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Abstract

This note addresses the question why the “impulse formula”, often employed
to compute hydrodynamic forces in vortex–dominated time–dependent flows,
is not applicable to steady flows in unbounded domains. By analyzing the
asymptotic structure of steady and unsteady flow solutions in unbounded
domains, it is demonstrated that one assumption made in the derivation of
the impulse formula is in fact not satisfied in the steady case. This result
also highlights the special character of steady flows in unbounded domains.
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1. Introduction

In this note we are concerned with a family of approaches to the calcu-
lation of hydrodynamic forces in flows past obstacles based on the so–called
“impulse formula”. We focus on flows in unbounded domains and seek to
identify the reasons why, somewhat paradoxically, such formulations are not
applicable to steady–state problems. We thus begin by considering solutions
of the Navier–Stokes system describing the motion of viscous incompressible
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fluid

∂u

∂t
− u · ∇u − µ∆u + ∇p = 0 in Ω × (0, T ], (1a)

∇ · u = 0 in Ω × (0, T ], (1b)

u
∣

∣

t=0
= u0 in Ω, (1c)

u
∣

∣

∂B
= 0 in (0, T ], (1d)

u −→ U∞e1 in (0, T ] for |x| → ∞, (1e)

where T < ∞, B is a finite solid body and ∂B its boundary, Ω = R
N\B

is the (unbounded) flow domain (N = 2, 3 is the space dimension), µ is
the viscosity of the fluid, whereas u = [u1, . . . , uN ]T and p represent the
fluid velocity and pressure. Without loss of generality, in system (1) it is
assumed that the fluid density is equal to the unity. The coordinate system
is attached to the obstacle B, and to fix attention we assume that the flow at
infinity is constant and aligned with the OX axis of the coordinate system,
cf. (1e), where U∞ ∈ R

+ and e1 is the corresponding unit vector. The initial
condition is given by u0 and for simplicity we assume that the no–slip and
no–penetration boundary conditions apply on the body B, cf. (1d).

Efficient calculation of hydrodynamic forces acting on the body is a chal-
lenging problem and application of the definition formula

F ,

∮

∂B

(−pn + n · Π) dσ, (2)

where Π , µ
[

∇u + (∇u)T
]

is the viscous stress tensor, n is the unit vector
normal to the obstacle boundary directed out of the flow domain (Fig. 1), and
“,” means “equal to by definition”, is usually not an optimal solution from
the practical point of view both in numerical computations and in analysis
of experimental data. There are several alternative approaches, see, e.g.,
Wu et al. (2006) for a survey, and one technique which has received some
attention in the literature is based on the “impulse formula” (Batchelor, 1967;
Biesheuvel and Hagmeijer, 2006; Saffman, 1992),

F = −
1

N − 1

d

dt

∫

Ω

x × ω dΩ, (3)

where ω , ∇ × u is the vorticity and x = [x1, . . . , xN ]T is the position vec-
tor. In addition to the absence of pressure, an advantage of formula (3) is
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that it relies on a highly localized quantity such as vorticity and therefore
provides an explicit connection between the vortex dynamics in the flow and
the hydrodynamic forces. Owing to these properties, formula (3) and its
different variants (Noca et al., 1999) are attractive approaches to calculation
of hydrodynamic forces in flows in which strong vorticity occupies only a
small portion of the flow domain. Such approaches are therefore particularly
useful in situations where high–resolution vorticity fields are available, but
it is not straightforward to measure or compute the corresponding pressure
fields. Thus, formula (3) and its variants have been often used in flow cal-
culations based on vortex methods (e.g., Koumoutsakos and Leonard, 1995;
Noca et al., 1997; Protas et al., 2000; Shiels et al., 1996) and in laboratory
experiments involving Digital Particles Image Velocimetry (e.g., Birch et al.,
2004; Dabiri, 2005; Thiria et al., 2006, and references quoted therein).

