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Summary

This paper reviews recent progress concerning developofipoint—vortex reduced—
order models for feedback stabilization of the cylinder wdllow. First, we recall
briefly some earlier results related to the design of linesadback stabilization
strategies based on the Foppl system. Then we presenatienof a higher—order
Foppl system based on solutions of the Euler equationshmMiiésingularize the
original Foppl vortices. We argue that such higher—ord@&pgt systems possess
important advantages over the classical Foppl systemhnduie relevant from the
control-theoretic point of view. In particular, we preseamputational results indi-
cating that a higher—order Foppl system can be stabilin@aptetely in contrast to
the classical Foppl system for which this is not possibléngwto the presence of a
stable center manifold spanned by uncontrollable modes.

1 Introduction

The Navier—Stokes equations and most of their simplifiedieas such as, for in-
stance, the Euler equations, are infinite—dimensional mhjre systems and there-
fore their solutions are characterized by an infinite nundfgrarameters. Despite
the fact that the infinite—dimensional Control Theory is Mielveloped, most of the
readily available computational control algorithms han@dé—dimensional systems
as their point of departure. This justifies the need for deg\inite—dimensional

representations of the steady solutions that one intendsatulize and deriving

finite—dimensional descriptions of the system dynamickémeighborhood of such
unstable solutions, the so—called “reduced—order modAkstegards derivation of
such finite—dimensional representations, there are two @@proaches which can
be roughly classified as “data—based” and “equation—baSéw® approaches be-
longing to the first family rely on finding empirical basis fttions which optimally

span, in some suitable sense, the data characterizinggtensgnd collected during
its evolution. The best known approach in this categoryattoper Orthogonal De-
composition (POD) whose application for flow control purgesvas reviewed by
[1]. Application of such data—based approaches to devetmpwf reduced—order
models is however limited to regimes well-represented leydéta available. Such
models may therefore provide rather poor representatioth@fsystem response



to arbitrary forcing, as it may push the system trajectot@sards regimes not
described by the available empirical data. On the other hagdation—-based ap-
proaches seek to construct finite—dimensional represensaas solutions of trun-
cated finite—dimensional forms of the governing equatidi& most common ap-
proaches belonging to this category use standard spacetilistions of the original
partial differential equations to generate finite—dimenal models of the system.
Examples of flow control techniques developed based on sodelnare described,
for instance, by [2] and [3]. In the present investigationwi# pursue an alterna-
tive approach where we will consider simplified forms of th@/@rning equations
which, while remaining infinite—dimensional, are easiestdve and analyze. So-
lutions of such simplified equations can be treated usindytioal techniques, so
that suitable truncation of the obtained expressions wéHl to the reduced—order
models. The present paper is concerned with developmersystamatic procedure
for generation of such reduced—order models of certaindgygiamic systems.

We are interested here in constructing simple reduced+anddels for vortex—
dominated flows, hence we will assume that the flow is incosgiée and inviscid.
Therefore, instead of solutions of the Navier—Stokes equst we will consider
solutions of the Euler equations. It is well-known [4] th&@ &teady—state Euler
equations can be equivalently represented as

Ap=Tf(p) inQ,
p=0 on 0Q, (1)
P—Usy  for |(x,y)] — oo,

where is the streamfunction, which allows the velocity composeiat be ex-

pressed asl = %—‘i,’ andv = —%—‘i’, and f is an arbitrary function representing the
relationship between the streamfunction and the vortigitgs w = f (). In this
investigation we are interested only in solutions symraetiith respect to the flow
centerline, so without loss of generality we can rest@dn (1) to the upper half-
plane (i.e., points witly > 0). We note that the indeterminacy of the functioim (1)
reflects the nonuniqueness of solutions of the Euler egustiva given domaif.
Forinstance, expressing the functibf) on the RHS as a linear combination d€ 2
Dirac delta distributiong 2€; I'«3(x — X)8(y — Yk) with weightsly, whereK is the
total number of singularities and their images, leads ttesys known from the clas-
sical potential flow theory corresponding t& Doint vortices located at the points
{xk,yk}ﬁﬁl. An example of such a solution was found in closed form bygtop[5],
where the potential flow was obtained by placing behind tretambe two counter—
rotating point vortices located symmetrically with respicthe centerline (Figure
1a). With points of the plane characterized by their compleordinatez = x+ iy,
wherei = /-1, the complex potential of this floW(z) = (¢ +iY)(2), whered
andy are, respectively, the potential and the streamfunctian be expressed as

