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Abstract

In this investigation we address the problem of adjointedasptimization of PDE systems
in moving domains. As an example we consider the one—dirneakheat equation with
prescribed boundary temperatures and heat fluxes. We disagsmethods of deriving
an adjoint system necessary to obtain a gradient of a costifunal. In the first approach
we derive the adjoint system after mapping the problem to edfidomain, whereas in
the second approach we derive the adjoint directly in theingpdomain by employing
methods of the noncylindrical calculus. We show that therafpens of transforming the
system from a variable to a fixed domain and deriving the atihd hot commute and that,
while the gradient information contained in both systenthéssame, the second approach
results in an adjoint problem with a simpler structure whictherefore easier to implement
numerically. This approach is then used to solve a movinghdary optimization problem
for our model system.
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1 Introduction

In this investigation we are interested in the computatisolution of optimal con-
trol problems for a class of partial differential equatiahefined in variable do-
mains. In such cases the shape of the domain is itself unkamgmmust be de-
termined as a part of the solution of the direct (forward)lgpeon. Applications
of such problems are manifold and mostly include modeling eontrol of sys-
tems involving change of phase, such as solidification ig, @ata assimilation for
problems involving a free surface, such as the shallow watatels in atmospheric
and oceanic sciences [2]. Our own investigation is mott/dtg the problem of
optimization of advanced welding processes in automotig@ufacturing. Thus,
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generally speaking, we are interested in PDE—constraipgchization problems

min j(u, @),
He 1)
subject to G(u,) =0,

whereu and @ are, respectively, the state of the system and the cornitfol(p)

is the cost functional and (u, @) = O represents the PDE constraint. Noting that,
subject to certain assumptions gh we haveu = u(@), one usually rewrites (1) in
an equivalent unconstrained formulation using the redwosd functionaly (¢) =
j(u(@), ) (“£” means equality by definition) as

mqinj (@) 2)
In our presentation hereafter we will skip the adjectivedtreed”. Problem (2) can
be solved using any of gradient—based approaches, suck asrtjugate gradient
method, or a variant of the quasi-Newton approach [3]. Are¢émbgredient of
any such technique is computation of the gradiéritof the cost functional with
respect to the control variabtg For problems involving optimization of PDE sys-
tems such a gradient can be conveniently obtained in terntiseo$olution of a
suitably defined adjoint system [4], which ensures that ¢nélient respects the
PDE constraints. This adjoint—based approach has lead ny swccessful appli-
cations of optimal control to problems governed by PDEs itenmlogical data
assimilation [5], flow control [6] and mixing [7], to mentiqust a few areas. How-
ever, when dealing with PDE problems defined in moving dosjaine needs to
address several issues which do not arise in fixed—domaligms. First of all,
this domain variability must be properly accounted for ie tierivation of the lin-
ear perturbation equation, the so—called “tangent lineadel, based on which
the adjoint system is subsequently defined. Secondly, theagovariability must
also be accounted for in the definition of the inner produdindtey the adjoint.
Depending on how the variable domain is described matheaitione can dis-
tinguish two general cases [8]. Denoting a time—dependemtaih Q(t) and its
boundany®Q(t), whereQ(t) ¢ RY andd is the spatial dimension, amplicitly de-
fined domain is characterized by the conditign o) F(X) = fo for a function
F : RY — R and a constanfy € R. Thus, the domain boundary is an isocontour
of the functionF. This formulation is natural, for instance, in problemsatwng a
change of phase. On the other haexplicitly definedlomains are characterized by
the conditionvycaq(t) X = g(t,u), whereu is a vector of the dependent variables in
the problem andj(t,u) is a function describing the velocity of the domain bound-
ary. This formulation is more natural in free—surface pesbs. Given an implicitly
defined domain, it is usually possible to construct the smoading explicit def-
inition using the implicit function theorem. In this invegition we will focus on
optimization of PDEs in implicitly defined variable domaijtise companion prob-
lem concerning explicitly defined domains is left for theud.

