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Abstract This note discusses certain aspects of computational solution of
optimal control problems for fluid systems. We focus on approaches in
which the steepest descent direction of the cost functionalis determined
using the adjoint equations. In the first part we review the classical for-
mulation by presenting it in the context of Nonlinear Programming. In the
second part we show some new results concerning determination of descent
directions in general Banach spaces without Hilbert structure. The proposed
approach is illustrated with computational examples concerning a state es-
timation problem for the 1D Kuramoto–Sivashinsky equation.

1 Introduction

Problems of optimal control arise in very many areas of science and engineering.
Given a (possibly nonlinear) systemu(x,φφφ) = 0, wherex is the state of the system
andφφφ is an actuation, control problems consist in determining the controlφφφ, so that
this control and the corresponding state minimize some performance criterion, i.e.,

min
x∈X ,φφφ∈U

J̃ (x,φφφ) (1a)

subject tou(x,φφφ) = 0, (1b)

whereU represents the set of admissible controls, whereasX is the space of sys-
tem states. Applications of such problems in Fluid Mechanics are ubiquitous. Here
we mention just some of the most important examples, admitting that this list is
far from being exhaustive:

• shape optimization with application to aircraft design, e.g., Mohammadi and
Pironneau (2001); Martins et al. (2004),

• flow control for drag reduction, e.g., Bewley et al. (2001); Protas and Sty-
czek (2002),

• variational data assimilation in dynamic meteorology, e.g., Kalnay (2003),
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• mixing enhancement.

In the above examples the performance criterionJ̃ and the controlφφφ may take
different forms reflecting the structure of the problem at hand. The equation (1b)
governing the state of the system is usually some form of the Navier–Stokes equa-
tion. In fact, from the formal point of view, optimal controlproblems are examples
of inverse problems[see, e.g., Isakov (1997)].

In practice, problems of the type (1) involving minimization of a cost func-
tional subject to some constraints are solved using optimization methods. Since
the constraint is a partial differential equation (PDE), such problems are examples
of PDE–constrained optimization. One of the first studies to analyze systemat-
ically such problems was the seminal work by Lions (1968). Inthe context of
Fluid Mechanics these problems were further investigated by Abergel and Temam
(1990) and Gunzburger (2002). When such infinite–dimensional problems are
solved in practice, suitable discretization is used to obtain a corresponding finite–
dimensional problem which, at least in principle, can be solved using methods of
Nonlinear Programming (NLP). There are, however, some aspects of the problem
that make this approach quite challenging. First of all, since the discrete systems
are obtained from discretizations of PDEs, the dimension ofthe discrete state vec-
tor x can be extremely large. Consequently, it is impossible to store the linear
operators involved in the solution process as matrices. Consequently, many exist-
ing software packages designed to solve finite–dimensionalNLP problems cannot
be used and “matrix–free” alternatives have to be developed. Secondly, given the
size of the discrete system and difficulties involved in calculating second–order
derivatives of the cost functional, the Hessian information is usually unavailable
and Newton’s method can rarely be used. Consequently, one needs to use first–
order (gradient) approaches such as, for instance, the Conjugate Gradient (CG)
method. Moreover, the physical systems of interest to us areoften characterized
by a broad range of interacting length– and time–scales and,as a result, the op-
timization problem is very poorly conditioned. The purposeof the present paper
is to discuss some recent ideas useful for accelerating convergence of iterative so-
lution to such optimization problems. In particular, we will focus on nonlinear
preconditioning strategies which, by performing locally anonlinear change of the
metric, attempt to increase the range of validity of the tangent linear approximation
which is crucial to the present approach.

The structure of the paper is as follows: in the next Section we introduce a
simple, yet relevant from the Fluid Mechanics perspective,optimization problem
based on the Kuramoto–Sivashinsky equation that we will useas our “toy model”,
then we present a standard adjoint–based optimization approach typically used to
solve such problems; in Section 3 we will introduce the idea of nonlinear precon-
ditioning and show how it can be formulated in terms of gradient extraction in
spaces without Hilbert structure; in Section 4 we will present some computational
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results indicating the utility of the proposed method; conclusions and discussion
of further perspectives are deferred to Section 5. The present report is of a rather
exploratory nature, and more complete results concerning this problem are already
available in Protas (2008).

