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Summary

This paper reviews recent progress concerning developmentof point–vortex reduced–
order models for feedback stabilization of the cylinder wake flow. First, we recall
briefly some earlier results related to the design of linear feedback stabilization
strategies based on the Föppl system. Then we present derivation of a higher–order
Föppl system based on solutions of the Euler equations which desingularize the
original Föppl vortices. We argue that such higher–order Föppl systems possess
important advantages over the classical Föppl system which are relevant from the
control–theoretic point of view. In particular, we presentcomputational results indi-
cating that a higher–order Föppl system can be stabilized completely in contrast to
the classical Föppl system for which this is not possible owing to the presence of a
stable center manifold spanned by uncontrollable modes.

1 Introduction

The Navier–Stokes equations and most of their simplified versions such as, for in-
stance, the Euler equations, are infinite–dimensional dynamical systems and there-
fore their solutions are characterized by an infinite numberof parameters. Despite
the fact that the infinite–dimensional Control Theory is well developed, most of the
readily available computational control algorithms have finite–dimensional systems
as their point of departure. This justifies the need for deriving finite–dimensional
representations of the steady solutions that one intends tostabilize and deriving
finite–dimensional descriptions of the system dynamics in the neighborhood of such
unstable solutions, the so–called “reduced–order models”. As regards derivation of
such finite–dimensional representations, there are two main approaches which can
be roughly classified as “data–based” and “equation–based”. The approaches be-
longing to the first family rely on finding empirical basis functions which optimally
span, in some suitable sense, the data characterizing the system and collected during
its evolution. The best known approach in this category is the Proper Orthogonal De-
composition (POD) whose application for flow control purposes was reviewed by
[1]. Application of such data–based approaches to development of reduced–order
models is however limited to regimes well–represented by the data available. Such
models may therefore provide rather poor representation ofthe system response



to arbitrary forcing, as it may push the system trajectoriestowards regimes not
described by the available empirical data. On the other hand, equation–based ap-
proaches seek to construct finite–dimensional representations as solutions of trun-
cated finite–dimensional forms of the governing equations.The most common ap-
proaches belonging to this category use standard space discretizations of the original
partial differential equations to generate finite–dimensional models of the system.
Examples of flow control techniques developed based on such models are described,
for instance, by [2] and [3]. In the present investigation wewill pursue an alterna-
tive approach where we will consider simplified forms of the governing equations
which, while remaining infinite–dimensional, are easier tosolve and analyze. So-
lutions of such simplified equations can be treated using analytical techniques, so
that suitable truncation of the obtained expressions will lead to the reduced–order
models. The present paper is concerned with development of asystematic procedure
for generation of such reduced–order models of certain hydrodynamic systems.

We are interested here in constructing simple reduced–order models for vortex–
dominated flows, hence we will assume that the flow is incompressible and inviscid.
Therefore, instead of solutions of the Navier–Stokes equations, we will consider
solutions of the Euler equations. It is well–known [4] that 2D steady–state Euler
equations can be equivalently represented as











∆ψ = f (ψ) in Ω,

ψ = 0 on ∂Ω,

ψ →U∞y for |(x,y)| → ∞,

(1)

whereψ is the streamfunction, which allows the velocity components to be ex-
pressed asu = ∂ψ

∂y and v = − ∂ψ
∂x , and f is an arbitrary function representing the

relationship between the streamfunction and the vorticityω as ω = f (ψ). In this
investigation we are interested only in solutions symmetric with respect to the flow
centerline, so without loss of generality we can restrictΩ in (1) to the upper half–
plane (i.e., points withy > 0). We note that the indeterminacy of the functionf in (1)
reflects the nonuniqueness of solutions of the Euler equations in a given domainΩ.
For instance, expressing the functionf (ψ) on the RHS as a linear combination of 2K
Dirac delta distributions∑2K

k=1 Γkδ(x− xk)δ(y− yk) with weightsΓk, whereK is the
total number of singularities and their images, leads to systems known from the clas-
sical potential flow theory corresponding to 2K point vortices located at the points
{xk,yk}2K

k=1. An example of such a solution was found in closed form by Föppl in [5],
where the potential flow was obtained by placing behind the obstacle two counter–
rotating point vortices located symmetrically with respect to the centerline (Figure
1a). With points of the plane characterized by their complexcoordinatesz = x + iy,
wherei =