The optimization problem becomes patrticularly interegtwhen the cost func-



tional 7(¢) is expressed in terms of the evolution of the domain bourdaiihis
may correspond, for example, to the situation when a paft@tibmain boundary
should follow a prescribed trajectory. This problem is elgselated to the shape
optimization problem [9], where certain mathematical taghes we will use orig-
inated. As a matter of fact, the problem of optimizing the penal evolution of a
domainQ(t) c RY, wheret € [0,T], can be equivalently regarded as the problem
of optimizing the shape of a “tube’ o 1{t} x Q(t) embedded in an extended

time—space domaif0, T] x RY. However, the approach we will discuss below is
preferable from the computational point of view, as it awdide use of the bound-
ary curvature defined with respect to the time—space coatetin

Adjoint—based optimization of PDE systems in variable dm®aas received only
limited attention in the literature. Control of a free—sag® problem with the do-
main defined explicitly was considered in [2,10]. Controbdbtefan problem sim-
ilar to the problem addressed here was investigated in fitJusing less general
methods than the approach discussed in the present stuphynAdbased methods
were also used for optimal control of solidification fronts Habaras (see [12] for
a review). These investigations, however, applied the tguéor the domain evo-
lution as a “soft” constraint only, i.e., it was not enforcexiactly as an equality
constraint, but its violations were instead penalized md¢bst functional. Conse-
guently, calculation of the cost functional gradient did ddfer much from the

case involving a fixed domain. Yet another approach was adopy Hinze and

Ziegenbalg in [13,14] who applied adjoint—based optimarato a two—phase Ste-
fan problem with the interface parametrized as a graph ofietfon. Recently, there
has also been some interest in the use of level set methodkdpe and topology
optimization [15]. In our investigation we are interesteda problem where the
control has the form of the Neumann boundary condition onregfahe boundary.

The mathematical theory for the particular case with thecigy of the boundary

serving as the control variable was presented in a recenbgraph [16]. In our

present investigation we will employ elements of this tlyeor

Our goal in this study is to assess, from the computatioraVpoint, two methods
of calculating the cost functional gradieny in the presence of a PDE constraint
in a variable domain. In the first approach we use a suitablgping to transform
the system from a moving to a fixed domain in which it is thenrojed. We will
show that the adjoint system obtained in this way has a ratiwkward structure
characterized by the presence of integral constrainthdisécond approach we use
the methods of the noncylindrical calculus [16] in order tffedentiate the origi-
nal PDE system with respect to evolution of the domain. Wé etikerve that the
adjoint system obtained in this way will have a simpler sinoe while still contain-
ing the same gradient information. Feasibility of this aggwh will be confirmed
with computations concerning our model problem. For theesafksimplicity and

in order to emphasize the generic, discretization—inddeet) character of problem
addressed here, we will follow the “differentiate—thersedetize” approach [4] in
which an expression for the gradient can be obtained usapfmite—dimensional



PDE formulation which has to be subsequently discretized.

The structure of the paper is as follows: in the next Sectienmnroduce the one—
dimensional (1D) model optimization problem that will seras our example, in
Section 3 we derive an expression for the cost functionaligrda using a mapping
to a fixed domain, an approach to gradient calculation in &k domain em-
ploying the noncylindrical calculus is presented in Setdo whereas in Section
5 we compare the two approaches, then computational exarapepresented in
Section 6, while conclusions and outlook are deferred taiGed.

2 Statement of the Model Problem

Here we introduce our PDE—constrained optimization prnoblEhe governing sys-
tem has the form of a 1D heat equation defined on a variable ido@@) =
[a(t),b(t)] C R

2
% —v% =0 in (0,T] x [a(t),b(t)], (3a)
ou ou .

& at) = (p(t)7 & 1) =W n <O7T]7 (3b)
u}a(t) - u}b(t) = Up in <O7T]7 (3c)
”}t:o =Up in [a(0),b(0)], (3d)

wherev € R* is the diffusion coefficientR" does not include O\, up € R rep-
resent the Neumann and Dirichlet boundary data@ndQ(0) — R is the initial
condition. We will assume that == 0 anda(t) < b(t) for all timest > 0. The func-
tion@: [0,T] — R™ in Neumann boundary condition (3b) is atontrol. We note
that, comparing to the heat equation in a fixed domain, syé¢imas more bound-
ary conditions. The reason is that two additional relatiaresneeded to determine
the evolution of the domain given k(t) andb(t). This is done by invoking the
implicit function theorem in order to differentiate condits (3c)

du ou oduda du, sda_ F
Ot |y~ O oxdt  dt |y at

and likewise forvy, = %’. Relation (4) is well-defined owing to the assumptions

made on the Neumann data in (3b). In the context of the hemdferrproblems,
conditions (3b) represent the heat flux across the boundégreas conditions (3c)
mean that the temperature at the boundHeyt) is constant and equal tg, (e.g.,
the phase change temperature). Thus, system (3) may beleegas a modified
form of the one—phase Stefan problem [17] (the actual Stafalblem is character-
ized by somewhat different heat flux conditions). Finallg @mphasize that, even



though equation (3a) alone is formally linear, moving dam@oblem (3) is in fact
nonlinear.