2 Adjoint–Based Optimization

Here we show how problem (1) can be efficiently solved using methods of Non-
linear Programming. In its initial formulation this is aconstrainedoptimization
problem in which both the statex and the controlφφφ are variables to be optimized.
This is a rather inconvenient situation, sincex is a solution of a (time–dependent)
PDE and its discretization may contain a very large number ofdegrees of freedom
in space and in time. On the other hand, the statex may be considered a func-
tion of the control, i.e.,x = x(φφφ), which allows us to express problem (1) in the
correspondingunconstrainedform

min
φφφ∈U
J̃ (x(φφφ),φφφ) = min

φφφ∈U
J (φφφ), (2)

whereJ : U → R is called thereduced cost functional1. An advantage of this
formulation over (1) is that now optimization is carried outwith respect to one
variable only with discretization usually involving much fewer degrees of freedom.
Moreover, problem (2) is unconstrained so that optimization methods required to
solve it are simpler, however, the price to be paid for this isthat the functional
dependence ofJ onφφφ is now much more involved.

As mention in Introduction, we are concerned here with situations where cal-
culation of the Hessian of (2) is impossible or impractical.We will therefore focus
on first–order gradient–based methods. The necessary condition characterizing the
minimum of the cost functionalJ (φφφ) is the vanishing of its Gâteaux differential
J ′ : U×U→ R, i.e.

J ′(φφφopt;φφφ′) = 0, ∀φφφ′ ∈U, (3)

where the Gâteaux differential is defined asJ ′(φφφ;φφφ′) = limε→0
J (φφφ+εφφφ′)−J (φφφ)

ε and
φφφopt is the minimizer. In most applications, and also in the case considered here,
the cost functional̃J is quadratic in bothx andφφφ, however,x = x(φφφ) is often a
nonlinear mapping and the optimization problem (2) may be therefore nonconvex.
As a result, it may admit nonunique solutions and (3) will characterize only a local
minimizerφφφopt. Given some initial guessφφφ(0), such a minimizer can be found using
gradient–based descent method of the general form

φφφ(k+1) = φφφ(k) +d(k), k = 1,2, . . . , (4)

1Since this is the formulation we will focus on below, hereafter we will skip the adjective “reduced”,
unless needed for clarity.
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such that limk→∞ φφφ(k) = φφφopt, wherek is the iteration count. At every iterationk the
descent directiond(k) is determined based on the gradient∇∇∇J of the cost functional
calculated atφφφ(k). As will be shown below, this gradient can be extracted from
J ′(φφφ(k);φφφ′). A convenient expression forJ ′(φφφ(k);φφφ′) can be found using methods
of Nonlinear Programming [see Lewis (2001) for a discussionof NLP techniques
in the context of PDE–constrained optimization]

J ′(φφφ;φφφ′) =
〈

DφφφJ ,φφφ′
〉

U×U∗
=

〈

DφφφJ̃ ,φφφ′
〉

U×U∗
+

〈

DxJ̃ ,(Dφφφx)φφφ′
〉

X×X ∗
, (5)

whereDaF denotes the Fréchet derivative of the mappingF = F(a) [see Berger
(1977)]. In (5)U∗ is the dual space with respect toU and〈·, ·〉U×U∗ represents
the standard duality pairing between the spacesU andU∗. Below we will show
how the cost functional differential in (5), and in particular the termDφφφJ , can be
expressed using an appropriately–definedadjoint state. Using the implicit function
theorem, the termDφφφx can be expressed as

Dφφφx = −(Dxu)−1Dφφφu, (6)

so that the second term on the RHS in (5) can be transformed as follows

〈

DxJ̃ ,(Dφφφx)φφφ′
〉

X×X ∗
= −

〈

DxJ̃ ,(Dxu)−1Dφφφuφφφ′
〉

X×X ∗

= −
〈

D∗
φφφu(Dxu)−∗DxJ̃ ,φφφ′

〉

U×U∗
,

〈

D∗
φφφxDxJ̃ ,φφφ′

〉

U×U∗
,

(7)
where an asterisk denotes a Banach space adjoint. Putting together (5) and (7) we
see that the adjoint operatorD∗

φφφx : X ∗ →U∗ can be used to express the differential
of the cost functional (5) in a convenient form as

J ′(φφφ;φφφ′) =
〈

DφφφJ̃ +D∗
φφφxDxJ̃ ,φφφ′

〉

U×U∗
=

〈

DφφφJ ,φφφ′
〉

U×U∗
. (8)

