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Abstract

In this paper we use methods of dynamical systems theoryoidde a precise mathemat-
ical characterization of the behavior of the point vorteppl'system with linear feedback
control. The Foppl system was used in an earlier investigas a simple model for con-
trol design of vortex shedding and numerical studies irtdidahat the state of the con-
trolled system converges to a closed orbit. In this invesiion we prove rigorously that
this observed behavior in fact represents periodic osiciia on the center manifold of the
closed-loop nonlinear system. This manifold is shown to@die with the uncontrollable
subspace of the linearized system.

Key words: point vortices, flow control, dynamical systems, wake flows
PACS:47.15.Hg, 47.27.Rc, 47.27.Vf

1 Introduction

Integration of rigorous methods of Modern Control TheorthmComputational
Fluid Dynamics has opened new possibilities in the field ofAFControl. This, in
particular, concerns the design of feedback stabilizaticategies based on Linear
Control Theory which proved to be quite successful (see, thg review papers
[1,2]). Application of such methods, however, is limitedthyg need to solve a non-
linear operator Riccati equation required to determinefé®elback operators. In
practical applications such problems are usually computally intractable, un-
less the underlying partial differential equation (PDE3ah#bing evolution of per-
turbations has some special properties (e.g., decoupksuner space). Hence, in
order to solve such problems in general settings one sesifdiBed descriptions
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of the system, known as reduced-order models, that renéepritblem of deter-
mining feedback operators computationally tractable. fanely of reduced—order
models is based on point vortices which are weak (singututi®ns of the two—
dimensional (2D) Euler equations. Point vortex system®Hmeeen used as a basis
for design of flow control algorithms by several researchersluding Cortelezzi
et al. [3-5], Chernyshenko [6], Péntek et al. [7], Noacklef%®10], Zannetti and
lollo [8], and Vainchtein and Mezi€ [11]. In particular,gl-Oppl system [12], rep-
resenting a simple potential flow model for a 2D recirculgfilow behind a circular
cylinder, was employed to construct control strategiesthercylinder wake flow
in the laminar regime in [13,14]. This model was subseqyeamed by the present
author in [15] for a systematic design of a control strateggdal on the linear
control theory with the goal of stabilizing the equilibrissolution. The particular
configuration considered in that investigation employedayiinder rotation as the
flow actuation (i.e., the control variable) and measuresehthe velocity on the
flow centerline downstream of the cylinder as the systemuygigure 1). Numer-
ical simulations reported in [15] regarding applicationsoich linear stabilization
strategies to the FOppl system revealed an interestingMb@h the linear control al-
gorithm was able to stabilize the otherwise exponentialistable system, however,
instead of asymptotic convergence to the equilibrium sotythe system trajectory
would converge to a closed orbit encircling the equilibrivknalogous results were
also obtained applying this control strategy to stabiliz@etual cylinder wake flow
governed by the 2D Navier—Stokes equationRet 75. This is clearly an unde-
sirable behavior, as it results in persistent oscillationthe closed—loop system.
The purpose of this paper is to use methods of dynamical mygstieeory to pro-
vide a rigorous mathematical characterization of this okes behavior with the
hope of using it to understand and improve the performane®éx—based flow
control strategies. The structure of the paper is as followshe next section as
introduce formally the Foppl system and the associatedrabproblem; we also
briefly review the results obtained earlier with the linetatslization algorithm, in
the following Section we perform an invariant manifold retan of the closed—
loop system, in Section 4 we prove a theorem concerninglgyabi the reduced
system on the center manifold and in Section 5 we present samerical compu-
tations illustrating our findings; conclusions concerniegvance of these results
to the observed behavior are deferred to Section 6. Manyeofdbults presented in
this paper required manipulation of rather complicate@lbigic expressions, some
of which are collected in Appendix A. Processing of such esprons was made
possible by the use of a symbolic manipulation package MARDEThe code
which allows one to reproduce all the results presentedisngaper is available at
http://ww. mat h. ncmast er . ca/ bpr ot as/ Sof t war e/ f oppl _cent er _mani f ol d.
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Fig. 1. Schematic of the wake stabilization problem.

