
Higher-order Föppl models of steady wake flows
Bartosz Protasa�

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

�Received 21 June 2006; accepted 10 October 2006; published online 30 November 2006�

In this paper we construct two-dimensional steady potential flows past a circular cylinder as
generalizations of the point-vortex Föppl system. For a given classical Föppl system, these
higher-order systems form a two-parameter family depending on the truncation order N and the area
A of the vortex region desingularizing the original Föppl solution. We characterize the higher-order
equilibria analytically and numerically, and show that their modified linear stability properties make
the higher-order systems useful models for a class of flow control problems. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2389033�

I. INTRODUCTION

In this paper we are interested in constructing and briefly
analyzing a family of higher-order Föppl systems modeling
steady two-dimensional �2D� flows past a cylindrical ob-
stacle with radius R. We will assume that the domain �
extends to infinity where the flow is given by U�ex, with ex

denoting the unit vector associated with the OX axis. The
“classical” Föppl system, proposed in Ref. 1, is a potential
flow consisting of two counter-rotating point vortices placed
exterior to the obstacle above and below the flow centerline
which, together with their images inside the cylinder, are in
equilibrium with the obstacle. This system admits two one-
parameter families of equilibrium solutions: one with vorti-
ces located behind the obstacle �Fig. 1�a��, and another one
with vortices located directly above and below the obstacle
�Fig. 1�b��. In the case of the first equilibrium the circulation
of the vortices and their position are related through simple
algebraic expressions; in the case of the second equilibrium
such expressions are not known in closed form. Furthermore,
there also exist numerous equilibria involving a larger num-
ber of vortices.2 In the present investigation we will prima-
rily focus on the equilibrium solution with two vortices be-
hind the obstacle, since it is the most relevant from the
physical point of view; we will refer to it as the “Föppl
equilibrium.”

It is known3 that systems of point vortices are weak so-
lutions of the 2D Euler equations. With regard to the flows
past circular cylinders, it was shown computationally by El-
crat, Fornberg, Horn, and Miller in Ref. 4 that there exists
continuous families of solutions of the Euler equations with
finite-area vortex patches in the exterior of the obstacle
which, when the area of the vortex patches is decreased to
zero with the circulation kept constant, approach one of the
equilibrium solutions of the Föppl system �Figs. 1�c� and
1�d��. Hence, each equilibrium solution of the classical Föppl
system can be regarded as a singular limit of a family of
Euler flows with finite-area symmetric vortex patches param-
etrized by the area of the vortex patch. Conversely, such
Euler flows with finite-area vortex patches can be viewed as

desingularizations of an equilibrium solution of the Föppl
system with the same circulation. They will play an impor-
tant role in this investigation and we will hereafter refer to
them as the “EFHM flows.” These flows are particularly rel-
evant given our focus on wake flows, since flows with vortex
patches with constant vorticity were proposed by
Batchelor5,6 as plausible models for steady wake flows in the
high-Reynolds number limit. The goal of this investigation is
to construct a family of “higher-order Föppl systems,” i.e., a
family of singular systems that will approximate with tun-
able accuracy the velocity field of a given EFHM flow. The
motivation for this study comes from the area of flow control
where simplified solutions of flow problems, the so-called
reduced-order models, are needed for the design of algo-
rithms based on methods of the control theory. The reason is
that synthesis of even “simple” linear feedback control algo-
rithms is a complex task which may easily lead to computa-
tionally intractable problems when applied to well-resolved
discretizations of solutions of the governing equations.7 On
the other hand, the controller synthesis becomes much easier
when the relevant properties of the system are distilled into a
low-dimensional reduced-order model that can be used in-
stead. It should be noted that construction of reduced-order
models typically requires a complete solution of the govern-
ing equations which is simplified in the process. Such an
approach was recently developed in Ref. 8 based on the clas-
sical Föppl system. The family of higher-order Föppl sys-
tems to be derived below will have the same dimension of
the state space as the classical system, however, it will be
characterized by an arbitrary number of adjustable param-
eters and will offer, therefore, more flexibility as a model for
control design than the classical Föppl system does.

The higher-order Föppl systems will be constructed by
expanding the complex potential induced by the vortex
patches in an EFHM flow in a Taylor series with coefficients
given in terms of moments of the vorticity in the vortex
patches. We then look for equilibrium solutions of an order N
truncation of such an expansion which will yield an Nth
order Föppl system. The literature concerning solutions of
the Euler equations involving finite-area vortex patches in
both equilibrium and nonequilibrium configurations is abun-
dant and we refer the reader to the monographs by Saffman9a�Electronic mail: bprotas@mcmaster.ca
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and Newton10 for a review. In the present context we specifi-
cally mention recent investigations by Crowdy, summarized
in Ref. 11, which use advanced methods of complex analysis
to develop an elegant formalism for calculation of equilibria
involving vortex patches and multipolar vortices. The dy-
namics of vortex patches and of the corresponding point vor-
tices in domains involving cylindrical obstacles was recently
studied by Johnson and McDonald.12 With regard to the use
of moments of vorticity to characterize the evolution of a
system of vortex patches, this approach was first employed
by Melander, Zabusky, and Styczek13,14 who showed that this
representation has in fact the Hamiltonian structure. The ap-
proach we develop in this investigation is simpler, since
higher-order moments of vorticity are not treated as addi-
tional degrees of freedom, but are used only to construct
velocity fields better approximating the velocity in the flows
with finite-area vortex patches.