As is evident from the above relationship, the first argumentin the duality pairing
can be identified with thegradientof the reduced cost functionalJ : U → R in
the metric induced by the spaceU. It must be emphasized that the gradient in fact
belongs to the dual spaceDφφφJ ∈U

∗ and, since in most infinite–dimensional cases
the dual spaceU∗ is notcontained in the original spaceU, this gradient may not
be used as a descent direction inU. In the special case whenU is a Hilbert space
we can invoke Riesz’ representation theorem [Berger (1977)] which allows us to
mapDφφφJ ∈U

∗ to the corresponding element∇∇∇J ∈U as

J ′(φφφ;φφφ′) =
〈

DφφφJ ,φφφ′
〉

U×U∗
=

(

∇∇∇J ,φφφ′
)

U
, (9)
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where(·, ·)U represents the inner product on the Hilbert spaceU, so that now
∇∇∇J ∈ U can be used to construct a descent direction inU. On the other hand,
whenU is not a Hilbert space, Riesz’ theorem does not apply and identification
(9) is not possible. However, in Section 3 we will present a method for constructing
an equivalent of∇∇∇J in the spaceU in such a general case.

Now we illustrate these somewhat abstract considerations by analyzing a con-
crete example of PDE–constrained optimization. We will focus on a model prob-
lem introduced in Protas et al. (2004) which concerns estimation of the initial
condition for the 1D Kuramoto–Sivashinsky equation. This particular problem is
selected as it models the variational data assimilation, known as 4DVAR, in Dy-
namic Meteorology [see Kalnay (2003)]. The Kuramoto–Sivashinsky equation is
chosen, since it is endowed with chaotic and multiscale behavior and as such is an
attractive model for the Navier–Stokes system. We follow here Protas et al. (2004)
as regards the set–up of this problem and below highlight only the main points of
the derivation, while the Reader is referred to the originalsource for further details.

For simplicity, we will consider the 1D Kuramoto–Sivashinsky equation on a
periodic spatial domainΩ = [0,2π] and a time interval[0,T]











∂tv+4∂4
xv+ κ

(

∂2
xv+v∂xv

)

= 0, x∈ Ω, t ∈ [0,T],

∂i
xv(0, t) = ∂i

xv(2π, t), t ∈ [0,T], i = 0, . . . ,3,

v(x,0) = φ, x∈ Ω.

. (10)

Given incomplete and possibly noisy measurementsy = H vact + η ∈ Y , where
vact(·,t)∈X is the actual system trajectory,H : X →Y is an observation operator
andη is (Gaussian) noise, our optimization problem consists in finding an initial
conditionφ in (10) such that the corresponding system trajectory best matches
the available measurementsy. In other words, we minimize the following cost
functional

J (φ) =
1
2

∥

∥

∥
H v(φ)−y

∥

∥

∥

2

L2(0,T;L2(Ω))
=

1
2

Z T

0
(H v(φ)−y)2dτ. (11)

Consistently with the properties of system (10), we will assume thatφ ∈ U =
L2(Ω). SinceJ depends on the control variableφ implicitly through the state equa-
tion (10), expression (11) represents in fact the reduced cost functional [cf. (2)].
We will assume that the observation operatorH has the form of projection on a
set of cosine modes with the wavenumbers in some setΛr , i.e.

H = ∑
r∈Λr

Pr , where Prz=

[

1
π

Z 2π

0
cos(rx′)z(x′)dx′

]

cos(rx). (12)

The Gâteaux differential of (11) is given by [cf. (5)]

J ′(φ;φ′) =

Z T

0

Z 2π

0
(H v−y)H v′dxdt, (13)
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where the perturbationv′(φ;φ′) is obtained by solving the Kuramoto–Sivashinsky
equation linearized around the stateφ, i.e.











Lv′ = ∂tv
′ +4∂4

xv′ + κ
[

∂2
xv′ +v∂xv

′ +(∂xv)v′
]

= 0, x∈ Ω, t ∈ [0,T],

∂i
xv

′(0, t) = ∂i
xv

′(2π, t), t ∈ [0,T], i = 0, . . . ,3,

v′(x,0) = φ′, x∈ Ω,
(14)

with the operatorL : X → X ∗ understood in the weak sense. Relation (13) can
now be transformed to a form consistent with (8) by introducing an adjoint operator
L∗ : X →X ∗ and the corresponding adjoint statev∗ ∈X ∗ via the following identity

〈

v∗,Lv′
〉

X×X ∗
=

〈

L∗v∗,v′
〉

X×X ∗
+bL . (15)

Using integration by parts and the definition ofL in (14), we obtain

L∗v∗ = −∂tv
∗ +4∂4

xv∗ + κ
(

∂2
xv∗−v∂xv

∗
)

, and (16)

bL =

[

Z 2π

0
v∗ v′dx

]t=T

t=0
.