Wo(2) =We(2) +Weo(2), (2)
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Figurel Schematics showing (a) the location of the singularitiethim classical Foppl
system and (b) the three modes of motion characterizingribarized Foppl system (7): the
unstable mode, the asymptotically stable mofeand the neutrally stable (oscillatory) mode
y. InFigure (a) the dashed line represents the separatearsiine delimiting the recirculation
region.

where

We(2) = Us (z+ R;) , (22)

Weo(2) = % [In(z—zo) —In <z— %) —In(z—2) +1In <z— g)} (2b)

andl g andzy = xp + iyo represent, respectively, the circulation and positiorhef t
Foppl vortices. In Equation (2M:(z) represents the base flow symmetric with re-
spect to the OY axis and due to the cylinder only, whek&ggs(z) corresponds to
the two Foppl vortices located a§ andzy and their two images located inside the
obstacle. Two one—parameter families of steady vortex gardtions given by (2)
were found by Foppl in [5]: the configuration characteribgdhe condition

(|120]* — R?)? = 4| 20?5,
(|lo]* = R?)*(|2o|*+ R?) (3)
|Z0[° ’

hereafter referred to as the “classical Foppl system”(Fédla), and the configu-
ration characterized by the conditiGh(z) = 0, i.e., corresponding to the vortices
located on the OY axis. The latter solution, however, dogscoaespond to any

physical situation and will not be discussed further in thisestigation.

The classical Foppl system has recently been used as aegkeducler model in
the development of a simple feedback stabilization styafegthe cylinder wake
flow in [6]. The cylinder rotatiol ¢ = 'c(t) was used the flow actuation (i.e., the
control variable) and observations of the centerline vigfJadownstream of the ob-
stacle as the system output. The advantage of this appre#udtj due to simplicity

ro = 21T



of the Foppl model, the synthesis of the stabilization atho becomes a sim-
ple task with a significant part of the calculations carriedl @nalytically. The per-
formance of the stabilization strategy, while quite eneaimg, also showed some
limitations of such very simple point—vortex systems emgptbas reduced—order
models. The purpose of this investigation is to identifyrses of these limitations
and propose possible improvements. The structure of therpgaps follows: first in
Section 2 we review the formulation of the Linear—QuadraBaussian (LQG) com-
pensator designed based on the Foppl system as a redudedrmdel, in Section
3 we introduce a family of higher—order Foppl systems cti@tized by more desir-
able properties as candidates for reduced—order models,sbme computational
results are presented in Section 4 and conclusions areréléfier Section 5.

2 Control Design Based on the Bppl System as a
Reduced—-Order Model

We begin this Section by analyzing the stability propertiéshe classical Foppl
system linearized around the equilibrium solution. Thiglgsis will motivate the
design of an LQG compensator for feedback stabilizatiorheflinearized Foppl
system. Careful analysis of the linear stability of the pldgystem and its relevance
to modeling the onset of vortex shedding in 2D wake flows wasgmted by Tang
and Aubry in [7]. Our discussion of the control-theoretipests will be here nec-
essarily concise and the reader is referred to the pubicd€] for further details.
Different flow control problems also based on the Fopplexystis the reduced—
order model were studied in [8, 9].

We will assume that the cylinder has unit radRis- 1 and the free stream at in-
finity has unit magnitud®., = 1. In addition, we will also assume that all quantities
are nondimensionalized using these values. The Foppl htadebe regarded as a
nonlinear dynamical system with evolution described by

OVi(z1,22,T1,T2)]

R et R
]

dt
_D[\/Z(Zlv 227 r17 r2)

whereX £ [x; y1 X2 y»]" is the state vector and the control matsiX ) is expressed
as

[

N X1/|4

= — . 5

( ) 271 YZ/|22|2 ( )
Xo/|22f?