2 Foppl System as Model for a Controlled Cylinder Wake Flow

In this Section we introduce the Foppl system and discus$lystability proper-
ties of its equilibrium solution. Then we formally state ttantrol problem, charac-
terize controllability of the linearized system, and revitne stabilization strategy
based on the linear control theory. Most of these resulte l@en published else-
where, hence our discussion here is concise and servesmsht the stage for
subsequent developments.

We consider a 2D potential flow past a circular cylinder waliusR =1 in an un-
bounded domain such that velocity at infinity approachesrstamt vectolJ..ey,
where for simplicityU.,, = 1 andey is the unit vector of the X—axis . The Foppl
system [12] is obtained by adding two counter—rotating peattices with circu-
lations—I" andl", one above and one below the flow centerline, together wéin th
images inside the obstacle, to the potential flow past thedrytal obstacle (see
Figure 2). The state of the system is characterized by positf the two vortices
71 = X1 +iy1 andzy = X +iy», wherei = v/—1 (in our analysis below we will inter-
changeably use complex and real notation, as dictated byissress and clarity).
Hence, the state evolution is governed by

O V(X1 +iy1, X2 +iy2)]
—OM1(xq +iyg, X +i
dEX:F(X)é Vit v .y2>] ) @
t O[Va(x1 +1y1, X2 +1y2)]
| —ONVa(xy +iy1, X2 +iy2)]
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Fig. 2. Schematic of the FOppl point vortex system with atitn represented by the circu-
lation'c. The dashed line represents the boundary of the recironlagigion.

whereX = [x1 y1 X2 yz]T and the vortex velocities are given by

1T 1 1 !

y 1T - _ 2a
1(z1,22) Z  2m <21—1/72 un-1/7 21—22)’ 22
1 T 1 1 1
y LT ~ _ . (@b
2(21,22) Z T o <22_1/21 -7 22—1/22> (20)

where an overbar denotes complex conjugation. The Fopgikesyis known to
possess nonunique equilibrium points [12], i.e., vorterfigurations for which
%X = 0. However, in this investigation we are exclusively instegl in one equi-
librium, namely corresponding to a flow with a closed rediation bubble behind
the obstacle (Figure 2) in which the singularity locatiod, o) and its strengti
are connected through the following relations

(r5—1)% = 4rg(r§ —x5).

r_ o812 +1) 3)
rs ’

wherexg = X1 = Xz, Yo = Y1 = —Y2 andr = x5 +y3. We note that relations (3)
represent a family of solutions depending on one paranfetanstance, the down-
stream positiorxg of the vortices. Linear stability of the equilibrium soloitis (3)
was investigated by several authors including Foppl hifjé2], Smith [16], Cai
et al. [17], and de Laat and Coene [18]. The study by Tang arahA[19] pro-
vided a careful analysis of the connection between stalplibperties of equilib-
rium (3) and the vortex shedding instability in an actualimyér wake flow. Non-
linear stability of the Foppl system was studied in a weakdylinear setting by
Tordella in [20] and recently for a more general system usimeggenergy—Casimir
methods by Shashikanth et al. in [21]. Local stability isestigated by consid-
ering small perturbationg; = x; +iy; andz, = x, + iy, around the equilibrium
20 =Xo+1yo, i.e.,21 = 25+ 7 andz, = 25+ z,. Evolution of the perturbation vector



X'=[x] ¥, % Y57 is governed by the equation

d
—X' = AX’ 4

dt ) ( )
where A = OF(Xp) is the Jacobian of the nonlinear functiiiX) evaluated at
the equilibriumXo = [Xo Yo Xo —Yo|'. Thus, the local stability properties are
determined by the eigenvalues of thex4 matrix A which turns out to have the
following eigenmodes:

e unstable (growing) mode corresponding to a positive real eigenvalie= Ay,

e stable (decaying) modgcorresponding to a negative real eigenvalge= —A;,

e neutrally stable oscillatory modgcorresponding to a conjugate pair of purely
imaginary eigenvaluess = —Ag = iAj,

wherel,,Aj € RT. We emphasize that expressions ¥erand); as well as for the
eigenvectors of\ are available in a closed form which holds regardless of &éhee/
of the downstream positiory > R parameterizing the equilibrium solution (3).
For further details concerning linear stability of the ddprium (3) the Reader is
referred to [19].