The structure of this paper is as follows: in the next
section we review the EFHM solutions and the classical
Föppl equilibrium; in Sec. III we derive equations character-
izing higher-order Föppl systems; in Sec. IV we study ana-
lytically and numerically the loci of the equilibrium solutions
of the higher-order systems; stability properties of the new
systems are discussed in Sec. V, whereas in Sec. VI we offer
some comments regarding the relevance of the higher-order
Föppl systems for flow control; final conclusions are de-
ferred to Sec. VII.

II. EFHM FLOWS AND THE CLASSICAL FÖPPL
SYSTEM

In this section we briefly discuss the EFHM solutions4 of
the steady Euler equations and then characterize the Föppl
equilibrium as a limit of a family of EFHM flows. The 2D
steady-state Euler equations are equivalently expressed as15

�� = f��� in � ,

� = 0 on �� , �1�

� → U�y for ��x,y�� → � ,

where � is the stream function, which allows the velocity
components to be expressed as u=�� /�y and v=−�� /�x,
and f is an arbitrary function representing the relationship
between the stream function and the vorticity � as �= f���.
In this investigation we are interested only in equilibrium
solutions symmetric with respect to the flow centerline, so
without loss of generality we can restrict � in �1� to the
upper half-plane �i.e., corresponding to points with y�0�.
We note that the indeterminacy of the function f in �1� re-
flects the nonuniqueness of solutions of the Euler equations
in a given domain �. The EFHM flows are obtained by
prescribing a special form of the function f���, namely

f��� = �− � , � � 	 ,

0, � � 	 ,
� �2�

which corresponds to constant vorticity regions embedded in
an irrotational flow. When 	
0, the vortex regions are com-
pact, whereas when 	�0 the vortex regions are unbounded
and extend to infinity. With regard to the first case, Elcrat
et al.4 showed that when the circulation of the vortex regions
is kept constant, the solutions of �1� and �2� form families
parametrized by the area of the vortex patches which ap-
proach the potential flow solutions with point-vortex singu-
larities as the area of the vortex region is decreased to zero.
In particular, one such family desingularizes the Föppl equi-
librium �Fig. 2�. In Fig. 3 we see that, as the area of the
EFHM vortex region increases, the recirculation zone behind
the obstacle becomes more elongated than in the classical
Föppl system �cf. Ref. 8�. Thus, the recirculation regions
obtained in EFHM flows with larger vortex patches resemble
more closely the actual flow patterns observed in steady-state

FIG. 1. Schematic showing two steady-state potential flow solutions for the
cylinder wake flow together with their desingularizations: �a� the classical
Föppl equilibrium and �c� the corresponding EFHM flow, �b� the equilib-
rium with vortices on the OY axis and �d� the corresponding EFHM flow.
The dotted lines in �a� and �b� represent the separatrix streamlines delimiting
the recirculation regions. The solid and dashed lines in �c� and �d� represent
the boundaries of the regions with negative and positive vorticity.

FIG. 2. Boundaries of the vortex patches with increasing area A obtained in
the EFHM flows desingularizing the equilibrium solution �16� of the classi-
cal Föppl system �represented by a solid circle�.
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solutions of the Navier-Stokes system.16 The classical equi-
librium solutions of the Föppl system are obtained by taking
the limit 	→−� in �2� which corresponds to representing
the right-hand side of Eq. �1� as a linear combination of
Dirac delta functions. The circulation �0 and the position
z0=x0+ iy0 �with i=�−1� of the singularities are related as

��z0�2 − R2�2 = 4�z0�2y0
2,

�3�

�0 = − 2�
��z0�2 − R2�2��z0�2 + R2�

�z0�5
.

In addition to Föppl’s original work,1 elegant derivations of
this result can be found in Kochin, Kibel, and Rose17 and
Milne-Thompson.15 The complex potential corresponding to
a Föppl equilibrium is given by

W0�z� = WC�z� + WF,0�z� , �4�

where

WC�z� = U�	z +
R2

z

 , �4a�

WF,0�z� =
�0

2�i
�ln�z − z0� − ln	z −

R2

z̄0



− ln�z − z̄0� + ln	z −
R2

z0

� , �4b�

with an overbar denoting complex conjugation. The complex
velocity is obtained as V0�z��dW0�z� /dz, where the symbol
“�” will mean “equal to by definition.” Equilibrium relations
�3� then follow from the stationarity condition expressed us-
ing the complex velocity with the self-induction term sub-

tracted off, i.e., V̂0�z��V0�z�−
�0

2�i
1

z−z0
=0, which after some

manipulation leads to the following factorized form:

V̂0�z0� =
P0�z0, z̄0�

z0
2�z0�2��z0�2 + R2�Q�z0, z̄0�

�
−

iR2�

2�
�z0

2�z0�2 − ��z0
2�z0�2 − ̄�

z0
2�z0�2��z0�2 + R2��z0 − z̄0���z0�2 − R2��z0

2 − R2�

= 0, �5�

where

 =
1

2
��z0�4 + 2�z0�2R2 − R4

+ i��z0�2 − R2��3�z0�4 + 2�z0�2R2 − R4� .

Expression �5� makes it evident that V̂0�z� vanishes at the
two points characterized by the relations z0�z0�=� and
z0�z0�=� which are precisely the Föppl equilibrium �3� and
its reflection with respect to the OX axis. We remark that in
deriving expression �5� it is assumed that x0�0, hence the
factorized form does not apply to the other family of equi-
librium solutions of the Föppl systems for which x00
�Fig. 1�b��.