In view of the advantages discussed above, it might be tempting to ap-
ply formula (3) to steady problems, i.e., flows satisfying system (1) in which
the time–derivative term ∂u/∂t is dropped in equation (1a) and equation
(1c) is eliminated. However, we observe that it would, paradoxically, give
a wrong result, namely, that the hydrodynamic force (including drag) is
identically zero which is obviously not the case (Fornberg, 1985). This re-
sult is independent of the Reynolds number which is typically defined as
Re , diam(B) U∞/µ, where diam(B) is the characteristic dimension of the
obstacle in the direction perpendicular to the flow (we recognize that such
steady–state flows tend to be unstable for large Reynolds numbers, however
this issue is irrelevant for the present discussion). Since, to the best of the
author’s knowledge, this issue has never been addressed in the literature,
the goal of this note is to identify the reasons for this paradox. We will
recall results from the mathematical literature which demonstrate that such
steady–state solutions of system (1) have in fact different asymptotic prop-
erties at infinity than the time–dependent solutions. As a result, certain
essential assumptions made in the derivation of formula (3) are not satis-
fied by the steady–state solutions rendering this formula inapplicable in such
cases. In the next Section we review the derivation steps leading to formula
(3) emphasizing the assumptions made along the way as regards the behavior
of solutions of system (1) at infinity. In that Section we will refer to results
available in the mathematical literature to indicate how the steady and un-
steady solutions differ in this regard. Finally, in Section 3 we will discuss the
significance of this result and draw some conclusions.
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Figure 1: Schematic of the flow past an obstacle B in an unbounded exterior
domain which also indicates the finite control volume Ω0 with the boundary
Γ0.

2. Derivation of Impulse Formula

Impulse formula (3) is derived in four main steps which we summarize
below; the reader is referred to the monograph by Wu et al. (2006) and
the papers by Noca et al. (1999) and by Graziani and Bassanini (2002) for
additional technical details

1. first, we consider momentum balance in a finite domain Ω0 exterior to
the body B and bounded by the surface (in 3–D) or contour (in 2–D)
Γ0, see Fig. 1,

F = −
d

dt

∫

Ω0

u dΩ −

∮

Γ0

(u · n)u dσ +

∮

Γ0

(−pn + n · Π) dσ, (4)

2. next, we transform the momentum integral in expression (4) using the
“derivative–moment transformation” (Wu et al., 2006) which expresses
an integral of a vector field in terms of an integral of a moment of a
corresponding derivative field and a suitable boundary term, namely

∫

Ω0

u dΩ =
1

N − 1

∫

Ω0

x×ω dΩ−
1

N − 1

∮

∂Ω0

x× (n× u) dσ, (5)
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where ∂Ω0 , ∂B
⋃

Γ0,

3. then, combining expressions (4) and (5), and using some vector iden-
tities (Graziani and Bassanini, 2002; Noca et al., 1999) to eliminate
pressure we can recast the force as

F = −
1

N − 1

d

dt

∫

Ω0

x × ω dΩ +

∮

Γ0

n · γ dσ (6)

in which the tensor field γ has the form (Noca et al., 1999; Graziani
and Bassanini, 2002)

γ =µ
[

∇u + (∇u)T
]

− uu +
1

2
|u|2I

+
1

N − 1

[

(x × u)ω − u(x × ω) − µ(x · (∇ × ω)I− x(∇ × ω))
]

,

(7)

where I is the identity matrix,

4. finally, we take the limit Γ0 → ∞ in expression (6) such that Ω0 encloses
all of Ω in this limit; assuming a sufficiently rapid decay of the velocity
and vorticity fields u and ω towards their asymptotic values, relation
(6) then yields formula (3).

This assumed asymptotic behavior of the velocity and vorticity fields at in-
finity is our main concern here, and below we examine the validity of these
assumptions in the steady and unsteady case, respectively. To fix attention,
we will hereafter focus on the two–dimensional (2–D) case, however, the anal-
ysis and conclusions are quite similar in three dimensions (3–D). Thus, unless
stated otherwise, estimates will be provided for the 2–D case.