We remark thatbL does not contain any boundary terms (resulting from integration
by parts), since all of them vanish due to periodicity. Defining an adjoint system
as











L∗v∗ =H ∗(H v−y), x∈ Ω, t ∈ [0,T],

∂i
xv

∗(0, t) = ∂i
xv

∗(2π,t), t ∈ [0,T], i = 0, . . . ,3,

v∗(x,T) = 0, x∈ Ω,

(17)

and using (14), (15) and (16) we can now express the Gâteaux differential (13) in
the desired form (5)

J ′(φ;φ′) =
Z 2π

0
v∗

∣

∣

∣

t=0
φ′ dx. (18)

Thus, this differential (i.e., the sensitivity of the cost functionalJ with respect to
perturbations of the initial condition) can be expressed using the solution of the
adjoint system (17).

Relationship (18) can now be employed to extract the gradient required in a
descent optimization algorithm. SinceU = L2(0,2π), we immediately obtain

J ′(φ;φ′) =
Z 2π

0
v∗

∣

∣

∣

t=0
φ′ dx=

(

∇∇∇L2J ,φφφ′
)

L2(Ω)
=⇒∇∇∇L2J = v∗

∣

∣

∣

t=0
. (19)

Despite its simplicity, in many cases this is not an optimal choice, as it may result
in poor conditioning of the corresponding discrete optimization problem. In Protas
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et al. (2004) a set of regularization options was identified which can, at least par-
tially, alleviate some of such difficulties. In relation to gradient extraction it was
shown that it can be beneficial to extract the cost functionalgradient in a more gen-
eral Hilbert space, Sobolev spaces being natural candidates [see also Neuberger
(1997)]. In particular, gradient extraction was considered in the Sobolev space
H1(Ω) characterized by the inner product

(

z1,z2

)

H1(Ω)
=

1

(1+ l22)

Z 2π

0

[

z1z2 + l22(∂xz1)(∂xz2)
]

dx, (20)

wherel2 is an adjustable length–scale. IdentificationJ ′(φ;φ′) =
(

∇∇∇H1
J ,φφφ′

)

H1(Ω)

yields, after integration by parts, the gradient∇∇∇H1
J defined via solutions of the

following Helmholtz boundary value problem










1

1+ l22

[

1− l22 ∂2
x

]

∇H1
J = v̄∗

∣

∣

∣

t=0
,

∇H1
J (0) = ∇H1

J(2π).

(21)

Thus, the Sobolev space gradient∇∇∇H1
J is obtained by applying the inverse

Helmholtz operator to the classicalL2 gradient. Interestingly, when regarded in
Fourier space, the inverse Helmholtz operator is equivalent to a low–pass filter
with the cut–off given by the inverse of the length–scalel2 parametrizing the in-
ner product (20). Consequently, extracting gradients in Sobolev spaces with inner
products given by (20) has the effect of de–emphasizing components with char-
acteristic length–scales smaller thanl2. As was shown in Protas et al. (2004),
adjusting this length–scale during solution of an optimization problem can ac-
celerate convergence of iterations. In particular, starting with l2 large and then
progressively decreasing it to zero results in a multiscaleprocedure targeting first
the large–scale structures and then homing in on smaller scale components of the
solutionφopt.

3 Nonlinear Preconditioning using Descent Directions in
General Banach Spaces

In this Section we address the issue of gradient extraction in general Banach spaces
and the potential advantage this technique may offer as a method of nonlinear pre-
conditioning. Similar ideas were already discussed by Lewis (2001) and elaborated
in greater detail by Neuberger (1997), however, they were not concerned with pre-
conditioning nonlinear optimization problems. The present approach relies on the
assumption that the Banach spaceU, where the descent direction is to be identi-
fied, bereflexive, i.e., thatU∗∗ =U. As already mentioned in Section 2 in relation
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to formula (9), the gradient is a linear functional on the spaceU and therefore
belongs to the dual spaceU∗. For example, ifU is the Sobolev spaceW1,p

