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Abstract. We survey different approaches to evaluation of hydrodynamic forces in vis-
cous incompressible flows focusing on techniques which do not explicitly require pressure
information. A simple procedure is introduced which allows one to obtain a family of for-
mulas involving only the velocity and vorticity fields by manipulating the Navier-Stokes
equation. These formulas offer a number of computational advantages over standard tech-
niques and also provide interesting physical insights about the relation between hydrody-
namic forces and the dynamics of vortices in the flow. Finally, it is shown that a special
treatment is required to evaluate hydrodynamic forces in steady flows in unbounded do-
mains.

1 Introduction

Calculation of hydrodynamic forces acting on an object immersed in a fluid is one of the central
objectives in many applied problems in fluid dynamics. In this contribution we will survey a range
of different techniques for the evaluation of hydrodynamic forces which do not require the pressure
information. Their derivation relies on suitable manipulation of the equations for the conservation of
mass and momentum together with assumptions on the behavior of the velocity field at large distances
from the obstacle. The resulting expressions are characterized by different degrees of computational
efficiency and physical insight. We are concerned with incompressible flows in unbounded exterior
domains (Figure 1(a)). In some derivations we will also consider truncations Ω1 of the domain Ω
obtained by imposing an exterior boundary Γ1 (Figure 1(b)). We fix the origin of the coordinate system
at the obstacle and assume that the obstacle remains motionless with the fluid velocity vanishing
on its boundary. We also assume that there is a uniform flow U∞e1 at infinity (e1 is the unit vector
corresponding to the OX axis). The fluid motion is governed by the Navier–Stokes system representing
conservation of mass and momentum. This system of equations is assumed to have the following form:

∂u
∂t
− u ×ωωω +∇∇∇

u2

2
+∇∇∇p + ν∇∇∇ ×ωωω = 0 in Ω × [0,T ], (1a)

∇∇∇ · u = 0 in Ω × [0,T ], (1b)

u
∣∣∣
t=0 = u0 in Ω, (1c)

u
∣∣∣
Γ0

= 0 in [0,T ], (1d)

u −→ U∞e1 in [0,T ] for |x| → ∞, (1e)

where u = [u1, u2, u3] is the velocity field, ωωω = ∇∇∇ × u is the vorticity, p is the pressure, ν represents
the coefficient of the kinematic viscosity (the density of the fluid is assumed equal to unity), u0 is
the initial condition, T represents the end of the time interval considered and x = [x1, x2, x3] is the
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Fig. 1. Schematic of the flow past an obstacle Γ0 in (a) an unbounded exterior domain Ω and (b) an exterior
domain Ω1 with an outer boundary Γ1.

position vector. Given an object with a boundary Γ0 characterized by the local unit normal vector n
facing into the object (Figure 1a), the hydrodynamic force acting on this object is, by definition, given
by the following expression

F = Fp + Fν =

∮
Γ0

pn dσ − ν
∮
Γ0

[
∇∇∇u + (∇∇∇u)T

]
n dσ =

∮
Γ0

pn dσ + ν

∮
Γ0

n ×ωωω dσ. (2)

The velocity gradient is defined as [∇∇∇u]i j = ∂ui/∂x j and the two forms of the viscous term Fν are
equivalent due to the identity

∮
Γ0

(∇∇∇u)T n dσ = 0 valid for all incompressible fields u. The arguments
that we elaborate in this paper are valid in both two-dimensional (2D) and three-dimensional (3D)
domains.

Application of the definition formula (2), which explicitly involves pressure p, is inconvenient in
situations in which the flow field is characterized in terms of the velocity fields only (possibly together
with their spatial derivatives). Such situations occur in experimental investigations in which techniques
of the Particle Image Velocimetry (PIV) are used for measurements [1] and also in computational
studies relying on the “non-primitive” formulation of the governing system (1), i.e., a formulation in
which the pressure p is not explicitly present [2]. Provided that information about the velocity field
is available in the entire domain Ω1 and on its boundaries Γ0 ∪ Γ1, cf. Figure 1(b), pressure can be
recovered by solving the Poisson equation. However, this step is rather inconvenient and is usually
avoided in practical situations. A number of techniques alternative to (2) have been proposed in the
literature which allow one to evaluate hydrodynamic forces based on the velocity and vorticity fields
alone. They are summarized in Section 2 below where we demonstrate how they can be derived as
special cases using one general procedure and also discuss some of their advantages and disadvantages.
The calculation of forces in the special case of steady flows in unbounded domains is then discussed
briefly in Section 3. Conclusions are deferred to Section 4.

