view, optimal contrpfoblems are examples
of inverse problemfsee, e.g., Isakov (1997)].

In practice, problems of the type (1) involving minimizatiof a cost func-
tional subject to some constraints are solved using opétitim methods. Since
the constraint is a partial differential equation (PDEXtsproblems are examples
of PDE-constrained optimizationOne of the first studies to analyze systemat-
ically such problems was the seminal work by Lions (1968).tha context of
Fluid Mechanics these problems were further investigajediiergel and Temam
(1990) and Gunzburger (2002). When such infinite—dimeradipnoblems are
solved in practice, suitable discretization is used to intdacorresponding finite—
dimensional problem which, at least in principle, can b&edlusing methods of
Nonlinear Programming (NLP). There are, however, somedasyd the problem
that make this approach quite challenging. First of allcsithe discrete systems
are obtained from discretizations of PDEs, the dimensighefliscrete state vec-
tor x can be extremely large. Consequently, it is impossible aoesthe linear
operators involved in the solution process as matrices s€gmently, many exist-
ing software packages designed to solve finite—dimensibBIproblems cannot
be used and “matrix—free” alternatives have to be develofedondly, given the
size of the discrete system and difficulties involved in gkdting second—order
derivatives of the cost functional, the Hessian infornmai® usually unavailable
and Newton's method can rarely be used. Consequently, osdsrte use first—
order (gradient) approaches such as, for instance, theuGatg Gradient (CG)
method. Moreover, the physical systems of interest to ustiem characterized
by a broad range of interacting length— and time—scales ahd, result, the op-
timization problem is very poorly conditioned. The purpaddéhe present paper
is to discuss some recent ideas useful for acceleratingecgamce of iterative so-
lution to such optimization problems. In particular, we IWidcus on nonlinear
preconditioning strategies which, by performing locallg@nlinear change of the
metric, attempt to increase the range of validity of the &nidinear approximation
which is crucial to the present approach.

The structure of the paper is as follows: in the next Sectienintroduce a
simple, yet relevant from the Fluid Mechanics perspectiygimization problem
based on the Kuramoto—-Sivashinsky equation that we wilkgsaur “toy model”,
then we present a standard adjoint—based optimizatioroappttypically used to
solve such problems; in Section 3 we will introduce the ideaamlinear precon-
ditioning and show how it can be formulated in terms of gratliextraction in
spaces without Hilbert structure; in Section 4 we will prgssome computational



results indicating the utility of the proposed method; daoeons and discussion
of further perspectives are deferred to Section 5. The ptasport is of a rather
exploratory nature, and more complete results concerhisgtroblem are already
available in Protas (2008).

2 Adjoint—-Based Optimization

Here we show how problem (1) can be efficiently solved usinthods of Non-
linear Programming. In its initial formulation this is@nstrainedoptimization
problem in which both the stateand the controdp are variables to be optimized.
This is a rather inconvenient situation, sincis a solution of a (time—dependent)
PDE and its discretization may contain a very large numbelegfees of freedom
in space and in time. On the other hand, the skateay be considered a func-
tion of the control, i.e.x = x(@), which allows us to express problem (1) in the
correspondinginconstrainedorm

;peigi(x@),tp) = gneigj(tp), 2

whereJ : U — R is called thereduced cost function&l An advantage of this
formulation over (1) is that now optimization is carried auith respect to one

variable only with discretization usually involving muaher degrees of freedom.
Moreover, problem (2) is unconstrained so that optimizatitethods required to
solve it are simpler, however, the price to be paid for thighist the functional

dependence of on@is now much more involved.

As mention in Introduction, we are concerned here with situs where cal-
culation of the Hessian of (2) is impossible or impracti¢&le will therefore focus
on first—order gradient—based methods. The necessartmmncharacterizing the
minimum of the cost functionad (@) is the vanishing of its Gateaux differential
7 UxU—-R,ie.