√
−1, the complex potential of this flowW0(z) = (ϕ + iψ)(z), whereϕ

andψ are, respectively, the potential and the streamfunction, can be expressed as

W0(z) = WC(z)+WF,0(z), (2)
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Figure 1 Schematics showing (a) the location of the singularities inthe classical Föppl
system and (b) the three modes of motion characterizing the linearized Föppl system (7): the
unstable modeα, the asymptotically stable modeβ and the neutrally stable (oscillatory) mode
γ. In Figure (a) the dashed line represents the separatrix streamline delimiting the recirculation
region.

where

WC(z) = U∞

(

z+
R2

z

)

, (2a)

WF,0(z) =
Γ0

2πi

[

ln(z− z0)− ln

(

z− R2

z0

)

− ln(z− z0)+ ln

(

z− R2

z0

)]

(2b)

andΓ0 andz0 = x0 + iy0 represent, respectively, the circulation and position of the
Föppl vortices. In Equation (2)WC(z) represents the base flow symmetric with re-
spect to the OY axis and due to the cylinder only, whereasWF,0(z) corresponds to
the two Föppl vortices located atz0 andz0 and their two images located inside the
obstacle. Two one–parameter families of steady vortex configurations given by (2)
were found by Föppl in [5]: the configuration characterizedby the condition











(|z0|2−R2)2 = 4|z0|2y2
0,

Γ0 = −2π
(|z0|2−R2)2(|z0|2 + R2)

|z0|5
,

(3)

hereafter referred to as the “classical Föppl system” (Figure 1a), and the configu-
ration characterized by the conditionℜ(z0) = 0, i.e., corresponding to the vortices
located on the OY axis. The latter solution, however, does not correspond to any
physical situation and will not be discussed further in thisinvestigation.

The classical Föppl system has recently been used as a reduced–order model in
the development of a simple feedback stabilization strategy for the cylinder wake
flow in [6]. The cylinder rotationΓC = ΓC(t) was used the flow actuation (i.e., the
control variable) and observations of the centerline velocity downstream of the ob-
stacle as the system output. The advantage of this approach is that, due to simplicity



of the Föppl model, the synthesis of the stabilization algorithm becomes a sim-
ple task with a significant part of the calculations carried out analytically. The per-
formance of the stabilization strategy, while quite encouraging, also showed some
limitations of such very simple point–vortex systems employed as reduced–order
models. The purpose of this investigation is to identify sources of these limitations
and propose possible improvements. The structure of the paper is as follows: first in
Section 2 we review the formulation of the Linear–Quadratic–Gaussian (LQG) com-
pensator designed based on the Föppl system as a reduced–order model, in Section
3 we introduce a family of higher–order Föppl systems characterized by more desir-
able properties as candidates for reduced–order models, then some computational
results are presented in Section 4 and conclusions are deferred to Section 5.

2 Control Design Based on the F̈oppl System as a
Reduced–Order Model

We begin this Section by analyzing the stability propertiesof the classical Föppl
system linearized around the equilibrium solution. This analysis will motivate the
design of an LQG compensator for feedback stabilization of the linearized Föppl
system. Careful analysis of the linear stability of the Föppl system and its relevance
to modeling the onset of vortex shedding in 2D wake flows was presented by Tang
and Aubry in [7]. Our discussion of the control–theoretic aspects will be here nec-
essarily concise and the reader is referred to the publication [6] for further details.
Different flow control problems also based on the Föppl system as the reduced–
order model were studied in [8, 9].