As regards time–dependent flows, the following asymptotic behavior is
rigorously established by Mizumachi (1984, Theorem 1)

|u− U∞e1| ∼ O

(

1

rN

)

as r → ∞, (8)

where r , |x|. It has been, in addition, assumed that (Graziani and Bas-
sanini, 2002)

∣

∣

∣

∣

∂ui

∂xj

∣

∣

∣

∣

∼ O

(

1

rN

)

, i, j = 1, . . . , N as r → ∞. (9)
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As concerns vorticity, we have for finite times T < ∞ (Wu, 1980)

|∇ × u| ∼ O
(

e−mr
)

(10)

for some m > 0. Properties (8), (9) and (10) are explicitly assumed, or
implied, in typical derivations of impulse formula (3), see, e.g., Biesheuvel
and Hagmeijer (2006); Graziani and Bassanini (2002); Noca et al. (1999).
Indeed, assuming that the initial condition u0 satisfies conditions (8)–(10),
property (10) guarantees that the impulse integral

∫

Ω0

x × ω dΩ remains
bounded in the limit Γ0 → ∞ for all t < ∞. Using additionally relations (8)
and (9) we obtain (in 2–D) |[γ]i,j| ∼ 1+O(r−2), i, j = 1, 2, for r → ∞, so that
the integral

∮

Γ0
n · γ dσ indeed vanishes in the limit Γ0 → ∞, as stipulated

in Step 4 of the derivation of the impulse formula presented above.
As regards time–independent flows, the asymptotic behavior of such so-

lutions at infinity has received some attention in the mathematical literature
since the work of Finn (1965) and Smith (1965), although in the author’s
opinion these studies have gone rather unnoticed in the fluid mechanics com-
munity. We refer the reader to the monograph by Galdi (1994) for a survey
of these results. From the point of view of the present study, the most im-
portant result is that steady–state solutions of system (1) exhibiting features
observed in reality such as nonzero drag, and hence referred to as “physically
reasonable”, have the following asymptotic behavior for |x| → ∞ in the 2–D
case (Galdi, 1994, Theorem 6.1 in Volume II)

u(x) = U∞e1 + E(x) · F + W(x), (11)

where E(x) is the Oseen fundamental tensor, whereas the field W(x) satis-
fies the estimate |W(x)| ∼ O(r−1+ǫ1) for some arbitrarily small ǫ1 > 0. The
Oseen tensor E(x) is a fundamental solution of the Oseen equation obtained
from the steady–state version of equations (1a)–(1b) by replacing the nonlin-
ear advection term in equation (1a) with U∞ (∂u/∂x1). Construction of the
Oseen tensor and its properties, especially in regard to the slow asymptotic
decay at infinity, are reviewed in detail in the monograph by Galdi (1994,
Volume I), and below we refer to the main results only. In view of the rapid
decay of the field W(x), the behavior of the steady–state Navier–Stokes so-
lutions in 2–D at large distances x is to the leading order the same as in
the Oseen flows with the same reaction force F and this property holds re-
gardless of the Reynolds number Re (in fact, the same is also true in the
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3–D case, cf. Galdi (1994)). More specifically, such steady solutions feature
a paraboloidal “wake” region with boundary described by the polar equation

r(1 − cos ϕ) = L, (12)

where ϕ is the polar angle and L > 0 a constant parameter (Fig. 2), in
which the longitudinal velocity component u1 exhibits a slow decay towards
its asymptotic value, namely

|u1(x) − U∞| ∼ O(r−1/2) as r → ∞. (13)

We add that, as demonstrated by Galdi (1994, Theorem 6.2 in Volume II),
estimate (13) is in fact sharp, in the sense that there exists a constant C > 0
such that

|u1(x) − U∞| ≥
C

r
1

2

as r → ∞. (14)