7 (Qopi¢) =0, V@ € U, (3)

where the Gateaux differential is defined H¢p; @) = limg_o w and
@opt is the minimizer. In most applications, and also in the casesiclered here,
the cost functionaf/ is quadratic in bothx and@, howeverx = x(¢) is often a
nonlinear mapping and the optimization problem (2) may leedfore nonconvex.
As a result, it may admit nonunique solutions and (3) willrettéerize only a local
minimizer@ . Given some initial guesg?, such a minimizer can be found using
gradient-based descent method of the general form

"V =@M +dW, k=1,2,..., (4)

1since this is the formulation we will focus on below, hereafve will skip the adjective “reduced”,
unless needed for clarity.



such that lim_.. @ = @opt, wherek is the iteration count. At every iteratidthe
descent directiod¥ is determined based on the gradiElftof the cost functional
calculated ap¥). As will be shown below, this gradient can be extracted from
7 (@™;@). A convenient expression fo' (@;¢) can be found using methods
of Nonlinear Programming [see Lewis (2001) for a discussibNLP techniques
in the context of PDE—constrained optimization]

7' @@) = (Dgs. @)

—(Do7.@)_ _ +(Du. (D& ©)

Ux U* xxx*

whereD4F denotes the Fréchet derivative of the mappig F(a) [see Berger
(1977)]. In (5)U* is the dual space with respecti and (-, ) ¢x ¢+ represents
the standard duality pairing between the spatieand U*. Below we will show
how the cost functional differential in (5), and in partiauthe termDg7, can be
expressed using an appropriately—defiadjbint state Using the implicit function
theorem, the terrDyx can be expressed as

DgX = —(Dxu) 'Dgu, (6)

so that the second term on the RHS in (5) can be transformedllas$
(D, O @) = (D, (Dx) Doud)
— —(Dgu(Dx)*DxJ. @)

X xX*

2 (DixDyJ >
Ux U < ¢ ¢ zzxfu*7’
where an asterisk denotes a Banach space adjoint. Puttjather (5) and (7) we
see that the adjoint operatiofx : X* — U* can be used to express the differential
of the cost functional (5) in a convenient form as

7@ @) = (Del +DpxDI.¢) = (Dgs. @) (8)

Ux U
As is evident from the above relationship, the first arguniettte duality pairing
can be identified with thgradientof the reduced cost functiondl: ¢ — R in

the metric induced by the spaéé It must be emphasized that the gradient in fact
belongs to the dual spagkJ € U* and, since in most infinite—dimensional cases
the dual spacé&/* is notcontained in the original spac&, this gradient may not
be used as a descent directiortit In the special case wheti is a Hilbert space
we can invoke Riesz’ representation theorem [Berger (J9#Hich allows us to
mapDgyJ € U* to the corresponding elemeldy € U as

7@#) = (Der.0) = (07.9) . ©)

uxu*



where(-,-)¢ represents the inner product on the Hilbert spéteso that now
07 € U can be used to construct a descent directiofiZinOn the other hand,
when € is not a Hilbert space, Riesz’ theorem does not apply andifiztion
(9) is not possible. However, in Section 3 we will present éirad for constructing
an equivalent ofl7 in the spacetl in such a general case.

Now we illustrate these somewhat abstract consideratigrablyzing a con-
crete example of PDE—constrained optimization. We wilu®on a model prob-
lem introduced in Protas et al. (2004) which concerns esiimaof the initial
condition for the 1D Kuramoto—Sivashinsky equation. Thastigular problem is
selected as it models the variational data assimilatioowknas 4DVAR, in Dy-
namic Meteorology [see Kalnay (2003)]. The Kuramoto—Siigsky equation is
chosen, since it is endowed with chaotic and multiscaleviehand as such is an
attractive model for the Navier—Stokes system. We folloveterotas et al. (2004)
as regards the set—up of this problem and below highlight thd main points of
the derivation, while the Reader is referred to the origgmalrce for further details.

For simplicity, we will consider the 1D Kuramoto—Sivashigequation on a
periodic spatial domaif = [0, 2] and a time interval0, T|

OV + 40V +K (02v+vdww) =0, x€Q, te(0,T],
alv(0,t) = dlv(2mt), te[0,T), i=0,...,3. (10)
V(x,0) = @, XE Q.