0 , p 6= 2,
defined as

W1,p
0 (Ω) = {u : Ω → R,‖u‖W1,p < ∞, v|∂Ω = 0},

where ‖u‖W1,p =

[

Z

Ω
(|v|p + l p

p|∂xv|
p)dΩ

]1/p

,
(22)

wherelp ∈ R
+ is a weight, then the dual spaceU∗ = W−1,q, where1

p + 1
q = 1 [see

Adams and Fournier (2005)]. Since a dual space is usually “larger”, its elements
do not necessarily belong to the original spaceU and therefore cannot be used to
represent descent directions in that space. Consequently,it is necessary to propose
a different approach which allows one to extract a descent directiong̃ from J ′(φφφ;φφφ′)
such that̃g ∈ U. As shown by Lewis (2001) and Neuberger (1997), this can be
done definingg̃ as a unit–norm element ofU which minimizes expression (9).
In other words, we postulate to find̃g as a solution of the following constrained
minimization problem

min
‖g‖U=1

〈

DφφφJ ,g
〉

U∗×U
(23)

which can be converted to the more convenient unconstrainedform

min
g∈U

[

〈

DφφφJ ,g
〉

U∗×U
+

µ
p
‖g‖p
U

]

= min
g∈U
G(g), (24)

wherep is an integer,µ is the Lagrange multiplier andG : U→ R. This problem
can be solved with a method analogous to the approach described earlier in Section
2. Thus, the descent directiong̃ is characterized by the vanishing of the Gâteaux
differential of (24), i.e.

∀g′∈U G
′(g̃;g′) =

〈

DgG(g̃),g′
〉

U∗×U
= 0, (25)

whereDgG : U→U∗. Thus, we obtain

DgG(g̃) = 0 in U∗ (26)

as an equation determining the directiong̃ ∈ U. Below we will show how this
direction can be determined whenU is one of the Banach spaces commonly arising
in the analysis on nonlinear PDEs. This analysis will be carried out in the setting
of the optimization problem for the Kuramoto–Sivashinsky equation introduced
in Section 2. We begin with the Lebesgue spacesLp(Ω) with norms defined as
[Adams and Fournier (2005)]

‖u‖Lp(Ω) =











(

Z

Ω
|u|pdΩ

)1/p

1≤ p < ∞,

ess supx∈Ω |u| p = ∞.

(27)
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Considering for the moment the case with 1≤ p < ∞, the unconstrained cost func-
tional (24) and its Gâteaux differential (25) take the form

G(g) =

Z

Ω
(v∗

∣

∣

t=0g+
µ
p
|g|p)dΩ, (28a)

∀g′∈Lp(Ω) G′(g;g′) =
Z

Ω
(v∗

∣

∣

t=0g+µg|g|(p−2))g′dΩ, (28b)

so that the descent direction ˜gLp is characterized by the algebraic relation

g̃|g̃|(p−2) = −
1
µ

v∗
∣

∣

t=0. (29)

The solution of (29) is

g̃Lp =























p−1

√

−
1
µ

v∗
∣

∣

t=0, p — even,

−sgn(v∗
∣

∣

t=0)
p−1

√

1
µ

∣

∣

∣
v∗

∣

∣

t=0

∣

∣

∣
, p — odd.

(30)

We thus see that whenp 6= 2, the descent direction inLp(Ω) is obtained by ap-
plying a nonlinear transformation to the original gradient∇∇∇L2J = v∗|t=0. In the
special casep = 2 we immediately obtain

g̃L2 = −
1
µ

v∗
∣

∣

t=0 (31)

which is the classical expression obtained in Section 2. As regards the constantµ,
which serves as a Lagrange multiplier in the unconstrained formulation (24), it is
chosen to normalize ˜g to unit norm‖g̃‖U = 1. In the second special casep = ∞, it
can be shown that

g̃L∞ = −sgn(v∗
∣

∣

t=0) (32)

consistently with taking the limitp→ ∞ in expressions (30). We also remark that
in the casep= 1 the descent direction ˜gL1 cannot be defined, since the spaceL1(Ω)
is not reflexive.