III. HIGHER-ORDER FÖPPL SYSTEMS

In this section we derive a family of equations charac-
terizing higher-order corrections to the classical Föppl equi-
librium �3� and corresponding to the EFHM flows desingu-
larizing this equilibrium with finite-area vortex regions. We
will accomplish this by considering the complex potential
induced by a system of vortex patches in an EFHM flow and
then expanding it in a Taylor series about a point zs, or its
conjugate z̄s, located inside the vortex regions, respectively,
P and Q, where Q is a mirror reflection of the vortex region
P in the lower half-plane �Fig. 1�c��. This expansion will
then be truncated at some finite order N and the center of
expansion zs will be determined as an equilibrium of the
truncated system. Using the complex Green’s function for
the Laplace equation in a 2D unbounded domain G�z ,z��
=1/ �2�i� ln�z−z�� and noting that the vorticity distribution

FIG. 3. �Solid lines� Boundaries of the recirculation regions and �dotted
lines� boundaries of the corresponding vortex patches in the EFHM flows
with the areas �a� A=0.78, �b� A=12.55, and �c� A=20.43 of the vortex
region. The classical equilibrium �16� is marked with a solid circle, whereas
the thick solid line represents the obstacle.
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in an EFHM flow is by construction antisymmetric with re-
spect to the OX axis, we obtain the following expression for
the complex potential:

W̃P�z� =
1

2�i
�

P

�ln�z − z����z�� + ln�z − z̄����z̄���dA�z�� ,

�6�

where the tilde �·̃� indicates that the potential represents a
flow in an unbounded domain �i.e., without an obstacle�. The
integration domain P extends over vortex region�s� in the
upper half-plane �i.e., the vortex patch P� and dA�z��
=dx�dy�. We note that expression �6� is valid for z� P and
z�Q. We now choose zs� P as the origin of a local coordi-
nate system associated with the patch P and set �=z�−zs �see
Fig. 1�c��. By symmetry, we will also have z̄�, z̄s�Q. The
complex potential �6� can now be expressed as

W̃P�z� =
�0

2�i
ln�z − zs� −

�0

2�i
ln�z − z̄s�

+
1

2�i
�

P
�ln	1 −

�

z − zs

��zs + ��

+ ln	1 −
�̄

z − z̄s

��z̄s + �̄��dA��� . �7�

The third term in �7� can, for �z−zs�� �z�−zs�, be expanded in
a Taylor series which yields

W̃P�z;zs� =
�0

2�i
ln

�z − zs�
�z − z̄s�

−
1

2�i
�
n=1

�
1

n
� cn�zs�

�z − zs�n −
c̄n�z̄s�

�z − z̄s�n�, �z − zs� � �m,

�8�

where

cn�zs� = �
P

��zs + ���ndA��� �9�

and �m=max�zs+���P���. The second argument in the expres-

sion for W̃P�· ; · � represents the center of expansion which,
for the moment, remains unspecified. The quantities cn�zs�,
n=0,1 , . . ., are the moments of the vorticity distribution in
the patch P with respect to the point zs and therefore are

related to the total circulation of the patch �c0��, its ec-
centricity �c1�, its ellipticity �c2�, etc. �unless required for
clarity, hereafter we will skip the argument of cn�. The vor-
ticity distribution inside the vortex region P being uniform,
the infinite set of moments cn, n=0,1 , . . ., encodes the infor-
mation about the shape of the region P. As a matter of fact,
this is a well-known device of mathematical analysis �see,
for instance, the monograph by Akhiezer and Krein18� which
can also be used to reconstruct planar domains based on their
moments.19 In fluid mechanics, Melander, Zabusky, and
Styczek13,14 were the first to use sets of vorticity moments as
state variables for solution of the 2D Euler equations �see the
monographs by Saffman9 and Newton10 for a survey and
additional references�. As compared to this method, the
present approach is simpler, since the vorticity moments are
not treated as independent dynamic variables, but are used
only to obtain a better approximation of the velocity field in
the corresponding EFHM flow. In order to obtain a finite
system we now truncate expression �8� and retain terms up to
the order N �the truncation order will be indicated by a sub-
script on W�

W̃P�z;zs� � W̃P,N�z;zs� =
�0

2�i
ln

�z − zs�
�z − z̄s�

−
1

2�i
�
n=1

N
1

n
� cn�zs�

�z − zs�n −
c̄n�z̄s�

�z − z̄s�n�,

�z − zs� � �m. �10�

The truncated expression �10� represents the potential in an
unbounded domain. In order to obtain the potential in the
corresponding flow past a cylindrical obstacle, we need to
include the potential WC representing the basic potential flow
past a circular cylinder �4a� and also need to ensure that the
boundary conditions for the wall-normal velocity component
are satisfied on the boundary ��. This is done by invoking
the “Circle Theorem”15 which states that if w̃�z� is the com-
plex potential of a flow in a domain without boundaries and
with singularities at some points zk such that ∀k, �zk � �R,
then the complex potential of the corresponding flow past the
cylinder with radius R is given by the expression w�z�
= w̃�z�+wD�R2 /z�. The second term in the expression for w�z�
represents “image singularities” located inside the obstacle.
Thus, after including WC and the image singularities, the
complete truncated potential is now

WN�z;zs� = WC�z� + W̃N�z;zs� + WDN	R2

z
;zs


= U�	z +
R2

z

 +

�0

2�i
�ln�z − zs� − ln	z −

R2

z̄s

 − ln�z − z̄s� + ln	z −

R2

zs

�

+
1

2�i
�
n=1

N
1

n� cn�zs�
�z − zs�n − �− 1�n c̄n�z̄s�

	z −
R2

z̄s

n	 z

z̄s

n

−
c̄n�z̄s�

�z − z̄s�n + �− 1�n cn�zs�

	z −
R2

zs

n	 z

zs

n

� . �11�
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We notice that setting N=0 in �11� we recover complex po-
tential �4� of the classical Föppl system discussed in Sec. I.
Therefore, the family of the complex potentials given in �11�
represents Nth order corrections to the Föppl system re-
garded as approximations of the corresponding solution of
the steady-state Euler equations and hereafter we will refer to
them as “Nth order Föppl systems.” By taking N large
enough we can obtain an arbitrarily accurate representation
of the potential and other related quantities �such as the ve-
locity� in the Euler flow valid for points in the flow domain
outside the vortex patches.