Given incomplete and possibly noisy measuremgntsH vyt +n € 9, where
Vact(+,1) € X is the actual system trajectotyf, : X — 9 is an observation operator
andn is (Gaussian) noise, our optimization problem consistsndifig an initial
condition @ in (10) such that the corresponding system trajectory begthes
the available measurements In other words, we minimize the following cost
functional

9(0) = 27tv(@) -y =3 [y

Consistently with the properties of system (10), we willuasg thatg € U =
L2(Q). SinceJ depends on the control varialipemplicitly through the state equa-
tion (10), expression (11) represents in fact the reducet fomctional [cf. (2)].
We will assume that the observation operatfras the form of projection on a
set of cosine modes with the wavenumbers in somé sdte.

2

L2(0,T;L2(Q

H=% B, where Bz= [%/()zncos(rx’)z(%)dX] cogrx). (12)

refr

The Gateaux differential of (11) is given by [cf. (5)]

T 21
7@ = [ [ (Hv—y)v axat (13)



where the perturbatiov (¢; ¢f) is obtained by solving the Kuramoto—Sivashinsky
equation linearized around the stgte.e.

LV =0V + 403V + K [03V + VoV + (0v)V] =0, x€Q,te(0,T],
0LV (0,t) = LV (2mt), te[0,T], i=0,...,3,
V(x0)=¢, xeQ,

(14)
with the operatorr. : X — X* understood in the weak sense. Relation (13) can
now be transformed to a form consistent with (8) by introdgan adjoint operator
L* 1 X — X* and the corresponding adjoint state= X* via the following identity

<v*,m/>xm - <L v*,\/>xw +by. (15)
Using integration by parts and the definitionoin (14), we obtain
LIV = 0V + 403V +K (02v" —vdyv*),  and (16)
t=T

21T
b, — UO \f*\/dx]to.

We remark thab, does not contain any boundary terms (resulting from intigma
by parts), since all of them vanish due to periodicity. Defgnan adjoint system
as

LV =H" (Hv—-y), xeQ, te][0,T],

oLV (0,t) = dlv*(2mt), te[0,T], i=0,...,3, (17)

vi(x,T) =0, Xe Q,

and using (14), (15) and (16) we can now express the Gatd#areditial (13) in
the desired form (5)

sad)= [ V] o (18)

Thus, this differential (i.e., the sensitivity of the coahttionalJ with respect to
perturbations of the initial condition) can be expressedgihe solution of the
adjoint system (17).

Relationship (18) can now be employed to extract the gradeguired in a
descent optimization algorithm. Sin€é= L, (0, 2m), we immediately obtain

y’(md):/m\ﬁ] gox=(O=r9)  —O2y=v (19)
' 0 t=0 " L(Q) t=0"

Despite its simplicity, in many cases this is not an optintaice, as it may result
in poor conditioning of the corresponding discrete optiatian problem. In Protas



et al. (2004) a set of regularization options was identifiddclv can, at least par-
tially, alleviate some of such difficulties. In relation toaglient extraction it was

shown that it can be beneficial to extract the cost functigredient in a more gen-

eral Hilbert space, Sobolev spaces being natural candids¢e also Neuberger
(21997)]. In particular, gradient extraction was consideire the Sobolev space
H(Q) characterized by the inner product

(Zl’ZZ)Hl(Q) = (].Tllg) /Ozn {21 2o +13(05z1) (0x22)} dx, (20)

wherel; is an adjustable length—scale. Identificatify, ¢ ) = (DHlj,qf)Hl(Q)

yields, after integration by parts, the gradidl]ﬁlj defined via solutions of the
following Helmholtz boundary value problem

1 1
= _[1-1292|0 :\7*‘
1+|§[ 20,07 7 t=0’

0" 7(0) = 0" J(2m).