Owing to the presence of the exponentially growing madé¢he equilibrium so-
lution (3) of system (1) is unstable. In the earlier inveatign [15] we considered
a stabilization strategy for the Foppl system which useddylinder rotation, rep-
resented by the associated circulatign as the flow actuation (Figures 1 and 2).
Including the effect of this actuation in system (1) resintthe controlled system

d
ax F(X)+b(X)lc, (5)

where the 4< 1 control matrix is given by

—Y1/(X1 +Y1)
1| x/(G+y))
b(X) = o . (6)
Y2/ (% +5)
| xe/(6+Y5))
and the corresponding linearized controlled system is
d / /
—X"'=AX"+Blc, @)

dt

whereB = b(Xg). Controllability of system (7) can be inferred from the razda-
dition [22]
A =rank[B AB A’B A%B] =2+ dim(X) =4, (8)



which indicates that two modes are in fact not controllablsing transformation
to the minimal representation one can identify the uncdiaiote part as the mode
y associated with the conjugate pair of purely imaginary migkiesEA;. Thus,
owing to the stability of this mode, the linearized systemi§/stabilizable even
though it is notcontrollable Using methods of modern linear control theory [22],
a feedback stabilization strategy, known as a Linear—QaimeiRegulator (LQR),
was designed in [15] which rendered the linearized systénst@ble in addition
to minimizing a certain performance criterion based on tbhguot of system (7)
obtained with a suitably—defined observation operatortheiowords, we found a
feedback operatdf € R4 such that the control could be expressefi@s: — KX’
and the closed—loop system matfix— BK) did not have eigenvalues with positive
real parts. As a matter of fact, the problem considered if Y& still somewhat
more complicated as a results of certain practical conataers. The stabilization
strategy outlined above determines the control based orngtantaneous state
X’ of the perturbation system which in reality is not known. W& however,
available in the considered setting are certain measurenoérihe system which
can be used to construct an evolving estimate of the statg asi estimator system
such as, for instance, the Kalman filter. Thus, in practieedback is determined
based on these state estimates, rather than the actua statee system. Such
a combination of a regulator and an estimator is referredsta aompensator. In
order to simplify the mathematical analysis, in the presewnestigation we will
however consider an idealized case of feedback controldbasehe state of the
system, rather than its estimate. As illustrated by nuraédemputations presented
in Figures 3a,b, the two cases lead in fact to qualitativiehjlar results.

The linear stabilization strategy described above wasegpi [15], as is often the
case, to the original nonlinear Foppl system (5) resuliting
%X:(A—BK)XJFG(X), (9)
whereX £ X — X is not assumed small af@(X) £ F(Xo+ X ) — AX [this change
of variables shifts the equilibrium of system (5) to the orjg The fact that the
uncontrollable mode is only neutrally stable has important consequences, both
theoretical and practical, as regards the behavior of thgecl—loop nonlinear sys-
tem (9). As is well known (see, e.g., [23]), when the Jacobifanonlinear system
calculated at an equilibrium has purely imaginary eigemes) it may not be suf-
ficient to determine the local stability of this equilibriuvmmd more information is
required for that purpose. The behavior of the closed—Igspesn with two types of
feedback illustrated in Figures 3a,b indicates clearly #fger an initial instability
is mitigated, in both cases the system trajectory convegga<ircular orbit. While
it can be anticipated that this observed behavior is a redulie neutral stability
of the uncontrollable modg complete characterization of this orbit requires that
the full nonlinear system be analyzed, rather than its limation only. In the next
Section we prove that the closed orbit represents in fachtecenanifold of system
(9) and its persistence is analyzed in Section 4.
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Fig. 3. Trajectories of the upper vortex in (a) closed—loanlmear system (9) with state
feedback and (b) nonlinear system (5) with feedback deterdhusing estimation—based
compensation (see [15]). The solid circles represent thation of the equilibrium (3)
corresponding tag = 4.32.