We will assume that the cylinder has unit radiusR = 1 and the free stream at in-
finity has unit magnitudeU∞ = 1. In addition, we will also assume that all quantities
are nondimensionalized using these values. The Föppl model can be regarded as a
nonlinear dynamical system with evolution described by

d
dt

X = F(X)+b(X)ΓC ,









ℜ[V1(z1,z2,Γ1,Γ2)]
−ℑ[V1(z1,z2,Γ1,Γ2)]

ℜ[V2(z1,z2,Γ1,Γ2)]
−ℑ[V2(z1,z2,Γ1,Γ2)]









+b(X)ΓC, (4)

whereX , [x1 y1 x2 y2]
T is the state vector and the control matrixb(X) is expressed

as

b(X) ,
1
2π









−y1/|z1|2
x1/|z1|2
y2/|z2|2
x2/|z2|2









. (5)

The expressions forV1 andV2 in (4) are given by the velocity field

V (z) = 1− 1
z2−

Γ1

2πi

(

1
z− z1

− 1
z−1/z1

)

+
Γ2

2πi

(

1
z− z2

− 1
z−1/z2

)

+
ΓC

2πiz
,

(6)



evaluated atz1 andz2 with the singular “self–induction” terms (1z−z1
and 1

z−z2
, re-

spectively) omitted. For the moment we will fix attention on the properties of the
Föppl system without control, hence we will assume thatΓC ≡ 0, which renders (4)
autonomous.

The linear stability analysis of the Föppl system is performed by adding the
perturbations(x′1,y

′
1) and(x′2,y

′
2) to the coordinates of the upper and lower vortex of

the stationary solution and then linearizing the system (4)aroundX0 , [x0 y0 x0 −
y0]

T assuming small perturbations. Thus, evolution of the perturbations is governed
by the system

d
dt

X′ = AX ′, (7)

whereX′ , [x′1 y′1 x′2 y′2]
T is the perturbation vector and the system matrix is given

by the Jacobian of the nonlinear system at the equilibriumA = ∂F
∂X (X0). We remark

that (7) is a linear time–invariant (LTI) system. Eigenvalue analysis of the matrixA
reveals (see [7] for details) the presence of the following modes of motion (Figure
1b):

– unstable (growing) modeα corresponding to a positive real eigenvalueλ1 =
λr > 0,

– stable (decaying) modeβ corresponding to a negative real eigenvalueλ2 =
−λr < 0,

– neutrally stable oscillatory modeγ corresponding to a conjugate pair of purely
imaginary eigenvaluesλ3/4 = ±iλi.

These qualitative properties are independent of the downstream coordinatex0 char-
acterizing the equilibrium solution. The analysis of the orientation of the unstable
eigenvectors carried out in [7] revealed that the initial stages of instability of the
Föppl system closely resemble the onset of vortex sheddingin an actual cylinder
wake undergoing Hopf bifurcation. The free parameter characterizing the equilib-
rium solution (3) of the Föppl system (i.e., the downstreamlocation of the singu-
larities x0) is chosen here, so that the length of the recirculation zonein the Föppl
system is the same as the recirculation length in the steady unstable solution of the
Navier–Stokes system at a prescribed Reynolds number. Further justification as well
as details of calculations are described in [6]. In the examples presented hereafter
the downstream position of the vortices was chosen, so that the recirculation length
is the same as in the steady unstable solution of the Navier–Stokes system at the
Reynolds numberRe = 75.

After including the control term representing the cylinderrotation the linearized
Föppl system becomes

d
dt

X′ = AX ′ +BΓC, (8)

where

B , b(X0) =
1

2πr2
0









−y0

x0

y0

x0









. (9)



As mentioned in Section 1 our control objective is attenuation of vortex shedding
which can be quantified by measuring the velocity at a point onthe flow centerline
with the streamwise coordinatexm (note that in the stationary symmetric solution the
transverse velocity component vanishes on the centerline). Choosing this quantity
as an output of system (4) we obtain the following output equation

h(z1,z2) ,

[

ℜ[V (xm)]
−ℑ[V (xm)]

]

+DΓC, (10)

where the matrixD , 1
2πx2

m
[0 xm]T represents the control–to–measurements map.