(21)

Thus, the Sobolev space gradidﬂ’f'lj is obtained by applying the inverse
Helmholtz operator to the classicl} gradient. Interestingly, when regarded in
Fourier space, the inverse Helmholtz operator is equivakem low—pass filter
with the cut-off given by the inverse of the length—sdalparametrizing the in-
ner product (20). Consequently, extracting gradients indBay spaces with inner
products given by (20) has the effect of de—emphasizing corapts with char-
acteristic length—scales smaller then As was shown in Protas et al. (2004),
adjusting this length—scale during solution of an optirticza problem can ac-
celerate convergence of iterations. In particular, sigrtvith |, large and then
progressively decreasing it to zero results in a multispateedure targeting first
the large—scale structures and then homing in on smallé soanponents of the
solution(yp.

3 Nonlinear Preconditioning using Descent Directions in
General Banach Spaces

In this Section we address the issue of gradient extraatigeneral Banach spaces
and the potential advantage this technique may offer as hadef nonlinear pre-
conditioning. Similar ideas were already discussed by k€2001) and elaborated
in greater detail by Neuberger (1997), however, they weteancerned with pre-
conditioning nonlinear optimization problems. The preasgproach relies on the
assumption that the Banach spadewhere the descent direction is to be identi-
fied, bereflexive i.e., thatt** = U. As already mentioned in Section 2 in relation



to formula (9), the gradient is a linear functional on thecp@ and therefore
belongs to the dual spadé*. For example, ifil is the Sobolev spadNol’p, p#2,
defined as L
WoP(Q) = {u: Q— R, |[ullwap <, Viag = O},
1/p (22)
where [[ufjyp = VQ(|v|p+|g|aXv|P)dQ ,

wherel, € R* is a weight, then the dual spagg =W~19, wherel + 1 =1 [see
Adams and Fournier (2005)]. Since a dual space is usualigéld, its elements

do not necessarily belong to the original spa¢@and therefore cannot be used to
represent descent directions in that space. Consequieiglgecessary to propose

a different approach which allows one to extract a desceettiong from 7' (¢@;¢)
such thatj € Y. As shown by Lewis (2001) and Neuberger (1997), this can be
done definingd as a unit-norm element aofl which minimizes expression (9).

In other words, we postulate to firidas a solution of the following constrained
minimization problem

min ( DgJ, 23
ngu=1< ¢ g>mu (23)
which can be converted to the more convenient unconstrédared
i Hiqie | — mi
ool [<D‘Pjﬂg>u*w+ p|9|u] =minG(9). (24)

wherepis an integerpis the Lagrange multiplier ang : U — R. This problem
can be solved with a method analogous to the approach ded@&éslier in Section
2. Thus, the descent directi@ns characterized by the vanishing of the Gateaux
differential of (24), i.e.

Vyeu G'@9)=(De6@.9) . =0 (25)
whereDyG : U — U*. Thus, we obtain

DgG(§) =0 inU” (26)

as an equation determining the directidore U. Below we will show how this
direction can be determined whéhis one of the Banach spaces commonly arising
in the analysis on nonlinear PDEs. This analysis will beiedrout in the setting

of the optimization problem for the Kuramoto—Sivashinskyation introduced

in Section 2. We begin with the Lebesgue spacg®Y) with norms defined as
[Adams and Fournier (2005)]

o 1/p
ulPdQ 1<p<oo,
Ul = </Q' | ) =P (27)

ess Sup.q |u| p = oco.



Considering for the moment the case witkiJp < oo, the unconstrained cost func-
tional (24) and its Gateaux differential (25) take the form

G(0) = [ V] o9+ 5laP) o0, (282)
YyeLp) G(0:9) = /Q(\fk‘t:og‘f' ugglP?)g' dQ, (28b)
so that the descent directign,’is characterized by the algebraic relation
o x1 (D 1
961" = =Vl o (29)

The solution of (29) is

P —ﬁv* o p—even
O, =
i p-1 1 i
—sgn(v|_,) I V| o/, p—odd

We thus see that whep # 2, the descent direction ibp(Q) is obtained by ap-
plying anonlineartransformation to the original gradief2J = v*|i—o. In the
special cas@ = 2 we immediately obtain

(30)

- 1
ng = - ﬁ\ﬁ |t=0 (31)

which is the classical expression obtained in Section 2.e§amds the constapt
which serves as a Lagrange multiplier in the unconstraioeai@ilation (24), it is
chosen to normalizg to unit norm||§||; = 1. In the second special cape= », it
can be shown that

O, = —sgnv'|,_o) (32)
consistently with taking the limip — o in expressions (30). We also remark that
in the casg = 1 the descent directiogn; cannot be defined, since the sphg€Q)
is not reflexive.