3 Invariant Manifold Reduction of the Controlled F 6ppl System

We begin this Section by stating the Hamiltonian form of thneantrolled system
(2). This representation will be needed in Section 4 in trepof the stability of
the reduced system. As is well known (see, e.g., [24]), th@iHenian is given by

rz ., rz ., r2 5 5
H(xl,yl,xz,yz):E[In}xl-l-y%—l\+Eln\x2+y§—1}+ﬁln\/(x1—x2) +(y1—¥2)

2
— - Iny/1- 2000 +y1y2) + 0G+12) (G +)3)

Y1 Y2
) e (e ).
( X + ¥4 X5+ Y5

(10)
so that the equations of motion can be expressed as
( : oH
—I)X1= -,
(=M% 0y1
%2 = Z—H,
(- -4
aX]_’
: oH
\ Fy2= %

We now shift the equilibrium position to the origin using thebstitutionX = Xo +
X and introduce the followingymplectidransformation

== [nl &2 &1 r]z]T £ 7ZX (12)



defined by the matrix

7a

1 0-1 0
1|0 0-1
V2 |1 1 0

o +— O

(13)

01 0 1

(the reason for the special ordering_of the elements of tiseov& will become ap-
parent below). As a result of these transformations, sy$1g+(2) can be rewritten
as

(. oH
ni= a—E}’
. oH
rEZZ 6—7
2 (14)
r'E __O_H
1 arll,
. oH
r = T Xz
2T e,

where the new Hamiltonian i (Z) 2 H(Xo+Z"Z). We now remark that by ex-
changing the rows one and three in the mafiwe in fact recover the transforma-
tion

0 010 1 0 1 0
.lo 100 110 1 0-1
T2 Z=— (15)
1 0 0 0O V2|1 0-1 0
0 0 0 1 01 0 1

introduced in [15] in order to convert the perjturbation eyeft(?) to the minimal
representation in which the controllable and uncontrddigiarts are uncoupled.
Hence, making this rearrangement in (14) and restoringdddldack control terms

we can rewrite system (9) as
n| [9%@En)

EE:Aoo
dtn 0 As

where€ £ [§1 &,]T andn £ [n1 n2]". The linear and nonlinear parts of system
(16) are obtained as

[AO S (17)

0 As|
& (18)
n

gl(E7n) - TG TT
92(&,n)



As shown in [15], the first row of (16) represents the uncdidhbde part of the
linearized system (7) and the matiiy has a conjugate pair of purely imaginary
eigenvalues, whereas the second row of (16) representsotiteotiable part of
system (7) and, due to the effect of the feedback term, thexmaf has eigenvalues
with negative parts only.

Transformation (15) splits the state spa&into two subspacedt andWs, i.e.,

W, x Ws = R4, such tha& € W, andn € Ws. We now recall (see, e.g., [25]) that
aninvariant manifold, characterized by a smooth functin: W, — W, is a set
M C W, such that if§(0) € M andn(0) = ®(§(0)), theng(t) € M andn(t) =
®(&(t)) for all timest € R*. The following Theorem shows that system (16) has
an invariant manifold with a particularly simple structure

Theorem 1 Systen{16) possesses an invariant manifold given by

(E) — H . (19)
0

PROOF. We consider the terrgz(§,n) in which we sef) = ®(§). Using (19) we
conclude by inspection that in fagt(§,0) = 0, and thereforg(t) = 0if n(0) = 0.
(We remark that the actual expression p(&,n) is too long to be presented here,
however, all the calculations can be reproduced using th&®MAcode mentioned
in Section 1). O

Thus, the invariant manifold coincides with the subspageWe note that, since
the matrixAg has only purely imaginary eigenvalues, the invariant nadifs in
fact acenter manifoldsee, e.g., [26]). Given (19), we can now perform an invdrian
reduction of (16) and the reduced system on the center mdmsfgiven by

&= Aoko+01(0,0). (20)

We remark that application of the feedback control represkby the ternBKX

in (9), while stabilizing locally this system, may in genldoeeak the Hamiltonian
structure of the system. However, we recall tifatepresents a transformation to
the minimal representation, so that

0
0 BoKo

TBKT' =

Y

whereBoKy is a 2x 2 block. This, together with Theorem 1, implies that the re-
duced system (20) is in fact invariant with respect to thalbeek control. This



observation will play an important role in the proof of stéliof the reduced sys-
tem in the next Section.

4 Stability of the Reduced System

In this Section we show that the reduced system (20) on theeccamanifold has
in fact periodic solutions and that its origin is stable. Tingt part of this result is
made precise in the following theorem:

Theorem 2 The reduced syste(®0) has a one—parameter family of closed orbits
(periodic solutions) in a open neighborhood of the origin.