Linearization of equation (10) yields

h(z0 + z′1,z0 + z′2) ∼= h(z0,z0)+CX′, (11)

wherez′k = x′k + iy′k, k = 1,2, and the linearized observation operatorC is given by

C =

[ ∂u(xm)
∂x1

∣

∣

(x0,y0)
∂u(xm)

∂y1

∣

∣

(x0,y0)
∂u(xm)

∂x2

∣

∣

(x0,y0)
∂u(xm)

∂y2

∣

∣

(x0,y0)
∂v(xm)

∂x1

∣

∣

(x0,y0)
∂v(xm)

∂y1

∣

∣

(x0,y0)
∂v(xm)

∂x2

∣

∣

(x0,y0)
∂v(xm)

∂y2

∣

∣

(x0,y0)

]

. (12)

Uncertainty of the reduced–order model is represented by the presence of noisew
which affects the linearized system dynamics via a[4× 1] matrix G and the lin-
earized system output via a[2×1] matrixH. Moreover, we assume that the velocity
measurements may be additionally contaminated with noisem , [m1 m2]

T , where
m1 andm2 are stochastic processes. With these definitions we can now put the lin-
earized reduced–order model in the standard state–space form (see [10])

d
dt

X′ = AX ′+BΓC+Gw, (13a)

Y = CX′+DΓC+Hw+m. (13b)

Prior to designing a controller for system (13) we have to verify whether the
system is controllable and observable which is done by studying the ranksNc and
No of the controllability and observability Grammians

Nc , rank
[

B AB A2B A3B
]

= 2, (14)

No , rank
[

CT AT CT (AT )2CT (AT )3CT ]

= 4. (15)

We conclude that the matrix pair{A,B} is not controllable and only two out of four
modes present in the system can be controlled. On the other hand, the matrix pair
{A,C} is completely observable. Converting system (13) to the minimal representa-
tion which consists of those modes only which are both controllable and observable
will allow us to determine which modes are in fact controllable. We accomplish this
by introducing an orthogonal transformation matrix

Tc ,
√

2









1/2 0 −1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 −1/2









(16)



and making the following change of variablesX′
ab ,

[

X′
a

X′
b

]

= TcX′. The correspond-

ing form of system (13) is now

d
dt

[

X′
a

X′
b

]

=

[

Aa 0
0 Ab

][

X′
a

X′
b

]

+

[

Ba

0

]

ΓC +

[

Ga

Gb

]

w, (17a)
[

Yb

Ya

]

=

[

0 Cb

Ca 0

][

X′
a

X′
b

]

+

[

D1

D2

]

ΓC +

[

H1

H2

]

w+m. (17b)

Our minimal representation is thus given by the upper row in equation (17a) and the
lower row in (17b), i.e.,

d
dt

X′
a = AaX′

a+BaΓC+Gaw, (18a)

Ya = CaX′
a+D2ΓC+H2w+ m2. (18b)

Eigenvalue analysis of the matricesAa andAb reveals thatAa has two real eigen-
values (positive and negative) corresponding to the growing and decaying modesα
andβ, whereas the matrixAb has a conjugate pair of purely imaginary eigenvalues
which correspond to the neurally stable modeγ (Figure 1b). Hence, the uncontrol-
lable part of the model system dynamics is associated with the neutrally stable oscil-
latory modeγ and the original system (13) is thusstabilizable, but notcontrollable.
Practical effectiveness of the proposed algorithm dependson the location of the ve-
locity sensorxm. As argued in [6], the distancexm is chosen so as to maximize the
observability residual of the unstable modeα.