2 The Variational Formulation — A General Approach

In this section we show how a family of different approaches to the evaluation of hydrodynamic forces
(2), which do not require the pressure information, can be derived by following a general procedure.
It will depend on a vector-valued function γγγ and we will see how for different choices of this function
formulas with quite distinct structure and computational properties will be obtained. In addition to the
velocity and vorticity fields, u and ωωω, satisfying the governing system (1), in this section we will also
assume that the velocity field approaches its far-field value (1e) sufficiently rapidly, i.e., (u − U∞e1)
behaves as O(|x|−2) in 2D and as O(|x|−3) in 3D [3]. Below we will compute the component of the force
acting in the direction given by a unit vector a (so that, upon choosing a = e1, F · a will correspond to
the drag force).
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Procedure 1
1. choose a function γγγ ∈ [H1(Ω)]D, where [H1(Ω)]D denotes the Sobolev space of vector–valued

functions with square–integrable derivatives in Ω, such that

Bγγγ
∣∣∣
Γ0

= Ba, (3)

where B : γγγ
∣∣∣
Γ0
→ Bγγγ

∣∣∣
Γ0

is a linear operator acting on the boundary values (traces) of the function
γγγ,

2. multiply the momentum equation (1a) by γγγ and integrate over the truncated domain Ω1∫
Ω1

γγγ ·

[
∂u
∂t
− u ×ωωω +∇∇∇

u2

2

]
dΩ =

∫
Ω1

γγγ ·
[
−∇∇∇p − ν∇∇∇ ×ωωω

]
dΩ, (4)

3. use integration by parts and relation (3) valid on the boundary to extract from (4) the terms corre-
sponding to (2),

4. assume that Γ1 → ∞ which, given the assumptions on the behavior of γγγ and u for large |x| will
remove the integrals defined on Γ1.

In order to obtain a unique function γγγ, condition (3) has to be supplemented with an additional con-
dition defined in the domain Ω. We will now illustrate how the above general procedure can lead, for
different choices of this additional condition, and hence the function γγγ, to the following well-known
approaches.

2.1 The Impulse Formula in Unbounded Domains

The so-called “impulse formula” is obtained by choosing

γγγ = a in Ω, hence, by extension, B = Id ⇒ γγγ
∣∣∣
Γ0

= a, (5)

i.e., the function γγγ is constant and given by the vector a everywhere. Following our general procedure
and using standard vector identities (see, e.g. [6]) we obtain

F · a = −
a

D − 1
·

d
dt

∫
Ω

x ×ωωω dΩ, (6)

where D = 2, 3 is the spatial dimension. This relation was popularized by Saffman [4] and plays an
important role in a number of theoretical considerations. While providing an interesting insight into
the relationship between the force and vorticity dynamics, this approach has the disadvantage that
integration is extended over the entire infinite domain. Consequently, vorticity at very large distances
from the obstacle must be included which can be quite difficult in both numerical simulations and PIV
measurements. In addition, the time derivative present in (6) tends to amplify noise.

2.2 The Impulse Formula in Bounded Domains

By proceeding as in Section 2.1, but abandoning Step 4 of Procedure 1, i.e., retaining a truncated
domain Ω1, we obtain a family of formulas of the type

F = −
1

D − 1
d
dt

∫
Ω1

x ×ωωω dΩ +
[
integral over Γ1

]
+

[
integral over Γ0

]
, (7)

where integration is restricted to the truncated domain Ω1 and the far field contribution is contained in
the integral over Γ1. They were derived and analyzed by Noca et al. [5,6] and the reader is referred to
the original papers for details. These formulas no longer require integration over an infinite domain,
but still suffer from the presence of the time derivative. Furthermore, evaluation of the fluxes involved
in the integrals over Γ1 may be complicated.
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2.3 The Quartapelle-Napolitano Approach