PROOF. On the center manifold, i.e., far; = n2 = 0, the feedback control term
vanishes, hence the reduced Hamiltortyig1,£2) = H(0,5,1,0) is conserved
along trajectories of the reduced system (20) [a complgbesssion forI:|o(El, &2)

is given in (A.1) in Appendix A]. Hence, trajectories of stans of (20) coin-
cide with isocontours oFIo(El,Ez) and existence of periodic orbits follows from
ellipticity of Ho(£1,£>) in the neighborhood of the origif0, 0). This is shown by
expandingﬂo(él,ﬁz) in a Taylor series about the origin and truncating terms of
order 3

&1

FlolE1,£2) = Ho(0.0) + 3 [£1 &) 8 L } + O(EE), (21)

2
wherea + a2 = 3 andS is the Hessian matrix

9%H 9%H
. [ (0.0 azlagg(o,oq |

9%H 9°H
051622 (07 O) 0<07 O)

(22)

0&5

The quantityHo(£1,£>) is elliptic in the neighborhood of the origin, if the eigen-
valuesAs, andAs, of its HessiarS have the same sign. As indicated by Figure 4,
these eigenvalues, given by expressions (A.2) and (A.3)ppeidix A, indeed
have the same sign for all values»@f>> R parameterizing the equilibrium solution
(3) of the Foppl system. Thus, we conclude that the redugsteé (20) has closed
trajectories in the neighborhood of the origin, which coetes the proof. O

The reduced Hamiltoniaﬁlo(il,ig) may thus serve, after some trivial modifica-
tions, as the Lyapunov function for system (20) and its irarage along the trajec-
tories implies stability of the origin. We conclude this 8en by stating a corollary
addressing stability of the complete Foppl system:

10
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Fig. 4. Eigenvalues\s, andAs, of the Hessian matri [Eq. (22)] as a function of the
downstream positioRg of the equilibrium (3).

Corollary 3 For initial conditions sufficiently close to equilibriu(8), solutions of
the closed-loop &ppl systent9) converge as t— « to periodic orbits.

PROOF. This Corollary is a consequence of Theorems 1 and 2, and taé éx-
ponential stability of the subsystem= AN +g2(§,n). O

5 Computational Results

In this Section we show some numerical results illustratingfindings from Sec-
tions 3 and 4. In Fig. 5a we show the eri(t) —&o(t)| between the trajectory
of the original system (16) projected on the center mani¥ticand the trajectory
&o(t) of the reduced system (20) starting from the same initiabd@an. We note
that, as anticipated based on the exponential stabilitye$tibsystem on the stable
manifold\Ws, the trajectories converge at an exponential rate. In facterical cal-
culation of the errot|§(t) —&o(t)]| is a rather delicate matter due to accumulation
of truncation and round—off errors during integration wheventually obscure any
actual error. Despite the use of a high (seventh) order tinbegration scheme, this
effect is responsible for the increase of the error obsefwetl> 20000 in Fig. 5a.
In Fig. 5b we show the trajectori€gt) andn(t) obtained by solving the original
problem (16) which illustrate the behavior of the state @ct¢d on the center and

11
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Fig. 5. (a) Time evolution of the error between the trajegtof the original system (16)
projected on the center manifol}; and the trajectory of the reduced system (20). For
comparison the dotted line shows the exponential funciery!, whereA y e R*. (b) The
time evolution of the (solid line) stable and (dotted linehter manifold parts, respectively
n(t) andg(t), of the original system (16).

stable manifoldsW. andWs, respectively. We remark that these results confirm
predictions of our Corollary 3.

6 Conclusions

In this investigation we provided a precise mathematicalatterization of the be-
havior observed as a result of application of a simplifie@dinfeedback control
strategy to stabilize the equilibrium of the Foppl pointtex system. The sim-
plification consisted in studying a state—feedback regulftQR) instead of an
estimator—based feedback compensator (LQG) actually insibe original inves-
tigation [15] and was motivated by the need to avoid the ditallycomplexity of
the latter. However, as the results presented in Figurei8ate the behavior in the
two cases appears qualitatively similar, hence we belieatthe results obtained
here can also explain the behavior observed when an actualddihpensator was
applied.