As regards the choice of the cost functional, we are intecest expressions de-
pending on thevolutionof the domain and will use

7= [ it -BoPat ®

whereb(t) represents the desired trajectory of the right boundbéry. Cost func-
tional (5) can be supplemented with a Tikhonov—-type pertalty, as required for
regularization [18]. Thus, our optimization problem catsiin finding the Neu-
mann boundary conditiop at the left boundary, so that the trajectory of the op-
posite boundary follows a prescribed path. We conclude gingahat, given the
diffusive nature of equation (3a), this is a strongly ill-sed inverse problem. A
guantitative characterization of ill-posedness of thipem could be done by ex-
amining the singular value decomposition (SVD) of the Hassif cost functional
(5) [19]. This would, however, require the computation o #econd—order differ-
entials of (5) which is outside the scope of the present paper

A local minimizer @ of our problem is characterized by the first—order optimal-
ity conditions which imply the vanishing of the Gateauxfeliéntial, defined as

J(@ @) 2 lime_o2[7(p+eg) — 7(9)], of (5)
Vg J(@:¢) =0, (6)

whereg is an arbitrary perturbation of the control. The local miiger @ can be
found using an iterative descent algorithm

o™ = 4 B(07(¢")), n=1,..., .
1 (7)
(p _qb?

wheren is the iteration count angh the initial guess for the control variable. Rep-
resentation (7) is generic and specific algorithms, sucé.gs,the steepest descent,
conjugate gradients, or Newton’s method, can be obtaineddiing an appropri-
ate choice of the operat@® [3]. The cost functional gradieni J(g) is extracted
from the Gateaux differentigl’ (¢; ¢') using the Riesz theorem

(D]7d)X:]/(¢;d)7 (8)

where(-,-) x is the inner product in the Hilbert spage
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Fig. 1. Schematic transformatiad = W(t) of the moving domaiif2(t) to the fixed domain
Q.

3 Gradient via Mapping to a Fixed Domain

In this Section we present an approach to computing the gmédi7 of cost func-
tional (5) based on a transformation of problem (3) to a fixethdin (Fig. 1). In
the original system (3) the domai(t) is characterized by the positions of its two
endpointsa(t) andb(t). In order to simplify the resulting expressions, we will use
instead the variables

L(t) = b(t) —a(t), (9a)
— (9Db)

i.e., the domain width and the position of the domain cemtiép Introducing the
coordinateé € Q = [—1,1], the transformation fronQ(t) to the fixed domain
Q is defined by the change of variables= x(t,&) = @E +Xo(t) anduit,§) =
u(t,x(t,&)). Noting that the differential operators transform %s: g—‘z‘% % =
%é, atld% = %E(t,x) + g—g\t%, the transformation of system (3) to the fixed
domainQ yields

E_ﬁT_pa—Ez_o in (0,T] x[-1,1], (10a)
od L a0 L :

%, 2% 3 - oW in (0,T], (10Db)
6, =0, = up in (0,T], (10c)
d,_o = Go in [—1,1], (10d)



where the dot denotes differentiation with respect to theetiCost functional (5)
becomes
( 72
— t t. 11
=5 / [ > )] d (11)

The Gateaux differential of cost functional (11) obtairegaplying the definition
formula is given by

J’(cp;cd>=/oT (xO+——b) <>(0+ ) (12)

wherexy = x5(@; @) andL’ = L’((p, @) are the perturbation variables which, together
with the perturbation variable’ = ' (@; ¢f), are the solutions of the perturbation
system

o0 A0 2% +EL 90 (2% +EL )L — (2% +EL)L

ot 0¢& L 0¢ L2

4y 9%0 ,8v 820 .
e +L Goe2 0 in (0,T] x[-1,1], (13a)

o L’ L ad L’ .
Fal _f(p_ —, 5 1—§w_0 in (0,T], (13b)
} 1= ‘1 n (07T]7 (13C)
(f],_o=0 in [-1,1], (13d)
Xé)‘tzo =0, L/}t:o =0. (13e)

This perturbation system is obtained replaciig (10) with @+ ¢ and represent-
ing the solutions of (10) as

G(Q+eq) = (g)+ &l (¢;¢)+ O(e?),
L(@+eq) = L(9)+ L' (@, ¢)+ O(€?),
Xo(@+€9) = Xo(9)+€x0(@; @)+ O(€2).