The expressions for; andV; in (4) are given by the velocity field
1 Iy 1 1
@ 2 2mi <z—21 z—1/21)

+F2 1 1 n Ic
2i\z—z z-1/2 21z’

(6)



evaluated ar; andz with the singular “self-induction” termsz—éZl andrgz, re-
spectively) omitted. For the moment we will fix attention ¢ tproperties of the
Foppl system without control, hence we will assume fhwat 0, which renders (4)
autonomous.

The linear stability analysis of the Foppl system is pearfed by adding the
perturbationgx;,y; ) and(x5,y,) to the coordinates of the upper and lower vortex of
the stationary solution and then linearizing the systenafdlindXo = [Xo Yo Xo —
yo]T assuming small perturbations. Thus, evolution of the phstions is governed

by the system

%x’ = AX/, 7)

whereX’' £ [x] ¥, X, y5,]T is the perturbation vector and the system matrix is given
by the Jacobian of the nonlinear system at the equilibdum g—i(xo). We remark
that (7) is a linear time—invariant (LTI) system. Eigenwahnalysis of the matrid

reveals (see [7] for details) the presence of the followiragges of motion (Figure
1b):

— unstable (growing) modea corresponding to a positive real eigenvahe=
Ar >0,

— stable (decaying) modp corresponding to a negative real eigenvahye=
—Ar <0,

— neutrally stable oscillatory modecorresponding to a conjugate pair of purely
imaginary eigenvaluels 4 = LiA;.

These qualitative properties are independent of the doearst coordinateg char-
acterizing the equilibrium solution. The analysis of théeentation of the unstable
eigenvectors carried out in [7] revealed that the initialgets of instability of the
Foppl system closely resemble the onset of vortex sheddirg actual cylinder
wake undergoing Hopf bifurcation. The free parameter attar&zing the equilib-
rium solution (3) of the Foppl system (i.e., the downstrdaoation of the singu-
larities xp) is chosen here, so that the length of the recirculation zornke Foppl
system is the same as the recirculation length in the steashable solution of the
Navier—Stokes system at a prescribed Reynolds numbehétyustification as well
as details of calculations are described in [6]. In the eXampresented hereafter
the downstream position of the vortices was chosen, solieattirculation length
is the same as in the steady unstable solution of the Naume$S system at the
Reynolds numbeRre = 75.

After including the control term representing the cylindetation the linearized
Foppl system becomes

d ! _ /
where
—Yo
1 X0
B2 pb(Xg) = — . 9
( 0) > g Yo ( )

Xo



As mentioned in Section 1 our control objective is atterarabf vortex shedding
which can be quantified by measuring the velocity at a poirtherflow centerline
with the streamwise coordinatg (note that in the stationary symmetric solution the
transverse velocity component vanishes on the centerit®)osing this quantity
as an output of system (4) we obtain the following output ¢éiqna

n(awz2) 2 | oy bl +ore (10
1

where the matrix® = 52 [0 xm]" represents the control-to—-measurements map.
m
Linearization of equation (10) yields

h(z0+ 2,20+ %) = h(2,20) + CX, (11)
wherez = x +iy,, k= 1,2, and the linearized observation operatois given by

0u(Xm) 9u(Xm) 0u(Xm) 0u(Xm)

0Xq ’(xO,yo) oy1 ’(XO,YO) 0% ‘(Xo,yo) 0y2 ‘(XO.,yo)] (12)
0V(Xm) oV(Xm) oV(Xm) 0V(Xm) :

0x1 |(><o,yo> oy1 l(xoYo) 02 I(x0.Yo) 09y2 I(xo0,¥0)
Uncertainty of the reduced—order model is represented éythsence of noise
which affects the linearized system dynamics vigta 1] matrix G and the lin-
earized system output vig2x 1] matrixH. Moreover, we assume that the velocity
measurements may be additionally contaminated with rmié[ml mz]T, where
my andmp are stochastic processes. With these definitions we can nobthe lin-
earized reduced—order model in the standard state—spandgee [10])
d

ax’ = AX'4+Blc+Gw, (13a)

Y = CX'+Dlc+Hw+m. (13b)

C:

Prior to designing a controller for system (13) we have tafyarhether the
system is controllable and observable which is done by stgdye ranksAg and
Ap of the controllability and observability Grammians