Our objective here is to find afeedback control lawΓC = −KX ′, whereK is a
[4×1] feedback matrix, that will

1. stabilize system (13) and
2. minimizing a performance criterion represented by the following cost functional

J (ΓC) , E

[

Z ∞

0
(YT QY + ΓCRΓC)dt

]

, (19)

whereE denotes the expectation,Q is a symmetric positive semi–definite matrix
andR > 0.

Note that the cost functional (19) represents a sum of the linearized system outputY
[i.e., the velocity at the sensor location(xm,0)] and the control effort. The feedback
control law determines the actuation (i.e., the circulation of the control vortexΓC

representing the cylinder rotation) based on the state of the reduced–order model
(i.e., the perturbationX′ of the stationary solution). In practice, however, the state
X′ of the model (13) is not known. Instead, noisy measurementsỸ = [Ỹb Ỹa]

T of
the actual system [i.e., the nonlinear Föppl model (4) or anactual wake flow] are
available and can be used in anestimation procedure to construct an estimateX′

e
of the model stateX′. The evolution of the state estimateX′

e is governed by the
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Figure 2 Schematic of a compensator composed of an estimator and a controller.

estimator system

d
dt

X′
e = AX ′

e+BΓC +L(Ỹ−Ye), (20a)

Ye = CX′
e+DΓC, (20b)

whereL is a feedback matrix that can be chosen in a manner ensuring that the
estimation error vanishes in the infinite time horizon, i.e., thatX′

e → X′ ast → ∞.
Thus, the estimator assimilates available observations into the system model, so as
to produce an evolving estimate of the system state. Finally, the controller and the
estimator can be combined to form a compensator in which the feedback control is
determined based on the state estimateX′

e as

ΓC = −KX ′
e. (21)

The flow of information in a compensator is shown schematically in Figure 2. The
design of a Linear–Quadratic–Gaussian (LQG) compensator can be accomplished
using standard methods of Linear Control Theory (see, e.g.,[10]). Here we only re-
mark that, since system (8) is stabilizable, but not controllable, the controller can in
fact be designed based on the minimal representation. On theother hand, since sys-
tem (8) is observable, the estimator is designed based on theoriginal representation.
Given small dimensions of systems (7) and (18), solution of the Riccati equations at
the heart of these problems does not pose any difficulties. The reader is referred to
[6] for further details.

3 Higher–Order Föppl Systems

In this Section we describe potential flow solutions generalizing Föppl’s classical
point–vortex system. They can approximate with desired accuracy the velocity field
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Figure 3 Schematic showing EFHM solutions with two opposite–sign vortex patchesP
(solid line) andQ (dashed line) located symmetrically with respect to the flowcenterline.

of the steady–state solutions of the Euler equations characterized by arbitrary com-
pact vorticity support. Such system have the same dimensionas the original Föppl
model, however, are characterized by an arbitrary number ofadjustable parameters,
hence are more flexible as reduced–order models. We consideragain solutions of
system (1), however, instead of a collection of Dirac delta functions now we allow
for more general forms of the RHS functionf (ψ). A family of interesting solutions
was computed by Elcrat et al. in [11] by choosingf (ψ) as follows

f (ψ) =

{

−ω, ψ ≤ σ,

0, ψ > σ,
(22)

whereσ is an adjustable parameter. Such a vorticity distribution is sometimes re-
ferred to as the Rankine core. These solutions will play an important role in our de-
velopment and we will hereafter refer to them as the “EFHM flows”. Whenσ < 0,
such flows are characterized by compact regions of constant vorticity embedded in
an otherwise irrotational flow and are therefore related to the so–called Sadovskii
flows [12]. In addition to this solution, shown schematically in Figure 3, it was found
in [11] that regions of opposite–sign vorticity, hereafterdenotedP andQ, may also
exist above and below the obstacle, as well as in front of it. Since these solutions do
not correspond to any physical situation, they will not be considered hereafter.