The resulting system is then linearized and simplified ugit@. In expression
(12) for the Gateaux differential the perturbatignappears implicitly in the state
perturbation variables’ = L' (¢; ¢f) andx; = X (¢; @), hence at this stage we cannot
use (8) to extract the cost functional gradient directlyrird2). This will, however,
become possible after (12) is transformed using suitalfipelé adjoint variables.

We begin by introducing the adjoint variables:"[0, T] x Q—R,&:[0,T]—R
andb* : [0,T] — R. Then we multiply (13a) by and integrate over time and
space, multiply (13b) bg“"and—b* and integrate over time, and add all the terms



together which gives

| // [_U__Zxo-l—EL a0 (2% + &)L — (20 +E0)L
e L 0t L2

4y 9°0" | ,8v 040 " T /ol L' L\ .,

_FGEZJFLLSGEZ] dEdt-l—/O (E _1—§(p—§(p()a dt  (14)
Trod L.

[ (% _Zw)brdt=o.

o (3l 2")

Performing integration by parts with respecttand¢, and using (13c) we obtain

| . 00" 2% +E&L  4v o3
'1_// [ L +¥T_F652}didt
Foetia [ (f5) 3] (S )
& od 2%+ EL A0 _, 8v62 o W,
+/ {/[ (LGEU)+7L2 0+ g }dé——aqtib}dt
26u~* TL,,
+/ x6{/1dt<L6£ )da] dt*/ Sa ¢t

Lgou. =2y Lol =T
_{E/lLGE dE] [ /166 dﬁ} ’

(15)
Defining now the adjoint system as follows
ou* L, 00" 2x+E&L 4Avorn* .
-5 +Eu 3% L 2o =0 in (0,T] x[-1,1],
(16a)
~ L2, L2 .
(i }71:—Ea, (i ‘1:_Eb in (0,T], (16b)
17d /&ad., 2xo+ELOu~* 8v 0201 .
/Ja(m”)* 2 sl " Boe" ] g~ 58 + 55 =
1 L - .
= é (XO+ E —b) In (O,T], (16c)
1d /200, L — .
/ d_([_a )da_xo+§—b in (0,T],  (16d)
a,_ =0 in [-1,1], (16e)
A'|_; =0, b'f,_=0 (16f)

and using (13d)—(13e) reduces (15) to

/OT %g*cddt:/OT <x0+——b) <x6+ ) dt= 7' (¢ @), (17)



from which we can extract thie, cost functional gradient as

0y — %a* in[0,T]. (18)

We conclude this Section by commenting on the structure ffistdsystem (16).
We note that, in addition to satisfying evolution equati@6d), the adjoint vari-
ableu* also has to satisfy two evolutionary integral constraidisc) and (16d).
These constraints can be accommodated by adjusting thevadgoiablesa™ and
b* in boundary conditions (16b). However, the presence ofgimeslocal integral
constrains can severely complicate numerical treatmeprtatflem (16). These dif-
ficulties will likely be aggravated further for problems foulated in higher spatial
dimensions.

4 Gradient via Noncylindrical Calculus

In this Section we derive an expression for the gradient st fumctional (5) which
will directly account for the variability of the domain in wdh the PDE constraint
(3) is defined. Differentiation of solutions of PDEs definadvariable domains is
made possible by the use of the “noncylindrical calculu$]hose main results
are reviewed below, while the reader is referred to the nebsource for further
details. Regardin@o = Q(0) as a reference domain, we introduce the flowmap
T = T (t) to parametrize the evolution of the domain@g) = 7 (t)Qo. We can
now define a noncylindrical set (a “tube”) as