We proceed to characterize equilibria zN of the Nth order
Föppl system �11�, i.e., positions of the expansion centers zs

which do not move under the induction of the system. The
advection velocity is obtained by subtracting off all the self-
induction terms �i.e., the terms which become singular as
z→zs�

V̂N�z;zs� � VN�z;zs� −
1

2�i� �0

z − zs
− �

n=1

N
cn�zs�

�z − zs�n+1� ,

�12�

where VN�z ;zs�=dWN�z ;zs� /dz. Thus, for every N, the sta-
tionarity condition characterizing a higher-order equilibrium
zN is given by

V̂N�zN;zN� = 0. �13�

Before we expand this expression, let us make explicit the
dependence of the moments cn�zs�, n=1, . . . ,N, on zs. We do
this by introducing another arbitrary center of expansion, for

example z0 �cf. �3��, so that zs=z0+ �zs−z0� and using the
binomial theorem we can rewrite �9� as

cn�zs� = �
q=0

n 	n

q

�z0 − zs��n−q�cq�z0�, n = 0, . . . ,N . �14�

Thus, given the moments cn�z0�, n=1, . . . ,N, calculated with
respect to some point �here z0�, the Nth order moment cn�zs�
with respect to zs can be expressed as an Nth order polyno-
mial in zs with coefficients given in terms of the moments
cn�z0�. This observation allows us to expand condition �13�
as follows:

V̂N�zN;zN� = U�	1 −
R2

zN
2 
 +

�0

2�i�−
1

	zN −
R2

z̄N

 −

1

�zN − z̄N�
+

1

	zN −
R2

zN

�

−
1

2�i
�
n=1

N

���
q=0

n 	n

q

�z̄0 − z̄N��n−q�c̄q�z0��� �− 1�n+1R2

	zN −
R2

z̄N

n+1

zN
n−1

z̄N
n+1 −

1

�zN − z̄N�n+1�
− ��

q=0

n 	n

q

�z0 − zN��n−q�cq�z0�� �− 1�n+1R2

	zN −
R2

zN

n+1

1

zN
2 � = 0, �15�

FIG. 4. The magnitudes of the moments cn�z0� for n=1, . . . ,25 as a function
of the area A of the vortex region in the EFHM flow. The arrows indicate the
trends corresponding to an increase of the order n of the moment for small
and large parches �cf. Fig. 2�.
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which, for every truncation order N, represents a complex
algebraic equation characterizing an Nth order equilibrium
zN.

IV. EQUILIBRIA OF THE HIGHER-ORDER SYSTEMS

In this section we study certain properties of the higher-
order equilibria governed by Eq. �15�. Evidently, these equi-
libria depend on two parameters: the truncation order N,
which is a discrete parameter, and the set of moments cn�z0�,
n=1, . . . ,N, which vary continuously with the area A of the
EFHM vortex region desingularizing the classical equilib-
rium �3� �Fig. 4�. We will first make use of certain well-
known facts from algebraic geometry to state some general
qualitative properties of the loci of the higher-order equilib-

ria as a function of the two parameters. Then we will use
numerical computations to characterize these loci quantita-
tively. To fix attention, in all the calculations we will focus
on desingularizations of the classical Föppl equilibrium
given by

z0 = x0 + iy0 = 4.32 + i2.3596,

�16�
�0 = − 29.6015.

�This is the equilibrium that was investigated in Ref. 8.�
Using factorization �5� and bringing the different rational

fractions to a common denominator, expression �15� corre-
sponding to different truncation orders can be rewritten as
the following recursively defined hierarchy of conditions:

V̂1�z1;z1� =
P0�z1, z̄1�Q�z1, z̄1� + c̄1�z̄1�K1�z1, z̄1� + c1�z1�L1�z1, z̄1�

z1
2�z1�2��z1�2 + R2�Q�z1, z̄1�

�
P1�z1, z̄1�

z1
2�z1�2��z1�2 + R2�Q�z1, z̄1�

= 0, �17a�

V̂2�z2;z2� =
P1�z2, z̄2�Q�z2, z̄2� + c̄2�z̄2�K2�z2, z̄2� + c2�z2�L2�z2, z̄2�

z2
2�z2�2��z2�2 + R2�Q2�z2, z̄2�

�
P2�z2, z̄2�

z2
2�z2�2��z2�2 + R2�Q2�z2, z̄2�

= 0, �17b�

¯

¯

V̂N�zN;zN� =
PN−1�zN, z̄N�Q�zN, z̄N� + c̄N�z̄N�KN�zN, z̄N� + cN�zN�LN�zN, z̄N�

zN
2 �zN�2��zN�2 + R2�QN�zN, z̄N�

�
PN�zN, z̄N�

zN
2 �zN�2��zN�2 + R2�QN�zN, z̄N�

= 0, �17c�

where P0�z , z̄� and Q�z , z̄� are polynomials �in z and z̄� of the total degree 8 and 5, respectively, defined in �5�. The polynomials
Kn�z , z̄� and Ln�z , z̄�, n=1,2 , . . ., are given by

Kn�z, z̄� � z3z̄�zz̄ + R2��z2 − R2�n+1��zz̄ − R2�n+1 − R2zn−1�z − z̄�n+1� , �18a�

Ln�z, z̄� � R2zn+1z̄�zz̄ + R2��zz̄ − R2�n+1�z − z̄�n+1, �18b�

hence their degree is, respectively, deg�Kn�z , z̄��=4n+10 and deg�Ln�z , z̄��=4n+8. We emphasize that, by �14�, the factors
cn�z� and c̄n�z̄� are also polynomials of order n in z and z̄, respectively. We note that each of the conditions in hierarchy �17�
is defined recursively in terms of the condition corresponding to the next lower truncation order. We see that, for given N and
cn�z0�, n=1, . . . ,N, condition �17c� is equivalent to PN�zN , z̄N�=0 which can be expressed as a system of two real polynomial
equations in x and y

pN�xN,yN� � R�PN�xN + iyN,xN + iyN�� = pN
0 �xN,yN� + pN� �xN,yN� = 0,

�19�
qN�xN,yN� � I�PN�xN + iyN,xN + iyN�� = qN

0 �xN,yN� + qN� �xN,yN� = 0,

where deg�p�N�x ,y���deg�pN
0 �x ,y�� and deg�q�N�x ,y��

�deg�qN
0 �x ,y��. The polynomials pN

0 �x ,y� and qN
0 �x ,y� are

related to the term in PN�z , z̄� involving PN−1�z , z̄� as a factor
and therefore vanish at all the roots of the corresponding
polynomials of the lower degree, i.e., pN−1

0 �x ,y� and
qN−1

0 �x ,y�. The polynomials p�N�x ,y� and q�N�x ,y� have de-
grees higher than pN

0 �x ,y� and qN
0 �x ,y�, because they repre-

sent the “perturbation” corresponding to an increase of the

order of truncation. Evidently, solutions of �19� represent in-
tersection points of two algebraic curves in the plane. The
problem of determining intersection points of two algebraic
curves belongs to the area of computational algebraic geom-
etry. There are many profound results in this field �see Ref.
26 for a recent review�, however, for our purposes here we
will need some basic facts only.

First, we are interested in how the locus of the higher-
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order equilibria depends on the truncation order N. The
Bézout theorem20 states that, given two polynomials p�x ,y�
and q�x ,y�, the number of roots they have in common
�counting multiplicities� in the projective plane is
deg�p�x ,y�� ·deg�q�x ,y�� �in fact, the number of roots actu-
ally found in the �x ,y� plane is for many algebraic curves
much smaller�. Thus, the upper bound on the number of
equilibrium solutions increases with the truncation order N
as O�N2�. In order to say something about the locus of these
equilibrium solutions, we have to fix the second parameter,
i.e., the vortex patch area A and hence also the corresponding
moments cn�z0�, n=1,2 , . . .. For simplicity, we choose

A = 0, so that cn�z0�  0, n = 1,2, . . . �20�

�even though in this case the EFHM flow coincides with the
classical Föppl equilibrium �3�, we can still formally define
the higher-order system �15��. We note that expression �14�
for the moments now takes a particularly simple form

cn�z� = �z − z0�nc0�z0� = �z − z0�n�, n = 1,2, . . . . �21�

We can now state the following Lemma:
Lemma 1: When condition (20) holds, the classical equi-

librium (3) is also a solution of a higher-order system (15)
for arbitrary N.

Proof: Setting zn=z0 and using �20� and �21� we note
that all terms involving Kn�zn , z̄n� and Ln�zn , z̄n�, n=1, . . . ,N,
in �17� vanish. Hence, condition �17c� reduces to
P0�zN , z̄N�Q�zN , z̄N�N=0 which is equivalent to �5�. Thus,
when A=0, z0 is a higher-order equilibrium of arbitrary
order. �

With regard to new roots appearing in the higher-order
system, we note that the coefficients of the highest-order
terms in �19� are proportional to � �cf. �21��, and therefore
nonvanishing when A→0. Thus, referring to standard esti-
mates of the maximum magnitude of roots of a polynomial
in terms of its coefficients,27 we conclude that the magni-
tudes of the new roots should be bounded as A→0. The
locus of the roots corresponding to different truncation or-
ders N when A=0 is shown in Fig. 5 �these roots were de-
termined numerically and some details regarding computa-
tions are given below�. We observe that, except for the
persistent classical equilibrium �16�, all of the remaining
higher-order equilibria fall on a curved band which separates
the classical equilibrium from the obstacle. As a matter of

FIG. 5. Loci of the higher-order equilibria of order �a� N=1, �b� N=3, �c� N=5, �d� N=10, �e� N=15, �f� N=20 corresponding to the case A=0. The classical
equilibrium �16� is marked with a larger circle, whereas the thick solid line represents the obstacle.
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fact, all of the higher-order equilibria other than �16� will
result in a singularity of the velocity field in the part of the
flow domain where it is required to by analytic, i.e., outside
of the vortex patch which is now reduced to a point. Hence,
we will consider all these additional equilibria spurious �un-
physical�, and will not investigate them below.

We now proceed to analyze the dependence of the
higher-order equilibria on the area A of the vortex region. As
shown in Fig. 4, when the vortex region shrinks to a point,
the moments cn�z0�, n=1, . . . ,N vanish. From �14� and �17�
we conclude that coefficients of polynomials �19� are affine
functions of the moments cn�z0�, hence continuous depen-
dence of the equilibrium solutions on the moments is ensured
by the following generalization of the Fundamental Continu-
ity Theorem for polynomials20 for the case of the systems of
two polynomials:

Theorem 2: Suppose there are two sequences of projec-
tive plane curves Cn�x ,y� and Dn�x ,y� such that
deg�Cn�x ,y�� and deg�Dn�x ,y�� are constant. Assume the se-
quences have limits C�x ,y� and D�x ,y�. Then each intersec-
tion point of C�x ,y� and D�x ,y� is the limit of as many in-
tersection points (counted with multiplicities) of Cn�x ,y� and
Dn�x ,y� as the local intersection multiplicity of C�x ,y� and
D�x ,y� at that point.