Ae £rank[B AB A%B A®B] =2, (14)
Ao 2rank[CT ATCT (AT)2CT (AT)3CT] =4. (15)

We conclude that the matrix p&jA, B} is not controllable and only two out of four
modes present in the system can be controlled. On the otinel;, tize matrix pair

{A,C} is completely observable. Converting system (13) to themmahrepresenta-
tion which consists of those modes only which are both cdlatste and observable
will allow us to determine which modes are in fact controléatWe accomplish this
by introducing an orthogonal transformation matrix

1/2 0 -1/2 0

N 012 0 1/2
Te2 V2 1/2 0 12 0 (16)

012 0 -1/2



Xa

and making the following change of variab§, = [X/] =TX'. The correspond-
b

ing form of system (13) is now
d1Xa| _ [Aa O Xa| 1 [Bal e 1 | Cal (17a)
dt X4 T [0 Al [Xp] T [0] ¢ Gy
Yo - 0 Gy X/a D Hi
M-Sl b Bl fiem e

Our minimal representation is thus given by the upper rongnation (17a) and the
lower row in (17b), i.e.,

d

Ya = CaXjh+Dalc+How+ mp. (18b)

Eigenvalue analysis of the matricAg and Ay, reveals thatA, has two real eigen-
values (positive and negative) corresponding to the grgwimd decaying modes
and[, whereas the matriRy, has a conjugate pair of purely imaginary eigenvalues
which correspond to the neurally stable madéigure 1b). Hence, the uncontrol-
lable part of the model system dynamics is associated withéutrally stable oscil-
latory modey and the original system (13) is thembilizable, but notcontrollable.
Practical effectiveness of the proposed algorithm dependke location of the ve-
locity sensorxy. As argued in [6], the distanog, is chosen so as to maximize the
observability residual of the unstable moale

Our objective here is to find fieedback control lawl'c = —KX’, whereK is a
[4 x 1] feedback matrix, that will

1. stabilize system (13) and
2. minimizing a performance criterion represented by thie¥dng cost functional

J(Fe) 2 E { /O “(YTQY + FeRre)dt || (19)

whereE denotes the expectatiaf,is a symmetric positive semi—definite matrix
andR > 0.

Note that the cost functional (19) represents a sum of tlealimed system outpivt
[i.e., the velocity at the sensor locati¢xy, 0)] and the control effort. The feedback
control law determines the actuation (i.e., the circulatid the control vortexX ¢
representing the cylinder rotation) based on the state eféduced—order model
(i.e., the perturbatioX’ of the stationary solution). In practice, however, theestat
X’ of the model (13) is not known. Instead, noisy measuremeénts[Y, Y| of
the actual system [i.e., the nonlinear Foppl model (4) onetmal wake flow] are
available and can be used in estimation procedure to construct an estimagé;

of the model stateX’. The evolution of the state estimaXg, is governed by the
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Figure2 Schematic of a compensator composed of an estimator andraléem

estimator system

%x;:Axg+Brc+L(\?—Ye), (20a)

Ye=CX.+Drlc, (20b)

wherelL is a feedback matrix that can be chosen in a manner ensuraighh
estimation error vanishes in the infinite time horizon, iteat X, — X’ ast — .
Thus, the estimator assimilates available observatidoglire system model, so as
to produce an evolving estimate of the system state. Firthiéycontroller and the
estimator can be combined to form a compensator in whichabédlfack control is
determined based on the state estimxtas

Mc=—KXL (21)

The flow of information in a compensator is shown schemayi¢alFigure 2. The
design of a Linear-Quadratic—Gaussian (LQG) compensatoibe accomplished
using standard methods of Linear Control Theory (see, [4.@]). Here we only re-
mark that, since system (8) is stabilizable, but not cotabidé¢, the controller can in
fact be designed based on the minimal representation. Quotlilee hand, since sys-
tem (8) is observable, the estimator is designed based anitfiral representation.
Given small dimensions of systems (7) and (18), solutiomefRiccati equations at
the heart of these problems does not pose any difficulties.r&ader is referred to
[6] for further details.