Q= |J {thxQ( (19)

te[0,T]

which represent the evolution of the domal(t) in the space—time “coordinates”.
The appellation “noncylindrical” refers to the fact thatsmch coordinate® forms

a distorted tube, rather than a straight cylinder (Fig. ft,Js. right schematic).
In the present case the domain evolution clearly dependi@rdntrolg, hence
Q= Q(@). Furthermore, as is evident from the structure of systeno@ may not
in general perturb the solutianby perturbing the contrap withoutmodifying the
shape of the tub®. Consequently, every dependent variable depends on thekton
variable@ through the domain evolutioQ(¢), i.e.,u= u(Q(®)), a= a(Q(y)) and
b=Db(Q(g)). This fact has important consequences for how differentibthe state
variables are calculated with respect to the conprddy the chain rule, differentia-
tion is performed first with respect to the evolutiQrof the domain which is in turn
differentiated with respect to the contrpl This can be representaghematically



as

Du(Q(9)) Du(Q(9)) DQ(¢)
Tp.(p(: o) ( Dy q{)’ (20)

- . N~
“outer” differential “inner” differential

7

WhereDQ corresponds to a Gateaux or Fréchet differential witipeestop and-X

means that the differential is calculated in the direco€omputation of the outer
differential requires the use of the noncylindrical cal®i[16] which provides the
framework for differentiation of solutions of PDEs with pect to domain evolu-
tion. The central ansatz here is that the domain evoluf)aran be parametrized
using a velocity fieldV defined on a larger (“hold—all”) domaid C R, such that
V|sp = 0 andQ(t) C D, and differentiation is then carried out with respect tethi
velocity field. A differential with respect to domain evalut parametrized by
is calculated in the directiow/ which, as the “inner” differential in (20), is in turn
expressed as a differential @fwith respect tap computed in the directiog’. We
emphasize that the differentials of the state variableschegacterized by a PDE
system obtained via linearization of system (3). Since oadeh problem is for-
mulated in a 1D domain, many of the following results coulddsuced to a more
explicit form, however, we choose to state them in a more gem@m admitting
a straightforward generalization to problems in higher elnsions.

Domain evolution is parametrized using the velocity (speadthod [16] which
associates a velocity fielM to the flowmap7, so that

Q%%ﬁlzva;rax», te(0,T], 21)
T(O, X) =X, in 5(0)

Thus, the evolution of a domafd(t) can be regarded as driven by the velocity field
V,i.e,,Q=Q(V). We can now introduce thieansverse magg

T:Q(t) — Q(t,p) 2 Q(V +pW), (22)

which represents modifications of a domain evolui(h) due to the perturbation
PW applied to the velocity field/. It can be shown [16] that the flow associated
with a transverse map (22) is given in terms dfansverse velocity field(t, p) as

~

dT<t7 p) _ 7
do = Z(t,p), p>0 (23)
T(t,0) =X, in Q(t).

Derivatives with respect to the pseudo-timeill be needed ap = 0 only, hence
we can defing £ Z|p—0. It is known [16] that evolution in time of the transverse

10



velocity fieldZ is governed by the following initial-value problem

0Z .
rl [ZV]=W in(0,T|xD, (24)
Z|,_,=0 in D,

where([Z,V] £ %2V — 9XZ denotes the Lie bracket of the pé#,V) and, for con-
venience, the transverse fieldis defined in the hold—all domaiD. Transverse
system (24) describes how the domain evolution is pertuibtg velocityV is
perturbed in the directiow. The velocity fieldsV andW, as well as system (24),
are defined at every point i, however, from the governing system one can usu-
ally obtain explicitly the value o¥ at the boundargQ(t) only [cf. (4)]. Then the
fieldV in the interior of the domaif(t) can be reconstructed as extensiorof its
boundary values (‘traces”), i.e., ¥s= Ext(Va,\b), S0 thatva =V|_andV, =V/|,..
Likewise, the perturbation fiel/ can be obtained as an extension of the boundary
values of the differential o¥/, i.e.,W = Ext(\Wa,W,). The fact that the extension
fields are not explicitly, or even uniquely, defined is not aljem, since in the
subsequent developments we will only need a trace of sys2djnop the domain
boundary. Now our goal is to determine how functions definedwoving domains
can be differentiated with respect to the domain evolutiarstparametrized by.
This is addressed by the following two definitions:

Definition 1 Given a function # : p — f(V +pW)o f}(t,p), whereo denotes a
composition of maps, the noncylindrical (“tube”) materidérivative f (V;W) of
f(V) atV and in the direction W is given by

d

f(v;w) £ d_pfp}pzo'

(25)