A sketch of a proof of this Theorem is deferred to the
Appendix.

Hence, based on Lemma 1 and Theorem 2, we can con-
clude that as the area of the EFHM vortex region desingu-
larizing the classical equilibrium �3� goes to zero, for every
truncation order N there will exist a family of higher-order
equilibria converging to the classical equilibrium �3�. In fact,
the same will also hold for the spurious equilibria.

Now we illustrate our findings in a quantitative manner
using numerical computations. For a set of truncation orders
N= �1, . . . ,25� we will calculate the loci of the equilibrium
solutions zN corresponding to EFHM flows with areas of the
vortex region growing from zero to the largest value for
which an EFHM solution can still be found �the version of
the code calculating the EFHM flows that we have at our
disposal does not make it possible to find solutions with
vortex regions attached to the obstacle, cf. Fig. 2�. In every
instance, Eq. �15� is solved using Newton’s method21 and a
simple continuation approach ensures that the roots found
belong in fact to the branch starting with the classical Föppl
equilibrium �3�. Numerical calculation of moments is facili-
tated by transforming the area integral appearing in expres-
sion �9� into a contour integral using the complex Green’s
theorem

cn�z0� = ��
P

�ndA��� =
i�

2�n + 1���P

��n+1�d�̄ , �22�

where �P denotes the boundary of the patch P. All numerical
results presented below were tested for convergence using
different numerical resolutions employed to compute the
EFHM flows. The loci parametrized by the area of the
EFHM vortex regions and corresponding to several different
truncation orders N are shown in Figs. 6�a� and 6�b�. We note
that with increasing area of the vortex region, the higher-

order equilibria are initially shifted downstream. When the
vortex region is large enough, it begins to significantly de-
form as a result of interaction with the obstacle. This trend is
reflected more strongly in the higher-order moments �Fig. 4�,
hence the loci of the equilibrium solutions corresponding to
truncations at higher orders �N�5� have more complicated
shapes. In Fig. 6�b� we observe that the loci corresponding to
N=5,10,15 are characterized by sharp lobes indicating that
at some point the equilibrium positions start to move up-
stream with the increase of the area of the vortex region. In
Fig. 7�a� we show the loci of the equilibrium solutions pa-
rametrized by the truncation order N and corresponding to
three representative EFHM flows with different areas of the
vortex regions. We note that these loci reveal certain simi-
larities, namely for N→Nmax=25 the equilibrium solutions
zN tend to “accumulation points” zNmax

=xNmax
+ iyNmax

. In or-
der to emphasize some generic features of these loci, in Figs.
7�b�–7�d� the loci are plotted after the following change of
variables:

FIG. 6. Loci of the higher-order equilibria parametrized by the area of the
vortex region in the EFHM flow for different truncation orders: �dashed-
dotted� N=1, �long dashed� N=3, �short dashed� N=5, �dotted� N=10,
�solid� N=15. �In �a� the solid line is used for all orders.� �b� Represents a
magnification of the neighborhood of the classical Föppl equilibrium �16�
which is indicated by an open circle. The dotted line in �a� represents the
boundary of the largest vortex region obtained in an EFHM flow �with
A=24.33�, whereas the thick solid line represents the obstacle.
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� + i� =
z − zNmax

r
, �23�

where r�maxn��xn−xNmax
� , �yn−yNmax

��. This change of vari-
ables shifts the origin to the accumulation point of a given
locus and normalizes its “size.” We note that in all cases the
rescaled loci reveal a spiraling pattern as the accumulation
point is approached. As the intervals shown in Figs.
7�b�–7�d� indicate, this behavior persists across nine orders
of magnitude. In fact, it appears to be only limited by the
finite-precision arithmetic used to solve system �15� and the
numerical resolution employed to compute the EFHM flows
�numerical resolution must increase with the order of mo-
ments cn�z0� that have to be calculated�.

We conclude this section by analyzing how the velocity
field VN�z�= �uN− ivN��z� generated by an Nth order Föppl
system approaches for increasing N the velocity field in the
corresponding EFHM flow. In Fig. 8 we show the longitudi-
nal velocity profiles uN�x� and the absolute errors �uN�x�
−u�x�� with respect to the EFHM solutions u�x� as a function
of z=x+ i0 on the flow centerline for different truncation
orders N and three representative values of the area A. We
observe that in the case of the small patch uN converges to u
everywhere on the flow centerline �Fig. 8�a�� and this con-
vergence is fairly rapid. On the other hand, for the case of the
medium and large patches there exist intervals I0�R where
convergence does not occur. The reason is that the points
in I0 do not satisfy the condition �z−zN���m necessary for
convergence of expansion �10�. However, even though for

x� I0 the errors �uN�x ,0�−u�x ,0�� can be fairly large, when
x� I0 convergence is fast. Given this rapid convergence of
the velocity fields in higher-order Föppl equilibria with the
truncation order N, the corresponding flow patterns are for
all N�1 quite similar to the flow patterns in the EFHM
flows with the same area A of the vortex region �cf. Fig. 3�
and therefore are not shown here.