We now proceed to discuss the problem of determining theestestirection
when? =W?%P, whereWP is the Sobolev space defined in (22). Considering the
case KK p < o, the unconstrained cost functional and its Gateaux diffeal take
the form

60 = [ [V1, o8+ 5(aP+ 15007 | a0, (332)

G'(gd) = /Q {vmog’+‘—$[g|g|<p2>g’—lgax<axg|axg|<p2>>g’}}d9. (33b)



As before, the boundary terms due to integration by partsshamecause of peri-
odicity of g andg'. Since the descent directigris’characterized by’ (§;g') =0,
Vgeu, it can be obtained as a solution of the following problemtin (due to
nondifferentiability of the absolute value functipr], this equations is formulated
in the weak sense)

ol el A (D 1
101% 2~ 150 (09129 ] = —v'|,o

g(0) = g(2m).

The second term on the LHS in the first equation in (34) is ugueferred to as
the p—Laplacian[Neuberger (1997)], as it represents a nonlinear geneaitaiz
of the familiar Laplace operator. Evidently, in the case 2, W3?(Q) = HY(Q)

is a Hilbert space and the-Laplacian reduces to the classical Laplace operator.
As a result, (34) simplifies to (21) and we recover the Hiltsgrace framework
discussed in Section 2. The Lagrange multipliecan be adjusted in order to
normalize the descent direction to the unit norm. We can lcamlecthat identifi-
cation of descent directions in Banach spaces (suthp@), or WLP(Q), when
p # 2) results innonlineartransformations of the adjoint field|i—o. As regards
equations with th@g—Laplacian operator such as (34), a variety of their intargs
properties is discussed by Ishii and Loreti (2005) (see edéerences contained
therein).

We now comment briefly on the utility of extraction descemedtions in gen-
eral Banach spaces as a nonlinear preconditioning tecénithe purpose of pre-
conditioning is to modify the metric in which a given iteratiprocess takes place,
SO as to accelerate convergence. For linear problems wilkrgtic functionals
this can also be regarded as decreasing the condition nwhiter Hessian of the
reduced cost functional. In such cases linear precondiitiptechniques are effi-
cient enough (in fact, in many situations there exist spegifiidelines regarding
the choice of an optimal preconditioner). However, for foear problems linear
preconditioning may not be sufficient and a nonlinear chasfgae metric may
lead to better results. In the framework proposed here, sihga preconditioner
is in fact equivalent to choosing a Banach sp@tm which the descent direction
is identified. The question of how to choose this space is tapt Unlike certain
linear problems, most nonlinear PDESs result in optimizapooblems with struc-
ture that is too complicated to allow for a thorough analysis such situations
finding the most suitable preconditioning strategy is a eraif experimentation.
There are, however, certain general conditions that nedxk teatisfied. In gen-
eral, for the evolution equation (10) to be well-posed, thetw| ¢ must belong
to some appropriate spade (identical withL2(Q) in the present case). There-
fore, if at thek—th iteration we want to precondition the gradient by exiragit

in some Banach spac&®, it must be ensured that this gradi&" 7 will still

(34)

10



belong to the original spac@, in other wordsu®¥ C €1, V. Such precondi-
tioning is equivalent to restricting the iterates to a fanoif subspaces nested .
Computational results concerning linear preconditiorregprted by Protas et al.
(2004) indicate that the best results were obtained whesuhspaces formed the
following hierarchy

19 C W C...C a® C---CLy(Q). (35)

When considering general Banach spaces, additional geedan constructing hi-
erarchies like (35) can be obtained by considering the faafiSobolev Imbedding
Theorem$Adams and Fournier (2005)]. Imbedding Theorems providteca that
allow one to determine whether or not one Sobolev (or Lebesgpace is “con-
tained” in another one. In the following Section we presamhputational results
that address some of these issues.