Outside the paraboloidal wake region the component u1 has a faster decay,
so that

|u1(x) − U∞| ∼ O(r−(1/2+ǫ2)) as r → ∞, (15)

for some ǫ2 > 0 (Galdi, 1994). In 2–D (but not in 3–D) the transverse velocity
component u2 does not exhibit wake behavior and obeys the uniform bound
u2 ∼ O(r−(1+ǫ3)), ǫ3 > 0. There also exists an estimate for the decay of the
vorticity field ω , ω ·e3 away from the obstacle in steady 2–D Navier–Stokes
flows, namely (Galdi, 1994, Theorem 6.4 in Volume II)

ω(x) =
∂Ψ

∂x1
(F · e2) −

∂Ψ

∂x2
(F · e1) + V (x), (16)

where Ψ(x) , e
x1 Re

2 K0(
|x|Re

2
), with K0 denoting the modified Bessel function

of the second type of order zero, and V (x) is a field satisfying the estimate
|V (x)| ∼ O(e−ρ |x|−3/2 log |x|), where ρ , (|x| − x1). We wish to empha-
size at this point that relations (11) and (16), together with the resulting
estimates (13) and (15), are not hypotheses or assumptions, but rigorously
established mathematical facts about steady–state solutions of the Navier–
Stokes system in externally unbounded domains in 2–D. We thus conclude
that a distinguishing feature of such steady–state flows is the presence of a
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Figure 2: Schematic partition of the flow domain into the regions with
“slow” decay (wake) and “fast” decay of the steady–state solutions of (1).
Dashed line represents the schematic boundary between these two regions
described by equation (12). Dotted line represents the part of the contour
Γ0 contained in the wake.

“wake” region extending downstream to infinity where the longitudinal ve-
locity component decays less rapidly than outside this region. The decay
of the steady–state solutions in the wake region is also significantly slower
than in the corresponding time–dependent flows, cf. relations (8)–(10). As
we shall see below, this fact has far–reaching consequences for the derivation
of impulse formula (3).

We are now ready to revisit Step 4 in the derivation of impulse formula (3),
this time concentrating on the steady flows. First, we observe that, in view
of property (16), it is not possible to ascertain boundedness of the impulse
integral

∫

Ω0

x × ω dΩ in the limit Γ0 → ∞. Secondly, we will consider the

behavior of the contour integral
∮

Γ0
n·γ dσ and, to fix attention, we will focus

on just one term, namely 1
2

∮

Γ0

|u|2n dσ, cf. expressions (6)–(7). Following
the same approach as below it can be shown that the other terms involving
u and ∇u in the contour integral exhibit in fact analogous behavior. We
split the contour Γ0 into the part Γw

0 contained in the wake (Fig. 2) and
its complement Γ0\Γ

w
0 which allows us to rewrite the contour integral as

follows (we consider the X component of this vector–valued integral only, the
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Y component being identically zero due to the symmetry of the flow with
respect to the OX axis)

1

2

∮

Γ0

|u|2n dσ =

∮

Γw

0

(

|u|2 − U2
∞

)

n dσ +

∮

Γ0\Γw

0

(

|u|2 − U2
∞

)

n dσ, (17)

where we also used the fact that U2
∞

∮

Γ0

n dσ = 0. As regards the integral
over Γw

0 , using estimate (13) we thus obtain for sufficiently large Γ0

∣

∣

∣

∣

∫

Γw

0

(

|u|2 − U2
∞

)

n · e1 dσ

∣

∣

∣

∣

≥

∣

∣

∣

∣

∫

Γw

0

C

r1/2
cos ϕ′ dσ

∣

∣

∣

∣

= Cr1/2

∣

∣

∣

∣

∫ ϕ(r)

−ϕ(r)

cos ϕ′ dϕ′

∣

∣

∣

∣

= 2Cr1/2
∣

∣ sin ϕ(r)
∣

∣,

(18)

where the constant C > 0 is defined in estimate (14) and ϕ(r) is the polar
angle characterizing the boundary of the wake region for a given r, cf. Fig. 2.
Using relation (12) and expanding in a series in terms of r we obtain

sin ϕ(r) = sin

[

arccos

(

1 −
L

r

)]

=
D1

r1/2
+

D2

r3/2
+

D3

r5/2
+ . . . , (19)

where Di, i = 1, 2, . . . , are nonvanishing constants such that D1 > 0 and
whose actual numerical values are not important. We add that expansion
(19) is centered at infinity, since it is obtained for (1/r) → 0. Combining
relations (18) and (19) we obtain

∣

∣

∣

∣

∫

Γw

0

(

|u|2 − U2
∞

)

n·e1 dσ

∣

∣

∣

∣

≥

∣

∣

∣

∣

2CD1+
2CD2

r
+

2CD3

r2
+. . .