O

Definition 2 The noncylindrical (“tube”) shape derivative’{V;W) of f(V) cal-
culated at V and in the direction W is given by

f/(V;W) £ f(V;W) —g—)f((V)z. (26)

O

We thus have two types of the noncylindrical (tube) denxatthe material and the
shape derivative (denoted with a dot and an apostrophegctegply). One usually
starts by computing the former using (25) and then obtaiaedatter using trans-
formation (26). We are now in the position to calculate theaptete Fréchet differ-
ential of a state variable in our problem, for instance, thargityu = u(V(¢)). In

11



accordance with scheme (20) and using formulas (25) andx@@btain

(27)

The functionau(V (@); W) andu’ (V (9); W) represent, respectively, the material and
shape Fréchet differentials afV (¢)) computed in the directiow/ which, by the
chain rule, is in turn given by the Fréchet differential bétvelocity fieldV with
respect to the contrap, i.e., W = V’'(@;@). Each of the material and shape dif-
ferentials appearing in (27) satisfies a PDE together withr@ggriate initial and
boundary conditions. We remark that for our further devetepts it is more con-
venient to use the equations for the shape, rather than theriaiadifferentials.
The reason is that equations for shape differentials, akasaheir adjoints, have
structure more similar to the original governing equatitmn equation for mate-
rial differentials do. This can be quite important from theplementation point of
view, as it simplifies development of the code for the adjpiatblem based on an
existing code for the governing system. We can now proceedltulate the differ-
ential of the cost functional and derive equations for pstions of the dependent
(state) variables.

We begin by calculating the Gateaux differential of funoal (5). This functional
depends on the contrglthrough the shape of the tulg@only, so that in view of
the above discussion it can be rewritten as

J(®) =T (V(9)). (28)
Now using the chain rule, the Gateaux differentiafj¢fp) can be expressed as

!

d - d — ,
T(@d) =5 TV (@+ed))],_o=T (V(@): L V(o+ed)|_o) =T (V(9:V' (9 ¢)),
(29)
where7 (V;W) is the noncylindrical differential off (V) with respect to domain

evolution evaluated in the directiabl = V’(@; ¢'). The differential7 (V;W) can be
calculated as follows

T T

Fow) =22 Moy ow)—BRdl] = / b(V)—bjzdt,  (30)
dp2Jo o=0 JO

where, in view of (23), we usegsb(V + PW)|, o= ST (V+pW) |p_o=Z and

Z = Z(V;W) satisfies system (24). The fieWl appearing on the right—hand size

12



(RHS) in (24) is obtained a8/ = Ext(W,, W), where, by (26),

. ov

Wa=V'(@@)|,=V(@d)],— 5| Za (31a)
a

(e ’ . oV

Wo =V (@), =V @D, ~ 5| Zly (31b)
Using (4) and carrying out the differentiation we obtain
W\ 1z 0 (W,
V(g 0|, = —Va((P"‘ eq)|,_o= au < )

ox (32)

W zE (W)
au )
0X

where all the partial derivatives are evaluated ata(t) andV \b can be calculated
in an analogous manner.

Employing the methods of the noncylindrical calculus aét above and described
in detail in [16] we obtain the perturbation system chanazirey the shape differ-
entialt (V(g); @) as follows

o oo in (0,T] x [a(t),b(t)],  (33a)
Y ’ Y
o’ d%u
i o I O
a(t) at)
" n (0,T], (33b)
6_u’ — 0_ Z‘
X ) 0y PO
dz 9z oz v .
Gt T = W-l—a—Z V(g:¢) in (0,T]xD, (33¢)
Ul _o=0 in [a(0),b(0)], (33d)
z|,_,=0 in D, (33e)

where we simplified transverse equation (24), so that its B&tthow be expressed
in terms of (32) a¥ = Ext(Va,Vb) We remark that such simplification of (24) may
not be possible in higher spatial dimensions. At this stagetil cannot use (8) to
extract the cost functional gradient/ from (30), because the control perturbation
¢ is not factored out, but is instead buried in perturbatiostem (33). This will,
however, become possible after (30) is transformed usiitgldy defined adjoint
variables.