4 Computational Results

In this Section we show some computational results illtistgathe utility of the
nonlinear preconditioning techniques developed in Sa@ioWe treat the results
from Protas et al. (2004) as our point of reference, so weidengere precisely
the same problem of state estimation for the Kuramoto—8inaky equation. The
observation operator in (12) uses projections on therfiessb0 cosine modes (i.e.,
Ar ={1,...,50}) and we sek = 4000 in equation (10). Both equation (10) and its
adjoint (17) are solved using a dealiased pseudo—speotadr—Galerkin method
with N = 1024 grid points. The Reader is referred to Protas et al.4pfad further
numerical details. The nonlinear equation (34) involvihg p—Laplacian opera-
tor is solved using Newton’s method applied to the systemoofinear algebraic
equations obtained after discretization.

In order to see the effect of nonlinear preconditioning wé priesent results
obtained for two optimization horizons (given in terms of time stepit = 10~8)
T =300 andT = 500. Since the effect of nonlinear preconditioning appearst
pronounced for the longer optimization horizén= 500, some of the results will
be presented for that case only. We begin presentation aégudts by examining
the shape of the descent directignsebtained in different Banach spaces. To fix
attention, we consider the first iteration in the problemhit= 500 with a zero
initial guessg® = 0. In Figure 1 we compare the descent directigrextfacted
in the Banach spacds(Q), Lo(Q) andW*(Q) with I4 = 10.0 [cf. (22)] with
the standard gradierii‘27 extracted in the spack;(Q). We observe that for
increasingp the descent directions obtained in the spdgg8)) approach a square
wave.

In computational solution of our optimization problem weaifal the precondi-
tioning involving descent directions in the Sobolev spaté<(Q), wherep > 3,

11



Figure 1. Shapes of the descent directions obtained at the firstiterat the data
assimilation problem witfr = 500 and determined in: (solid liné}(Q), (dashed
line) Ls(Q), (dotted line)L.(Q) and (dash—dotted lin&y14(Q). For clarity, only
half of the domaim is shown.

to be more efficient than the preconditioning using descérttions inL(Q).
This is the case we will focus on exclusively below. In Figu&a and 2b, cor-
responding to optimization witil = 300 andT = 500, we study the effect that
the quantityl ,, the characteristic “length—scale” parametrizing therdtfins of

the norm||u||\ywp, has on optimization efficiency. Given that the value of thstc
function (11) before optimization (i.e., fgf® = 0) is normalized to unity, Figures
2a and 2b show the decrease of the cost functional at thetératibn for the de-
scent directions obtained in the spad¢s®(Q) andw#(Q) with values ofi; and

I4 indicated on the abscissa. For comparison, we also showethdts obtained
with the gradient extracted in,. We note that the decrease of the cost functional
significantly depends on the choicelgf(p = 3,4). ForT = 300 the window of

Ip giving improvement over optimization with tHe gradients exists for descent
directions inW3(Q) only and is rather narrow. The advantage of determining
descent directions in a Banach space becomes much morenefadd = 500,
where the windows oy, giving improvement over gradients ir» are unbounded.