3 Higher-Order Foppl Systems

In this Section we describe potential flow solutions genarad Foppl's classical
point—vortex system. They can approximate with desiredigay the velocity field
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Figure3 Schematic showing EFHM solutions with two opposite—signieso patches?
(solid line) andQ (dashed line) located symmetrically with respect to the ftenterline.

of the steady-state solutions of the Euler equations cteaiaed by arbitrary com-
pact vorticity support. Such system have the same dimerasdhe original Foppl
model, however, are characterized by an arbitrary numbadpfstable parameters,
hence are more flexible as reduced—order models. We coresj@dém solutions of
system (1), however, instead of a collection of Dirac daltactions now we allow
for more general forms of the RHS functidiw). A family of interesting solutions
was computed by Elcrat et al. in [11] by choosifigp) as follows

—W, S 9
uw—{ I 22

whereao is an adjustable parameter. Such a vorticity distribut®sametimes re-
ferred to as the Rankine core. These solutions will play guoirrant role in our de-
velopment and we will hereafter refer to them as the “EFHM #&WwVheno < 0,
such flows are characterized by compact regions of constatitity embedded in
an otherwise irrotational flow and are therefore relatechi go—called Sadovskii
flows [12]. In addition to this solution, shown schematigatl Figure 3, it was found
in [11] that regions of opposite—sign vorticity, hereaftienoted® andQ, may also
exist above and below the obstacle, as well as in front ofricé&these solutions do
not correspond to any physical situation, they will not basidered hereafter.
Consider a compact regidhof vorticity embedded in an irrotational flow past a
circular cylinder (Figure 3) and characterized by the \@ityidistributionw = w(z).
Whenw = Cong, the corresponding steady—state solutions of the Euleateans
defined by (1) and (22) are given by families of the EFHM flowmpated in [11].
Below we construct algebraic systems that are approximatad such solutions.
Our approach is conceptually related to the method devigdd 3] in which mo-



ments of vorticity distribution are used to characterize #@volution of a system
of vortex patches. Using complex Green’s function for th@lhae equation in a
2D unbounded domai&(z Z) = % In(z— Z), the complex potential induced by a
vortex patch in such a domain can be expressed for point&lete patctz ¢ P as

We(2) = (¢ +ip)(2) = %/Pln(z—z’)w(z’)dA(z’), (23)

wheredA(Z) = dx'dy'. Tilde () indicates that this potential represents a flowarin

unbounded domain (i.e., without the obstacle), whereasubscript indicates that
the potential is due to the patéh We now choose a poit € P as the origin of the

local coordinate system associated with the p&emd set] = Z — z; (see Figure

3). The complex potential (23) can now be expressed as

Vib(2) = %In(z—zs)—i-%/ljln (1_ _izs> Wzs+0)dAQ).  (24)

The second term in (24) can, ffg— z5| > |Z — z|, be expanded in a Taylor series
which yields

" r 12 ¢ ,
V\/p(Z)zz—T?].In(Z—zs)—ﬁz%(Z—zs) . lz—z>lm (25)
n=1

where

en(ze) = [ wlz+LdAQ) (26)

and{m = Max¢)cp |¢|- Thus, the poinks represents also the location of a sin-
gularity which, for the moment, remains unspecified. Thenjtias c,(z), n =
1,...,N are the moments of the vorticity distribution in the paRwith respect to
the pointzs and therefore are related to the eccentricity of the pé&tgh its elliptic-

ity (c2), etc. (unless required for clarity, hereafter we will sk targument o€,).
The zeroth momerty is equal to the total circulatiofp of the patch. The complex
potential due to a finite—area vortex pateltan be approximated for points of the
plane lying outside this patch by truncating expression,(@2&., replacing it with a
finite sum of singularities located at the pomt