We now proceed to discuss the problem of determining the descent direction
whenU =W1,p, whereW1,p is the Sobolev space defined in (22). Considering the
case 1≤ p< ∞, the unconstrained cost functional and its Gâteaux differential take
the form

G(g) =

Z

Ω

[

v∗
∣

∣

t=0g+
µ
p
(|g|p + l p

p|∂xg|
p)

]

dΩ, (33a)

G ′(g;g′) =

Z

Ω

{

v∗
∣

∣

t=0g′ +
µ
p

[

g|g|(p−2)g′− l p
p∂x(∂xg|∂xg|

(p−2))g′
]

}

dΩ. (33b)
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As before, the boundary terms due to integration by parts vanish because of peri-
odicity of g̃ andg′. Since the descent direction ˜g is characterized byG ′(g̃;g′) = 0,
∀g′∈U , it can be obtained as a solution of the following problem inU∗ (due to
nondifferentiability of the absolute value function| · |, this equations is formulated
in the weak sense)







g̃|g̃|(p−2)− l p
p∂x

[

(∂xg̃)|∂xg̃|
(p−2)

]

= −
1
µ

v∗
∣

∣

t=0,

g̃(0) = g̃(2π).

(34)

The second term on the LHS in the first equation in (34) is usually referred to as
the p–Laplacian[Neuberger (1997)], as it represents a nonlinear generalization
of the familiar Laplace operator. Evidently, in the casep = 2, W1,2(Ω) = H1(Ω)
is a Hilbert space and thep–Laplacian reduces to the classical Laplace operator.
As a result, (34) simplifies to (21) and we recover the Hilbertspace framework
discussed in Section 2. The Lagrange multiplierµ can be adjusted in order to
normalize the descent direction to the unit norm. We can conclude that identifi-
cation of descent directions in Banach spaces (such asLp(Ω), or W1,p(Ω), when
p 6= 2) results innonlineartransformations of the adjoint fieldv∗|t=0. As regards
equations with thep–Laplacian operator such as (34), a variety of their interesting
properties is discussed by Ishii and Loreti (2005) (see alsoreferences contained
therein).

We now comment briefly on the utility of extraction descent directions in gen-
eral Banach spaces as a nonlinear preconditioning technique. The purpose of pre-
conditioning is to modify the metric in which a given iterative process takes place,
so as to accelerate convergence. For linear problems with quadratic functionals
this can also be regarded as decreasing the condition numberof the Hessian of the
reduced cost functional. In such cases linear preconditioning techniques are effi-
cient enough (in fact, in many situations there exist specific guidelines regarding
the choice of an optimal preconditioner). However, for nonlinear problems linear
preconditioning may not be sufficient and a nonlinear changeof the metric may
lead to better results. In the framework proposed here, choosing a preconditioner
is in fact equivalent to choosing a Banach spaceU in which the descent direction
is identified. The question of how to choose this space is important. Unlike certain
linear problems, most nonlinear PDEs result in optimization problems with struc-
ture that is too complicated to allow for a thorough analysis. In such situations
finding the most suitable preconditioning strategy is a matter of experimentation.
There are, however, certain general conditions that need tobe satisfied. In gen-
eral, for the evolution equation (10) to be well–posed, the control φ must belong
to some appropriate spaceU (identical withL2(Ω) in the present case). There-
fore, if at thek–th iteration we want to precondition the gradient by extracting it

in some Banach spaceU(k), it must be ensured that this gradient∇∇∇U(k)
J will still
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belong to the original spaceU, in other wordsU(k) ⊆ U, ∀k∈Z. Such precondi-
tioning is equivalent to restricting the iterates to a family of subspaces nested inU.
Computational results concerning linear preconditioningreported by Protas et al.
(2004) indicate that the best results were obtained when thesubspaces formed the
following hierarchy

U(0) ⊆U(1) ⊆ ·· · ⊆U(k) ⊆ ·· · ⊆ L2(Ω). (35)

When considering general Banach spaces, additional guidance for constructing hi-
erarchies like (35) can be obtained by considering the family of Sobolev Imbedding
Theorems[Adams and Fournier (2005)]. Imbedding Theorems provide criteria that
allow one to determine whether or not one Sobolev (or Lebesgue) space is “con-
tained” in another one. In the following Section we present computational results
that address some of these issues.