V. STABILITY OF THE HIGHER-ORDER SYSTEM

This section is devoted to the linear stability analysis of
the higher-order equilibria discussed in Sec. IV. The linear
stability of the classical Föppl system was investigated by
several researchers including Föppl himself,1 Smith,22 Cai
et al.,23 and de Laat and Coene.24 A summary of the most
important results together with their derivation can be found
in Tang and Aubry.25 We emphasize that, in contrast to the
symmetric equilibrium solutions, solutions of the time-
dependent Föppl system are not assumed to possess any
symmetries. Therefore, the Föppl model, either classical or
higher-order, is a four-dimensional dynamical system. In
general, the eigenvalues of its linearization around the corre-
sponding equilibrium, i.e., either classical z0, or higher-order
zN, form the following set:

��r−,�r+,�c,�̄c�, where: − �r−,�r+ � R+, �c � C .

�24�

For the classical Föppl system we additionally have
�r−=−�r+ and R��c�=0 �in this case all the eigenvalues are

FIG. 7. Loci of the equilibrium solu-
tions parametrized by the truncation
order N �with Nmax=25� and corre-
sponding to the EFHM flows with the
following areas of the vortex regions:
�solid line+circles� A=4.51, �dotted
line+squares� A=9.99, and �dashed
line+triangles� A=13.88. �a� Shows
the neighborhood of the classical
Föppl equilibrium �16� which is
marked with an open circle. Figures
�b�–�d� use transformation �23� and
different ranges of the � and �
coordinates.
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in fact available in an analytic form�. Thus, the linearization
of the classical Föppl system around equilibrium �3� has
three eigenmodes: a exponentially growing mode �associated
with �r+�, an exponentially decaying mode �associated with
�r−�, and a neutrally stable oscillatory mode �associated with

the conjugate pair ��c , �̄c��. We now analyze how the eigen-

value structure changes in linearizations of the higher-order
Föppl systems depending on the two parameters, namely, the
truncation order N and the area A of the EFHM vortex region
used to desingularize equilibrium �16�. In all cases the set of
eigenvalues has the same general form as given in �24�. In
Figs. 9�a�–9�d� we show the dependence of the four relevant

FIG. 8. Plots of �left� the longitudinal velocity uN�x� and �right� the difference �uN�x�−u�x�� between this velocity and the velocity in the corresponding EFHM
flow on the centerline obtained in: �dashed line� the classical Föppl system and �dotted lines� higher-order Föppl systems with N=2,6 ,10 �lines closer to the
EFHM solutions �left�, or exhibiting lower errors �right�, correspond to higher N�. The three cases correspond to �a� A=0.78, �b� A=12.55, and �c�
A=20.43. The thick solid lines in the figures on the left represent u�x� in the EFHM solutions with the corresponding patch. The vertical lines in �b� and �c�
represent the bounds of the interval I0.
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quantities, i.e., �r+, �r−, R��c�, and I��c�, on the area A of
the vortex region for several representative truncation orders
N. As was the case with the loci of the higher-order equilib-
ria, the largest modifications of the eigenvalues correspond
to EFHM flows in which the vortex region is large and sig-
nificantly deformed due to interaction with the obstacle. We
notice that the magnitude of the eigenvalue �r− �Fig. 9�a��
decreases with the area A for all the truncation orders shown,
while the magnitude of the eigenvalue �r+ �Fig. 9�b�� be-
haves differently for different truncation orders. In contrast
to the classical Föppl system, the real part of the complex
eigenvalue �c is nonzero; it becomes negative with the mag-
nitude increasing with A for all the truncation orders shown
except for N=3, in which case the real part of �c becomes
positive. In fact, N=3 is the only truncation order in which
we detected complex eigenvalues with positive real parts.
This anomalous behavior, affecting also other eigenvalues
corresponding to N=3 �Figs. 9�b�–9�d��, appears related to a

different shape of the equilibrium locus for this truncation
order �Fig. 6�. Finally, in Fig. 9�d� we notice that the fre-
quency of the oscillatory mode decreases with A for all the
truncation orders shown.

We emphasize that the most important qualitative differ-
ence between the linear stability properties of the classical
Föppl system and the higher-order systems is that in the lat-
ter case the oscillatory mode is not neutrally stable, but for
all truncation orders except for N=3 is exponentially stable.
This property, resulting from the structural instability of ei-
genvalues with zero real parts, plays an important role in
regard to applications of higher-order Föppl systems as mod-
els for flow control.

VI. DISCUSSION

In this section we briefly discuss certain properties of the
higher-order Föppl systems important from the practical

FIG. 9. The quantities �a� �r−, �b� �r+, �c� R��c�, and �d� I��c� related to eigenvalues �24� of the Föppl systems of order �dashed-dotted� N=1, �long dashed�
N=3, �short dashed� N=5, �dotted� N=10, and �solid� N=15 as a function of the area A of the EFHM vortex region.
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point of view, especially, their utility as models for the de-
sign of feedback stabilization techniques for planar wake
flows. In fact, the present investigation was motivated by our
earlier work8 in which a feedback wake stabilization algo-
rithm was developed using the classical Föppl system as a
reduced-order model. As summarized in Fig. 10, the problem
consists in using the cylinder rotation, denoted �C, as an
actuation to prevent the onset of the vortex shedding insta-
bility with the system output in the form of velocity mea-
surements on the flow centerline. Relevance of the classical
Föppl system as a model of this phenomenon was established
by Tang and Aubry.25 An important control-theoretic limita-
tion of the classical Föppl system is that with this particular
actuation the oscillatory mode of the linearized system is in
fact not controllable.8 This means that the actuation �cylinder
rotation� has no control authority over this mode. However,
since the oscillatory mode is also neutrally stable, the linear-
ization of the classical Föppl system is still stabilizable, even
if it is not controllable. Nonetheless, this lack of controlla-
bility adversely affects performance of feedback stabilization
strategies designed based on linearizations of the classical
Föppl system and applied to more complex problems such as
the control of the actual vortex shedding described by the 2D
Navier-Stokes system. Furthermore, as recent investigations
have shown, this uncontrollable and neutrally stable mode is
related to the presence of a stable center manifold in the
nonlinear Föppl system with feedback stabilization. As the
results of Sec. V indicate, for all truncation orders except for
N=3, the oscillatory modes present in the linearizations of
the higher-order systems around the corresponding equilibria
are in fact exponentially stable. This suggests that nonlinear
higher-order Föppl systems can be easier to stabilize com-
pletely than the classical Föppl system when the cylinder
rotation is used as the actuation. Preliminary results, reported
in Ref. 28, concerning the design of control algorithms based
on higher-order Föppl systems indicate that performance of
such algorithms is indeed improved.