Consider a compact regionP of vorticity embedded in an irrotational flow past a
circular cylinder (Figure 3) and characterized by the vorticity distributionω = ω(z).
Whenω = Const, the corresponding steady–state solutions of the Euler equations
defined by (1) and (22) are given by families of the EFHM flows computed in [11].
Below we construct algebraic systems that are approximations of such solutions.
Our approach is conceptually related to the method devised by [13] in which mo-



ments of vorticity distribution are used to characterize the evolution of a system
of vortex patches. Using complex Green’s function for the Laplace equation in a
2D unbounded domainG(z,z′) = 1

2πi ln(z− z′), the complex potential induced by a
vortex patch in such a domain can be expressed for points outside the patchz /∈ P as

W̃P(z) = (ϕ+ iψ)(z) =
1

2πi

Z

P
ln(z− z′)ω(z′)dA(z′), (23)

wheredA(z′) = dx′dy′. Tilde (˜) indicates that this potential represents a flow inan
unbounded domain (i.e., without the obstacle), whereas thesubscript indicates that
the potential is due to the patchP. We now choose a pointzs ∈ P as the origin of the
local coordinate system associated with the patchP and setζ = z′− zs (see Figure
3). The complex potential (23) can now be expressed as

W̃P(z) =
Γ0

2πi
ln(z− zs)+

1
2πi

Z

P
ln

(

1− ζ
z− zs

)

ω(zs + ζ)dA(ζ). (24)

The second term in (24) can, for|z− zs| > |z′− zs|, be expanded in a Taylor series
which yields

W̃P(z) =
Γ0

2πi
ln(z− zs)−

1
2πi

∞

∑
n=1

cn

n
(z− zs)

−n, |z− zs| > ζm, (25)

where
cn(zs) =

Z

P
ω(zs + ζ)ζn dA(ζ) (26)

andζm = max(zs+ζ)∈P |ζ|. Thus, the pointzs represents also the location of a sin-
gularity which, for the moment, remains unspecified. The quantities cn(zs), n =
1, . . . ,N are the moments of the vorticity distribution in the patchP with respect to
the pointzs and therefore are related to the eccentricity of the patch(c1), its elliptic-
ity (c2), etc. (unless required for clarity, hereafter we will skip the argument ofcn).
The zeroth momentc0 is equal to the total circulationΓ0 of the patch. The complex
potential due to a finite–area vortex patchP can be approximated for points of the
plane lying outside this patch by truncating expression (25), i.e., replacing it with a
finite sum of singularities located at the pointzs

W̃P(z) ∼= W̃P,N(z) =
Γ0

2πi
ln(z− zs)−

1
2πi

N

∑
n=1

cn

n
(z− zs)

−n, |z− zs| > ζm. (27)

The order of truncation is represented by the second subscript onW̃ . The complex
potentialW̃Q,N(z) due to the patchQ with the opposite–sign vorticity and located
symmetrically below the flow centerline (Figure 3) can be represented using an anal-
ogous expression in whichzs is replaced withzs andcn with −cn for n = 1, . . . ,N.
Below we use these expressions to construct potential flows approximating solu-
tions of the steady–state Euler equations (1) in the sense that the velocity field of the
potential flow will converge, forz /∈ P andz /∈ Q, to the velocity field of the Euler



flow asN → ∞. These potential flows are constructed using the potentialsW̃P,N(z)
andW̃Q,N(z), and adding suitable “image singularities” located insidethe obstacle
in a way ensuring that the boundary conditions for the wall–normal velocity com-
ponent are satisfied. In general, such flows can be constructed using the “Circle
Theorem” [4] which states that if ˜w(z) is the complex potential of a flow in an un-
bounded domain and with singularities at some pointszk, such that∀k, |zk| > R,
then the complex potential of the corresponding flow past thecylinder with radius
R is given by the expressionw(z) = w̃(z)+ w̃(R2

z ). Thus, using this construction to
enforce the boundary conditions and including also the baseflow with the potential
WC(z) [cf. Eq. (2)], we obtain the following expression for the complex potential