4 Computational Results

In this Section we show some computational results illustrating the utility of the
nonlinear preconditioning techniques developed in Section 3. We treat the results
from Protas et al. (2004) as our point of reference, so we consider here precisely
the same problem of state estimation for the Kuramoto–Sivashinsky equation. The
observation operator in (12) uses projections on the firstr = 50 cosine modes (i.e.,
Λr = {1, . . . ,50}) and we setκ = 4000 in equation (10). Both equation (10) and its
adjoint (17) are solved using a dealiased pseudo–spectral Fourier–Galerkin method
with N = 1024 grid points. The Reader is referred to Protas et al. (2004) for further
numerical details. The nonlinear equation (34) involving the p–Laplacian opera-
tor is solved using Newton’s method applied to the system of nonlinear algebraic
equations obtained after discretization.

In order to see the effect of nonlinear preconditioning we will present results
obtained for two optimization horizons (given in terms of the time step∆t = 10−8)
T = 300 andT = 500. Since the effect of nonlinear preconditioning appearsmost
pronounced for the longer optimization horizonT = 500, some of the results will
be presented for that case only. We begin presentation of theresults by examining
the shape of the descent directions ˜g obtained in different Banach spaces. To fix
attention, we consider the first iteration in the problem with T = 500 with a zero
initial guessφ(0) ≡ 0. In Figure 1 we compare the descent directions ˜g extracted
in the Banach spacesL2(Ω), L∞(Ω) andW1,4(Ω) with l4 = 10.0 [cf. (22)] with
the standard gradient∇L2J extracted in the spaceL2(Ω). We observe that for
increasingp the descent directions obtained in the spacesLp(Ω) approach a square
wave.

In computational solution of our optimization problem we found the precondi-
tioning involving descent directions in the Sobolev spacesW1,p(Ω), wherep≥ 3,

11
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x

g

Figure 1. Shapes of the descent directions obtained at the first iteration in the data
assimilation problem withT = 500 and determined in: (solid line)L2(Ω), (dashed
line) L5(Ω), (dotted line)L∞(Ω) and (dash–dotted line)W1,4(Ω). For clarity, only
half of the domainΩ is shown.

to be more efficient than the preconditioning using descent directions inLp(Ω).
This is the case we will focus on exclusively below. In Figures 2a and 2b, cor-
responding to optimization withT = 300 andT = 500, we study the effect that
the quantitylp, the characteristic “length–scale” parametrizing the definitions of
the norm‖u‖W1,p, has on optimization efficiency. Given that the value of the cost
function (11) before optimization (i.e., forφ(0) ≡ 0) is normalized to unity, Figures
2a and 2b show the decrease of the cost functional at the first iteration for the de-
scent directions obtained in the spacesW1,3(Ω) andW1,4(Ω) with values ofl3 and
l4 indicated on the abscissa. For comparison, we also show the results obtained
with the gradient extracted inL2. We note that the decrease of the cost functional
significantly depends on the choice oflp (p = 3,4). ForT = 300 the window of
lp giving improvement over optimization with theL2 gradients exists for descent
directions inW1,3(Ω) only and is rather narrow. The advantage of determining
descent directions in a Banach space becomes much more evident for T = 500,
where the windows oflp giving improvement over gradients inL2 are unbounded.

Now we proceed to analyze the effect of nonlinear preconditioning on the
whole optimization process involving many iterations. As regards optimization
with the descent directions obtained in the Banach spacesW1,p(Ω) we follow the
strategy outlined in Section 3: for a given choice of the space W1,p(Ω) we start
with the value oflp which was determined to give the best results at the first iter-
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Figure 2. Decrease of the cost functional (11) at the first iteration inoptimization
with (a) T = 300 and (b)T = 500. The descent directions are extracted in the
spaces (solid line)L2(Ω), (dashed line)W1,3(Ω) and (dotted line)W1,4(Ω) for
values ofl3 andl4 indicated on the abscissa.
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ation and then progressively decrease it to zero, so that thecorresponding descent
directions approach theLp descent direction. As a result, our preconditioning strat-
egy is equivalent to extracting the descent directions in a sequence of nested spaces
W1,p(Ω), all contained in the “master” spaceL2(Ω). This strategy, initially inves-
tigated by Protas et al. (2004) for the case of gradient extraction in the Sobolev
spaceH1(Ω) = W1,2(Ω), was found to give good results. In Figures 3a and 3b we
show the decrease of the cost functionalJ (φ(k)) as a function of the iteration count
k for T = 300 andT = 500, respectively. In both cases the descent directions are
extracted in the spacesW1,4(Ω) with the initial values ofl4 equal to 10−1 and 10
in the two cases, respectively. For comparison, in the two Figures we also show
the decrease of the cost functional obtained with gradientsobtained in the space
L2(Ω). We note that whenT = 300 nonlinear preconditioning offers little advan-
tage over the unpreconditioned case, in contrast to the casewith T = 500 where a
significant convergence acceleration is observed. In orderto further emphasize this
point in Figures 4a and 4b we show the data for the error in the reconstruction of
the initial condition, i.e.,‖φ(k) − φact‖L2(Ω) corresponding to the same cases as in
Figure 3. We note that these results provide further evidence for the trends already
shown in Figure 3. We also examined nonlinear preconditioning in the case of
shorter optimization horizonsT ≪ 300, however, no acceleration of convergence
comparing to the optimization with theL2 gradients was observed. Hence, we do
not show these results here.