An important practical question is related to the choice
of the parameters of a higher-order Föppl system when it is
used as a model for control design for the Navier-Stokes
system at a finite Reynolds number. This concerns both the
choice of a specific Föppl equilibrium �3�, as well as the
choice of the area A of the EFHM vortex region and the

truncation order N. With regard to the first choice, it was
already encountered when designing controllers based on the
classical Föppl system. A possible solution was outlined in
Ref. 8, where it was proposed to choose the Föppl equilib-
rium �3� so as to obtain a desired length of the recirculation
bubble. A similar approach could be adopted when a higher-
order Föppl system is used, noting however that in addition
to the circulation �0 associated with the classical equilibrium
�3�, the recirculation length will now also depend on the area
A of the vortex region �Fig. 3�. With regard to the truncation
order N, its choice should ensure sufficiently rapid conver-
gence of the feedback-controlled state to the equilibrium and
can be made based on numerical experimentation. Perfor-
mance of feedback stabilization algorithms designed using
different parameters characterizing a higher-order Föppl sys-
tem is currently under investigation and results will be re-
ported in the future.

Another family of reduced-order models commonly used
in flow control problems is constructed using empirical
eigenmodes obtained via the Proper Orthogonal Decomposi-
tion �POD�.29 The main conceptual difference with respect to
the present approach is that the POD reduced-order models
are derived from empirical data, such as time-dependent ve-
locity fields, describing the system evolution, whereas the
point-vortex models developed here are derived from the
governing equations via suitable simplifications. Thus, these
two families of reduced-order models represent two different
approaches to the modelling problem and a comparison of
their performance in flow control problems will be quite in-
teresting. Recent results concerning feedback and open-loop
control of vortex shedding using POD-based reduced-order
models were reported in Refs. 30 and 31, respectively.

VII. CONCLUSIONS

In this investigation we constructed a two-parameter
family of higher-order Föppl systems as generalizations of
the classical point-vortex Föppl model.1 The higher-order
systems can be regarded as corrections of the classical �zero-
order� system that approximate with adjustable accuracy the
velocity field of steady Euler flows desingularizing the clas-
sical Föppl equilibrium.4 The higher-order systems depend
on two parameters: the truncation order N and the area A of
the vortex region desingularizing the classical equilibrium.
We studied the loci and the linear stability of the higher-
order equilibria as functions of the two parameters. In par-
ticular, we found that with an increase of the area of the
vortex region, the higher-order equilibria gradually move
away from the classical equilibrium. Interestingly, the stabil-
ity properties of the higher-order equilibria change and for
all truncation orders except for N=3 the neutrally stable
mode of the classical equilibrium becomes exponentially
stable. We also argued that this finding may have important
consequences for some problems in flow control, which had
in fact motivated the present investigation. In this work we
used the simplest nontrivial steady-state solution of the Euler
equations available in the specific geometry of interest to us,
namely the EFHM flow. As a matter of fact, analogous
higher-order Föppl systems can be constructed using other,

FIG. 10. Schematic of the wake stabilization problem.
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more complicated, solutions of the Euler equations resulting
in models possessing still more flexibility. Alternatively, po-
tentially interesting point-vortex models of steady wake
flows could be constructed using a larger, possibly infinite,
number of vortices �e.g., a semi-infinite array�. In addition,
from the practical point of view, it would also be desirable to
develop similar point-vortex models for other flow configu-
rations of interest such as, for instance, flows past airfoils or
backward-facing steps. This is, however, contingent on the
possibility of finding suitable families of steady Euler solu-
tions with constant vorticity vortex patches in these geom-
etries. Such exercises are left for the future.

In view of the recent progress concerning computation
of steady-state solutions of the Euler equations �see the re-
view by Crowdy11�, there appears to be another possibility to
construct higher-order Föppl systems, namely, using the
quadrature domain methods. As is well known,19 every
smooth compact planar domain, such as a detached EFHM
vortex region, can be approximated by a sequence of quadra-
ture domains with boundaries given by algebraic curves of
increasing order. Since an algebraic curve has only a finite
number of nonvanishing moments �9�, it might be possible to
construct an equation of the type �11� for every member of
this approximating sequence. Another interesting question
concerns construction of equilibria of an augmented system
in which a number of moments of vorticity is used as dy-
namic variables in the spirit of the original investigation by
Melander, Zabusky, and Styczek.13,14 Investigation of such
approaches and their relation to the present method is an
interesting future research direction.
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APPENDIX: PROOF OF THEOREM 2

Here we present a sketch of a proof32 of Theorem 2. By
continuity, the limit of each intersection point of Cn�x ,y� and
Dn�x ,y� is an intersection point of C�x ,y� and D�x ,y�. By
the Bézout theorem, there are the same numbers of intersec-
tion points �counted by multiplicities� of Cn�x ,y� and
Dn�x ,y� independent of n and it is the same for C�x ,y� and
D�x ,y�. Therefore they must converge according to the mul-
tiplicities of the limits. �
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