WN(z) = WC(z)+WF,N(z)

= WC(z)+W̃P,N(z)+W̃Q,N(z)+W̃P,N

(

R2

z

)

+W̃Q,N

(

R2

z

)

= U∞

(

z+
R2

z

)

− Γ0

2πi

[

ln(z− zs)− ln

(

z− R2

zs

)
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(
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,

(28)

whereWF,N(z) represents the truncated potential due to the finite–area vortex patches
and their images. We notice that settingN = 0 in (28) we recover the complex poten-
tial (2) of the classical Föppl system discussed in Section1. Therefore, the family of
the complex potentials given in (28) representsN–th order corrections to the Föppl
system regarded as approximations of the corresponding solution of the steady–state
Euler equations and hereafter we will refer to them as the “higher–order (N–th order)
Föppl systems”. By takingN large enough we can obtain an arbitrarily accurate rep-
resentation of the velocity field in the Euler flow valid for points in the flow domain
outside the vortex patches, thereby improving applicability of the Föppl system as a
model for steady wake flows.

In general, in an inviscid and incompressible fluid singularities (e.g., a point vor-
tex located atzs) move according to the velocity fielddzs

dt = V̂N(zs), where complex
conjugation is required to account for the fact that the complex velocity field is given
by V̂N = û− iv̂. We note that the advection velocityV̂N of a singularity is not affected
by its self–induction which can be seen by regarding the singularity as a limit of a
sequence of finite–area circular distributions of the corresponding quantity. The ve-
locity induced by such distributions can be shown to vanish at their center. Thus, the
advection velocity of a singularity is obtained as

V̂N(z) = VN(z)− 1
2πi

[

− Γ0

z− zs
+

N

∑
n=1

cn

(z− zs)n+1

]

, (29)



whereVN(z) = dWN(z)
dz , i.e., the terms which become singular asz → zs are removed

from the velocity field. Hereafter, hats (ˆ) will distinguish quantities with these self–
inductions terms subtracted off. We are interested in steady–state solutions of the
higher–order Föppl systems, therefore, for a given truncation orderN, we need to
find the equilibrium points of system (29), i.e., the pointszN such that settingzs = zN

the following condition is satisfied for givenΓ0 and{cn}N
n=1

V̂N(zN) = 0. (30)

This condition can be expanded to

V̂N(zN) = U∞
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1
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N






= 0

(31)

which is a complex–valued equation characterizing one complex unknownzN . In
the case whenN = 0, one solution of (31) is given by (3). WhenN ≥ 1, solutions
must be found numerically, e.g. using Newton’s method. Furthermore, since the
order of the equation increases withN, it can be anticipated that so does the number
of roots. In fact, it can be proved that there is always one root of (31) that is in a
neighborhood of the solution characterized by (3) and the size of this neighborhood
can be bounded by the magnitudes of the coefficientscn. Thorough analysis of this
and other analytical properties of the higher–order Föpplsystem is deferred to a
forthcoming paper [14].

4 Computational Results

In this Section we present some preliminary computational results concerning con-
struction of a higher–order Föppl system for a given EFHM flow and application of
such a system as a reduced–order model to the design of an LQG–based stabiliza-
tion strategy. Because of space limitations, our discussion here is necessarily short
and the reader is referred to the forthcoming papers [14, 15]for further particulars
regarding the computational procedure and detailed results. To fix attention, we will
focus on the Föppl system with the singularities located at[x0,y0] = [4.32,±2.3596]
and with the circulation of the vortices given byΓ0 = −29.6015 (this is the config-
uration investigated in [6]). We will also consider an EFHM flow with the area of
the vortex patchA = 20.43 as a desingularization of the classical Föppl system and
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Figure 4 (a) Location of the equilibria of (circle) the classical Föppl system (3) and
(square) the higher–order Föppl system (31) withN = 10. The boundary of the vortex patch
in the EFHM flows used to construct the higher–order Föppl system is represented by the
dotted line and the cylinder boundary is represented by a thick solid line. (b) Trajectories of
the state of (solid line) the classical and (dotted line) higher–order Föppl system stabilized
with an LQG compensator in the neighborhood of the corresponding equilibrium solutions.