N
Wib(d) Wbn(2) = 22 In(z-2) o Y D(z-2) " f-al>lm (@)
n=1

The order of truncation is represented by the second sytisom\V. The complex
potentiaIVN\/Q’N(z) due to the patcl® with the opposite—sign vorticity and located
symmetrically below the flow centerline (Figure 3) can beespgnted using an anal-
ogous expression in which is replaced wittgs andc, with —¢, forn=1,...,N.
Below we use these expressions to construct potential flgpsoaimating solu-
tions of the steady—state Euler equations (1) in the seaséth velocity field of the
potential flow will converge, foz ¢ P andz ¢ Q, to the velocity field of the Euler



flow asN — . These potential flows are constructed using the poterWﬁhs(z)
andVN\/Q’N(z), and adding suitable “image singularities” located indiue obstacle
in a way ensuring that the boundary conditions for the waltamal velocity com-
ponent are satisfied. In general, such flows can be construsiag the “Circle
Theorem” [4] which states that #(Z) is the complex potential of a flow in an un-
bounded domain and with singularities at some pomitsuch thatvk, |z| > R,
then the complex potential of the corresponding flow pastti@ader with radius
Ris given by the expression(z) = W(z) +V_T/(R72). Thus, using this construction to
enforce the boundary conditions and including also the Basewith the potential
We(2) [cf. Eq. (2)], we obtain the following expression for the qolex potential

W (2) =We(2) +WenN(2)
> >
=We(2) +Vibn (2) +Won(2) +Wen (R )+WQN (R; )

= Uq <z+ ?) — g—T?] {In(z Z)—In (z— %2) —

whereWe (z) represents the truncated potential due to the finite—amtexpatches
and their images. We notice that settig-= 0 in (28) we recover the complex poten-
tial (2) of the classical Foppl system discussed in Sectidrherefore, the family of
the complex potentials given in (28) represeXtsh order corrections to the Foppl
system regarded as approximations of the correspondint@olof the steady—state
Euler equations and hereafter we will refer to them as thgtibi—orderil—th order)
Foppl systems”. By takinyl large enough we can obtain an arbitrarily accurate rep-
resentation of the velocity field in the Euler flow valid foripts in the flow domain
outside the vortex patches, thereby improving applicghili the Foppl system as a
model for steady wake flows.

In general, in an inviscid and incompressible fluid singitilzs (e.g., a point vor-
tex located a¥s) move according to the velocity fielﬁé =Vn(zs), where complex
conjugation is required to account for the fact that the clempelocity field is given
by Vi = G—iV. We note that the advection velociy of a singularity is not affected
by its self-induction which can be seen by regarding theudargy as a limit of a
sequence of finite—area circular distributions of the cggomding quantity. The ve-
locity induced by such distributions can be shown to vanigheir center. Thus, the
advection velocity of a singularity is obtained as

(28)

)

1 )

N
Cn
, 29
2ri z—zs+nz1 (z—z)"1 |’ (29)

W (2) =W (2) —




whereVy(z) = dV\g“z(z), i.e., the terms which become singularzas z; are removed
from the velocity field. Hereafter, hats (") will distinghigjuantities with these self—
inductions terms subtracted off. We are interested in stestdte solutions of the
higher—order Foppl systems, therefore, for a given trtinoaorderN, we need to
find the equilibrium points of system (29), i.e., the poi{such that settings = zy
the following condition is satisfied for givellp and{cn}N_;

Un(zw) = 0. (30)

This condition can be expanded to

. R\ To 1 1 1
SYPRIPRORE. Y S S S
wow(5) R Gy

1 N N R2c, 1

Tom 2 |V e (31)

. (-5)
Cn n+1 RZCn 1
_(ZN—ZN)n+1_(_ )

which is a complex—valued equation characterizing one dexnpnknownzy. In

the case whehl = 0, one solution of (31) is given by (3). Whé&h> 1, solutions
must be found numerically, e.g. using Newton’s method. lkarrhore, since the
order of the equation increases with it can be anticipated that so does the number
of roots. In fact, it can be proved that there is always oné¢ od@31) that is in a
neighborhood of the solution characterized by (3) and the af this neighborhood
can be bounded by the magnitudes of the coefficignt¥horough analysis of this
and other analytical properties of the higher—order Figysitem is deferred to a
forthcoming paper [14].