A fundamentally different approach, originally proposed in [7], is obtained by choosing the function
γγγ in the form γγγ = −∇∇∇ηa, where ηa satisfies the following Neumann problem for the Laplace equation

∇∇∇ · γγγ = −∆ηa = 0 in Ω,

B = (n, ·) ⇒ (n, γγγ
∣∣∣
Γ0

) = −n · ∇∇∇ηa

∣∣∣
Γ0

= n · a,

γγγ → 0 for |x| → ∞

(8)

in which (·, ·) represents the standard Euclidean inner product. Following the steps of our general
procedure and employing transformations described in detail in [12], we can express the pressure
force as

Fp · a = −

∫
Ω

∇∇∇ηa · (u ×ωωω) dΩ + ν

∮
Γ0

∇∇∇ηa · (n ×ωωω) dσ. (9)

The second term on the right–hand side in (9) is similar, but not equal, to the term representing the
viscous stresses in (2). In order to obtain an expression for the total force, the viscous term Fν · a must
be added to (9) resulting in the formula

Fa = F · a = −

∫
Ω

∇∇∇ηa · (u ×ωωω) dΩ + ν

∮
Γ0

(∇∇∇ηa + a) · (n ×ωωω) dσ. (10)

We remark that in the above expression the two terms involving the function ηa represent the contri-
butions from the pressure force Fp · a. Formula (10) has the advantage that, apart from the absence
of the time–derivative, the integrand expression in the area integral includes a factor that rapidly de-
cays with the distance from the obstacle. As a result, formula (10) is much more convenient to apply
in numerical simulations where resolution of the velocity and vorticity fields is usually decreased far
from the obstacle and appears also as a promising possibility for calculating forces based on PIV mea-
surement data. This method has been further developed in different directions in [8–13]. It has been
recognized, however, that the approach based on formula (10) has a certain shortcoming. We note that
the expression for the pressure force Fp involves a boundary integral term proportional to the viscosity
ν. In order to evaluate this term and the term representing viscous stresses, the distribution of vorticity
on the boundary must be available which in many applications is rather inconvenient (in grid–based
numerical methods and in PIV this may require the construction of complicated differentiation sten-
cils). However, as was shown by the author in [14], formula (10) cannot be simplified by redefining
the function γγγ in order to eliminate the boundary term. In this sense, it can be considered “optimal”
within the family of approaches resulting from Procedure 1.

3 Calculation of Forces in Steady Flows in Unbounded Domains

In this section we briefly address the case of force computations in steady flows, characterized by the
vanishing of the time derivative term ∂u

∂t in (1a), in unbounded domains Ω. We observe that setting the
time derivative in relation (6) to zero we obtain a somewhat surprising result that the hydrodynamic
force F should vanish. This clearly contradicts the well-known empirical observations that the drag
force (corresponding to a = e1 in (6)) never vanishes in steady flows of fluids with finite viscosity
ν > 0. This apparent paradox was resolved by the author in [15] where it was demonstrated that
relation (6) is not in fact valid for steady flows in unbounded domains. The reason is that such flows
exhibit a slower (as compared to the corresponding unsteady flows) decay of the velocity field at
infinity [16]. As a result, Step 4 of Procedure 1 fails, since some of the boundary integrals do not
vanish when Γ1 −→ ∞, rendering (6) incorrect. In such situations, one therefore needs to rely on
formulation of the type (7) defined on finite domains Ω1 which, due to the terms containing integrals
over the contours Γ0 and Γ1, will predict finite drag even when the time derivative of the impulse
integral vanishes.
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4 Conclusions

In this contribution we surveyed a number of different approaches for the computation of hydrody-
namic forces in flows of viscous incompressible fluids based on the velocity and vorticity fields only.
We stressed how these different formulas can be derived by manipulating the governing equations via
a single general procedure. We also highlighted the physical insights and computational advantages
offered by the different formulas. It should be added that within the proposed framework it is also
straightforward to account for the effects of the motion and/or deformation of the obstacle on the forces
(the result will be the appearance of some additional integral terms defined on the obstacle boundary
Γ0). Likewise, expressions analogous to (6), (7) and (10) can be obtained for the hydrodynamic torque.
Finally, we explained the reason why the calculation of forces in steady flows in unbounded domains,
for which the impulse formula (6) is not applicable, requires special treatment.
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