5 Conclusions and Outlook

In this paper we first reviewed the formulation of an optimal control problem for
a fluid system using the language of Nonlinear Programming. We focused on a
particular aspect relevant from the computational point ofview, namely, determi-
nation of well–preconditioned descent directions for the cost functional. We ex-
tended an earlier approach and showed how a descent direction can be determined
in a general Banach space without Hilbert structure. In particular, we showed that
extracting this descent direction in a Sobolev spaceW1,p(Ω) leads to solution of
an elliptic problem with ap–Laplacian. Such a preconditioning strategy has the
effect of a nonlinear change of the metric in the space where optimization is per-
formed. When employed judiciously, this approach may have the potential to mit-
igate the effect of nonlinearities present in the system. Indeed, our computational
results indicate that such a nonlinear preconditioning canaccelerate convergence
of iterations in an optimization problem for a nonlinear PDE. Interestingly, effec-
tiveness of the proposed approach increases with the lengthof the optimization
interval [0,T] and becomes more evident for problems with largeT, i.e., in situa-
tions when nonlinear effects play a more significant role. Research is underway to
apply a similar approach to precondition optimization of more realistic problems,
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Figure 3. Decrease of the cost functionalJ (φ(k)) in function of iterations for op-
timizations with (a)T = 300 and (b)T = 500. The results are obtained with the
descent directions in (solid line)L2 and (dotted line)W1,4(Ω) where the parameter
l4 progressively decreases with iterations.

15



0 10 20 30 40 50 60 70 80 90 100
k (iter)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

||
(k

)
-

ac
t || L

2

(a)

0 500 1000 1500 2000
k (iter)

0.5

0.6

0.7

0.8

0.9

1.0

||
(k

)
-

ac
t || L

2

(b)

Figure 4. Decrease of the error of the reconstruction of the initial condition
‖φ(k) −φact‖L2(Ω) in function of iterations for optimizations with (a)T = 300 and
(b) T = 500. The results are obtained with the descent directions in(solid line)
L2 and (dotted line)W1,4(Ω) where the parameterl4 progressively decreases with
iterations.
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such as the state estimation in a 3D turbulent channel flow already investigated
by Bewley and Protas (2004). Another possibility is to investigate descent direc-
tions in more general Banach spaces and here Besov spaces [see, e.g., Adams and
Fournier (2005)] are attractive candidates. A thorough treatment of this subject is
given in Protas (2008).

In the present investigation the space giving “optimal” preconditioning was
chosen by trial and error. A very challenging theoretical question is to develop
a rigorous procedure that will determine guidelines for choosing such an optimal
space. Such procedures are in fact available for certain optimization problems
formulated for some linear PDEs, however, no such results appear available for
nonlinear PDEs. Encouraging computational results reported in the present paper
may therefore serve to motivate further theoretical research in this direction.
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dérivées partielles. Dunod, 1968.

17



J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. High–fidelity aerostructural
design optimization of a supersonic business jet.Journal of Aircraft, 41:523–
530, 2004.

B. Mohammadi and O. Pironneau.Applied Shape Optimization for Fluids. Oxford
University Press, 2001.

J. Neuberger.Sobolev Gradients and Differential Equations. Springer, 1997.
B. Protas. Adjoint–based optimization of pde systems with alternative gradients.

Journal of Computational Physics, 227:6490–6510, 2008.
B. Protas and A. Styczek. Optimal rotary control of the cylinder wake in the

laminar regime.Physics of Fluids, 14:2073–2087,, 2002.
B. Protas, T. Bewley, and G. Hagen. A comprehensive framework for the regular-

ization of adjoint analysis in multiscale pde systems.Journal of Computational
Physics, 195:49–89, 2004.

18