will take N = 10 as the truncation order in the construction of the higher–order sys-
tem. As analyzed in detail in [14], such higher–order systems are characterized by
multiple solutions, however, in our analysis below we will focus on the equilibrium
[xN ,yN ] in the neighborhood of[x0,y0], both of which are shown in Figure 4a.

As can be easily verified, the higher–order Föppl system linearized about the
new equilibrium[xN ,yN ] has the same properties in terms of controllability and ob-
servability as the classical Föppl system [cf. Eqns. (14) and (15)]. Assuming mea-
surements of two velocity components on the flow centerline as the observations and
the cylinder rotation as the actuation, all four modes are observable, but only two of
them are controllable. Stability analysis of this higher–order Föppl system indicates
that, in addition to a growing and decaying mode (corresponding to, respectively,
the modesα andβ, cf. Figure 1b) characterized by purely real eigenvalues, there
exists also a mode characterized by pair of complex–conjugate eigenvalues (corre-
sponding to the modeγ, cf. Figure 1b). However, in contrast to the classical Föppl
system, these complex eigenvalues have negative real parts, hence the oscillatory
mode in the higher–order Föppl system is in fact exponentially stable. This differ-
ence has important consequences when a linear stabilization strategy, such as LQG,
is applied to the original nonlinear system. As illustratedin Figure 4b, when the
LQG compensator is applied to the classical Föppl system, the state of the system
does not return to the equilibrium, but lands instead on a closed orbit. One can prove
rigorously using methods of dynamical systems that this orbit has in fact the struc-
ture of a center manifold and the trajectory of the system on this manifold is stable
(see [15] for precise statements and proofs of these theorems). On the other hand,
when the LQG compensator is applied to the higher–order Föppl system, the sys-
tem trajectory returns to the equilibrium owing to the exponential stability of the
uncontrollable modes.

5 Conclusions

The dynamics of both the classical and higher–order Föppl systems in the neighbor-
hood of an equilibrium point is characterized by four degrees of freedom. However,
in contrast to the classical system which has just one parameter, the higher—order
systems are characterized by an arbitrary number of adjustable parameters repre-
sented by the expansion coefficients in (28). The number of these parameters is
determined by the truncation orderN. Therefore, by introducing a larger number of
adjustable parameters, one can incorporate much more flexibility into Föppl–type
models, so that, while remaining four–dimensional, they can reproduce more ac-
curately certain properties of realistic flows. Advantagesof having this additional
flexibility were illustrated by the computational results presented in Section 4. We
showed that the state of the classical Föppl system with an LQG stabilization con-
verges to a center manifold, whose persistence prevents this state from reaching the
equilibrium and, as a result, the amplitude of the state oscillations does not decrease.
We conjecture that this is a possible reason for the oscillations of the velocity field
in the near wake region occurring when this strategy was applied to stabilize an ac-



tual cylinder wake flow atRe = 75 (see [6]). On the other hand, the flexibility of
the higher–order Föppl system investigated here made it possible to alter the sta-
bility properties of the new equilibrium in such way that theuncontrollable mode
became stable. As a result, the same LQG compensation strategy was now able to
stabilize completely the equilibrium. We anticipate that this additional flexibility
of higher–order Föppl systems will play a role when employing these systems as
reduced–order models to stabilization of actual cylinder wake flows. Verification of
performance of such approaches is underway.
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