∣

∣

∣

∣

−→
r→∞

2CD1 6= 0

(20)

which means that the contribution to the integral 1
2

∮

Γ0
|u|2n dσ from the

wake region Γw
0 does not vanish as Γ0 → ∞. Computing in a similar way

the contribution to this integral due to the remaining part of the contour
Γ0\Γ

w
0 , which now involves a faster decay with estimate (15), we obtain for
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sufficiently large Γ0

∣

∣

∣

∣

∫

Γ0\Γw

0

(

|u|2 − U2
∞

)

n · e1 dσ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Γ0\Γw

0

C ′

r1/2+ǫ
cos ϕ′ dσ

∣

∣

∣

∣

= C ′ r

r1/2+ǫ

∣

∣

∣

∣

∫ 2π−ϕ(r)

ϕ(r)

cos ϕ′ dϕ′

∣

∣

∣

∣

=
2C ′

rǫ

∣

∣

∣

∣

D1 +
D2

r
+

D3

r2
+ . . .

∣

∣

∣

∣

−→
r→∞

0,

(21)

where the constant C ′ > 0 is chosen so that |u1(x)−U∞| ≤ C ′/r1/2+ǫ2 outside
the wake region for large r. Relation (21) implies that the contribution to the
integral from the region outside the wake does vanish as Γ0 → ∞. Therefore,
the contributions to the integral from Γw

0 and Γ0\Γ
w
0 cannot cancel each other

in the limit r → ∞ which allows us to conclude that in steady–state 2–D
flows

∮

Γ0

n · γ dσ → Const 6= 0 as Γ0 → ∞, in contrast to what must be
assumed in Step 4 of the derivation of impulse formula (3). As a result, this
formula is not valid in steady flows in unbounded domains.

3. Conclusions

In this note we addressed the apparent paradox of incorrect results pro-
duced by impulse formula (3) when applied to steady flows. Using the results
of rigorous mathematical analysis of steady–state solutions of the Navier–
Stokes equation in unbounded domains, it was shown that in fact one step in
the derivation of impulse formula (3) is not justified rendering this formula
invalid in such problems. More specifically, the reason is the slow decay
of the steady–state velocity and vorticity fields as compared to the time–
dependent case, resulting in the flux integral

∮

Γ0
n · γ dσ not vanishing in

the limit Γ0 → ∞. This result may appear counter–intuitive, since it is usu-
ally tempting to regard time–independent phenomena as “special cases” of
time–dependent phenomena, in the sense that relations valid in the latter
case should be also valid in the former case (possibly after setting time–
derivatives to zero). The problem discussed in this note shows clearly that
this is not necessarily the case. We also mention that the presence of the
time derivative in formula (3) might from the beginning raise some doubts
about application of this formula to the steady case. This issue is, however,
more subtle, as in the derivation process (Section 2) one could absorb the
time derivative into the impulse integral before taking the limit Γ0 → ∞,
resulting in a formula containing the term

∫

Ω0

u × ω dΩ (i.e., without any

10



explicit time differentiation). While such variations of the impulse formula
have been considered in time–dependent flows (Birch et al., 2004; Noca et al.,
1999), they remain inapplicable in the steady setting for the same reasons
as described above. Finally, we remark that hydrodynamic forces in steady
flows in unbounded domains can be conveniently determined by considering
the momentum balance in a finite control volume, as discussed for example
in Wu et al. (2006).
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