4 Computational Results

In this Section we present some preliminary computatiogsiiits concerning con-
struction of a higher—order Foppl system for a given EFHMvfand application of
such a system as a reduced—order model to the design of an h&3&d stabiliza-
tion strategy. Because of space limitations, our discnsk&re is necessarily short
and the reader is referred to the forthcoming papers [L4fdiSurther particulars
regarding the computational procedure and detailed sIdtfix attention, we will
focus on the Foppl system with the singularities locatdgmyo) = [4.32, +£2.3596

and with the circulation of the vortices given by = —29.6015 (this is the config-
uration investigated in [6]). We will also consider an EFHIMvil with the area of
the vortex patcth = 20.43 as a desingularization of the classical Foppl system and
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Figure4 (a) Location of the equilibria of (circle) the classical pfib system (3) and
(square) the higher—order Foppl system (31) Witk- 10. The boundary of the vortex patch
in the EFHM flows used to construct the higher—order Fopptey is represented by the
dotted line and the cylinder boundary is represented byck #lid line. (b) Trajectories of
the state of (solid line) the classical and (dotted linehkig-order Foppl system stabilized
with an LQG compensator in the neighborhood of the corregipgnequilibrium solutions.



will take N = 10 as the truncation order in the construction of the higbeter sys-
tem. As analyzed in detail in [14], such higher—order systame characterized by
multiple solutions, however, in our analysis below we wiltfis on the equilibrium
[n, Yn] in the neighborhood diko, yo], both of which are shown in Figure 4a.

As can be easily verified, the higher—order Foppl systemaliized about the
new equilibrium[xy,yn] has the same properties in terms of controllability and ob-
servability as the classical Foppl system [cf. Egns. (1) @.5)]. Assuming mea-
surements of two velocity components on the flow centerlintha observations and
the cylinder rotation as the actuation, all four modes areokable, but only two of
them are controllable. Stability analysis of this highedey FOppl system indicates
that, in addition to a growing and decaying mode (correspuntb, respectively,
the modesx andf, cf. Figure 1b) characterized by purely real eigenvalueste
exists also a mode characterized by pair of complex—cotgugjgenvalues (corre-
sponding to the modg cf. Figure 1b). However, in contrast to the classical Hopp
system, these complex eigenvalues have negative real parise the oscillatory
mode in the higher—order Foppl system is in fact exponbytigable. This differ-
ence has important consequences when a linear stabilizttategy, such as LQG,
is applied to the original nonlinear system. As illustrated=igure 4b, when the
LQG compensator is applied to the classical Foppl systemstate of the system
does not return to the equilibrium, but lands instead on sed@rbit. One can prove
rigorously using methods of dynamical systems that thi& dides in fact the struc-
ture of a center manifold and the trajectory of the systemhisirhanifold is stable
(see [15] for precise statements and proofs of these thex)rédm the other hand,
when the LQG compensator is applied to the higher—ordepFéystem, the sys-
tem trajectory returns to the equilibrium owing to the expotial stability of the
uncontrollable modes.

5 Conclusions

The dynamics of both the classical and higher—order Fotess in the neighbor-
hood of an equilibrium point is characterized by four degreefreedom. However,
in contrast to the classical system which has just one paeantke higher—order
systems are characterized by an arbitrary number of adjlesfzarameters repre-
sented by the expansion coefficients in (28). The number edettparameters is
determined by the truncation orddr Therefore, by introducing a larger number of
adjustable parameters, one can incorporate much moreifigxibto Foppl-type
models, so that, while remaining four—dimensional, thely sgproduce more ac-
curately certain properties of realistic flows. Advantagéfaving this additional
flexibility were illustrated by the computational resultepented in Section 4. We
showed that the state of the classical Foppl system with@@ ktabilization con-
verges to a center manifold, whose persistence preveststtitie from reaching the
equilibrium and, as a result, the amplitude of the statdlasions does not decrease.
We conjecture that this is a possible reason for the osoiliatof the velocity field
in the near wake region occurring when this strategy wasiegpb stabilize an ac-



tual cylinder wake flow aRe = 75 (see [6]). On the other hand, the flexibility of
the higher—order Foppl system investigated here madesiiple to alter the sta-
bility properties of the new equilibrium in such way that theecontrollable mode
became stable. As a result, the same LQG compensationgstrates now able to
stabilize completely the equilibrium. We anticipate thiaistadditional flexibility
of higher—order Foppl systems will play a role when emphgythese systems as
reduced-order models to stabilization of actual cylindakeflows. Verification of
performance of such approaches is underway.
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