Now we proceed to analyze the effect of nonlinear precoowiiig on the
whole optimization process involving many iterations. Agards optimization
with the descent directions obtained in the Banach spate¥Q) we follow the
strategy outlined in Section 3: for a given choice of the spaié-P(Q) we start
with the value ofl , which was determined to give the best results at the first iter

12
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Figure 2. Decrease of the cost functional (11) at the first iteratioaptimization
with (a) T = 300 and (b)T = 500. The descent directions are extracted in the
spaces (solid linel»(Q), (dashed lineW*3(Q) and (dotted line\W'4(Q) for
values ofl3 andl, indicated on the abscissa.
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ation and then progressively decrease it to zero, so thaidiresponding descent
directions approach the, descent direction. As aresult, our preconditioning strat-
egy is equivalent to extracting the descent directions Egaence of nested spaces
WLP(Q), all contained in the “master” spate(Q). This strategy, initially inves-
tigated by Protas et al. (2004) for the case of gradient etitmain the Sobolev
spaceH!(Q) =W?(Q), was found to give good results. In Figures 3a and 3b we
show the decrease of the cost functiof@¥)) as a function of the iteration count

k for T = 300 andT = 500, respectively. In both cases the descent directions are
extracted in the spac#¥'4(Q) with the initial values ol equal to 10* and 10

in the two cases, respectively. For comparison, in the tvguieis we also show
the decrease of the cost functional obtained with gradiebtained in the space
L2(Q). We note that wheil = 300 nonlinear preconditioning offers little advan-
tage over the unpreconditioned case, in contrast to thewitlsd = 500 where a
significant convergence acceleration is observed. In dodfeirther emphasize this
point in Figures 4a and 4b we show the data for the error inélcenstruction of
the initial condition, i.e.||¢® — @act/|i,(q) corresponding to the same cases as in
Figure 3. We note that these results provide further eviddorcthe trends already
shown in Figure 3. We also examined nonlinear preconditigin the case of
shorter optimization horizon® <« 300, however, no acceleration of convergence
comparing to the optimization with tHe gradients was observed. Hence, we do
not show these results here.

5 Conclusions and Outlook

In this paper we first reviewed the formulation of an optimahtol problem for

a fluid system using the language of Nonlinear Programming.f®used on a
particular aspect relevant from the computational pointiefv, namely, determi-
nation of well-preconditioned descent directions for tbetdunctional. We ex-
tended an earlier approach and showed how a descent direetiobe determined
in a general Banach space without Hilbert structure. Inigaler, we showed that
extracting this descent direction in a Sobolev spaEe’(Q) leads to solution of
an elliptic problem with go—Laplacian. Such a preconditioning strategy has the
effect of a nonlinear change of the metric in the space whptienization is per-
formed. When employed judiciously, this approach may hhegbtential to mit-
igate the effect of nonlinearities present in the systerde&u, our computational
results indicate that such a nonlinear preconditioningaarelerate convergence
of iterations in an optimization problem for a nonlinear PDerestingly, effec-
tiveness of the proposed approach increases with the lerigtie optimization
interval [0, T] and becomes more evident for problems with lafge.e., in situa-
tions when nonlinear effects play a more significant rolesdech is underway to
apply a similar approach to precondition optimization ofrxeealistic problems,
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Figure 3. Decrease of the cost functionm(p(k)) in function of iterations for op-
timizations with (a)T = 300 and (b)T = 500. The results are obtained with the
descent directions in (solid linép and (dotted line)v14(Q) where the parameter
|4 progressively decreases with iterations.
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Figure 4. Decrease of the error of the reconstruction of the initiahdition
0™ — @actl|1,(q) in function of iterations for optimizations with () = 300 and
(b) T =500. The results are obtained with the descent directiorfsalid line)
L, and (dotted lineyv14(Q) where the parametéy progressively decreases with

iterations.
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such as the state estimation in a 3D turbulent channel flogadir investigated
by Bewley and Protas (2004). Another possibility is to inigete descent direc-
tions in more general Banach spaces and here Besov spaeges.fge Adams and
Fournier (2005)] are attractive candidates. A thorougattreent of this subject is
given in Protas (2008).

In the present investigation the space giving “optimal”qameditioning was
chosen by trial and error. A very challenging theoreticagsfion is to develop
a rigorous procedure that will determine guidelines fora$ing such an optimal
space. Such procedures are in fact available for certaimation problems
formulated for some linear PDEs, however, no such resulpgapavailable for
nonlinear PDEs. Encouraging computational results regdrt the present paper
may therefore serve to motivate further theoretical resear this direction.
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