We proved that the uncontrollable subspace of the lineduszstem (7) coincides
in fact with the center manifold of the full closed—loop nioielar system (9). Thus,
the long—time behavior of the controlled system is deteeaiby the properties of
the reduced system (20) on the center manifold which wasegréw sustain, for
bounded initial data, periodic oscillations. Therefotee bscillations of the con-
trolled system observed in computations reported in [1%hgeneric character.
We remark that analogous behavior was also observed duabdgization of other

12



vortex—dominated flows (cf. Fig. 21 in [8]).

We emphasize that these nonvanishing oscillations areharrandesirable prop-
erty of the Foppl system employed as a reduced—order modelohtrol design,
especially when applied afterwards to the full Navier—&wokystem. We believe
that this property was in fact responsible for the difficedtihat this control strat-
egy experienced in completely stabilizing the near wakeéoregf an actual 2D
cylinder wake flow, as also reported in [15]. One possiblegdyns to “redesign”
the Foppl system, so that the uncontrollable modes willdyargototically stable.
It turns out that this is in fact possible and can be done bgtraating a family of
“higher—order Foppl systems”, an approach discussedtailde [27]. Preliminary
computational results concerning feedback stabilizatf@much higher—order Foppl
systems are reported in [28]. Another interesting and @ty promising possi-
bility is to investigate the existence of “flat” coordinatiesthe controlled Foppl
system in the spirit of the study [9]. We remark that, due t® pnoperties of the
invariant manifold reduction which leav&sandn uncoupled, the coordinat&sare
not flat.
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A Reduced HamiltonianH and Eigenvalues of its Hessian

The reduced HamiltoniaH (=) on the center manifold is given by

[ /3
. > V282
Ho(§1,&2) =—T yo+§52— = yo;_ 2% NCRY
I (XO+721) +(yo+722)
I S
2 2
7 (o) (-2

2 2
2 2 2
<x0+ §61> + <y0+ §52> - 1} + I (4yo? + 4y0v/ 262+ 262°)

r2

1 1
+5 (2+ 2X02 + 6yo2 + 612) §2° + 4E1y0 200+ 781"+ (30° + 0 — 1) €17

+x0% + %EZ4+2 (Yo" — 1) x0” + (yo° + 1)2} -

(A.1)
The eigenvalues of the Hessian maffiare expressed as
_rrmg (r02—2xo+1)2(r02-|—2xo-|—1)2-|—16nr0\/6 A2)
ST — " ap ) .
t 16 mRy2rd (12— 1) (r? — 20+ 1) (1o + 20+ 1)
\ rrog (r02—2xo+1)2(r02-|—2xo-|—1)2—16nr0\/6
27 716 2u2rd (r2 20 2 (A-3)
TRYyo2r§ (r5—1)

re2—2x0+1) (re2+2x0+1)

—~

14

— {%2 [4y0623 + Ax0E2%E 1+ BypE2 <r02 + %512 + 1) +8%0&1 (rg + %512 - 1)]



whereQ is given by

Q=" [y + (1-+30°] [yo? + (- 17) o (3~ 1)°

[t
— %0 (18 —1)° Yo'+ (3% +22) o'+ (~3x0" + 966 + 31) o'
+ (4— 25x0° + 182¢0* +47x0?)yo® -+ (—45%0% — 72x0? — 26%0* — 1+ 2084°)yo°
+ (—96x0" — 114x0° + 6+ 162%0° + 81x0? — 390 %) yo +
(80K0™0+ 1 — 17012 — 1178 + 40x0® — 242 + 37x6%)Yo? — 3%2 (X0 — 1)° (14 %0)°

r2r6
+ fg [y016 + (8x0% +40) Yo + (3804 8x0? + 28%0*) yo'?
+ (56%0° + 1480« — 376" — 392)yo' %+ (70x0° + 2404¢" — 1688 + 262— 792°)yo°
+ (856¢% — 648%® + 56x0'% — 40— 2128¢* + 1904°)yo®

30 , 1

+28(14x0)* (xo4 — 7xo2 - ?) (%0 —1)*yo* +8(x0% +1) (x0— 1)® (1+x0)®yo?

+0-1°(1+%)°) .
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