We begin by introducing the adjoint variables: Q — R andz* : [0,T| xD — R.
We then multiply (33a) by* and integrate over the tul§@, multiply (33c) byzZ*

13



and integrate ovel0, T| x D, and add the two expressions together

|2_// (‘Z‘t‘ Nl />u dxdt+/ /(——V)Z*dxdtzo. (34)

As regards the adjoint transverse fi&lt, we will assume for it the following rep-
resentatiorz* = y;b(NZ ) Wherey;Ib is the adjoint of the trace operatgy, [16],

N = 1 forx=bandN = —1 forx= a. The trace operatog,, assigns to every func-
tion defined on the domam its boundary values aandb, i.e., forf : Q — R we
haveyap(f) = {f|a, f|b}. The adjoint variabl€* is therefore supported at= a(t)
andx = b(t) only (denoted ; and{j;, respectively). As a result, the second term in
(34) simplifies as follows

/ /(——V)z*d dt—/ /<——V)V;b(NZ*)dxdt:

x=b (35)

/ /yab(——\'/) NZ*dxdt:/O K%—f—v)z} ot

X=a

Using (34), (35) and (32), performing integration by parithwespect td andx,
and then using (33b) we obtain

t=T

T bt * 2 bit)
|2:/ / u’(au — a 2)dxdt+ [/ u’u*dx}
0 Ja) ot 0 a(t) t=0
b(t)
T ou* d ([ T
/ k- *
_/o {u uV—vaXJra(@)]}’ dt+/0 vu \a(t)cp(dt
” o (36)
. bit)
_/T o LSRN 16 P |
0 dt ax2 du
0 a(t)
y b(t)
ox/ law)

We remark that, sinc€(t) is time—dependent, when integrating by parts with re-
spect to time the first term in (34) we had to use the Reynoédsport theorem

b(t) og d /b b(t)
/a(t) ot x= dt/ w99 9V]aw)

whereg : Q — R is an arbitrary function. Defining now the adjoint systemais f

t=T
+

t=0
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lows

ou*  o°u* .
s —VW =0 in (0, T] x [a(t),b(t)],
(37a)
. ou* d :
u ‘a(t)va_v dX B TE B -
" alay in (0,T] (37h)
ou* d (g
T ARV NRVE:Acll
o0 X | dt gg}b())
dzy . 5 (a) oul
20 x@ =Vza| U }a(t) n (0,T], (37c¢)
ox la(t) a(t)
dZ L2 CETI o
b -4 f’x( t) =Vo| Uy +[P@—b in (0,T], (37d)
ax b(t) bi(t)
u*\t:T:o in [a(0),b(0)], (37e)
Z;‘t:T - ZE}t:T =0 (371)
and using (33d)—(33e) reduces (36) to
T
[ vy dt= [ o) -Bizdt= 7w, (39

from which we can extract thie, cost functional gradient as
09 = vu* \ in [0, T]. (39)

We notice that the left—hand sides of adjoint transversaigus (37¢) and (37d)
are, up to the factors, respectiveLy%‘ﬂ }a and—% }b, equal to the expressions on the
RHS in boundary conditions (37b). Therefore, boundary @t (37b) can be
combined with equations (3a), (37¢c)—(37d) to entirely é@liate the adjoint trans-
verse variableg; and(j, so that adjoint system (37) can take a simpler form

ur U |

a—“t' —va—;z —0 in (0,T] x [a(t), b(t)], (40a)
ou* .

v ™ " =0 in (0,T] (40b)
ou* b(g) —B

Y =7, |in (0, T], (40c)
lon  Hlo

U =0 in [a(0),b(0)]. (40d)
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Finally, we remark that the same form of adjoint system (4@) expression for
the gradient (39) is obtained treating our problem as a shppmization problem
in an extended time—space dom@nT] x R and employing standard methods of
shape differentiation [20].

5 Discussion

In this Section we compare the two approaches to gradienpatation introduced

in Sections 3 and 4. First we note that the two adjoint sys{@@sand (40) provide
equivalent gradient information (18) and (39) which is du#ie fact that they both
correspond to the Gateaux differential of the same costtional (5) with respect
to the same control variabtg However, the structure of these adjoint systems is in
fact quite different. System (16) is defined on a fixed, timelependent, domai,
and the evolution of the adjoint variables is constrainetidmynonlocal conditions
(16c) and (16d). On the other hand, system (40) is defined onex-tlependent,
albeit predetermined, domafd(t) and does not involve any nonlocal constraints.
From the point of view of numerical solution, it is more conient to work with a
problem defined in a fixed domain such@sTherefore, using transformation (9)
and definingu*(t,&) = u*(t,x(t,&)) we can now transform system (40) to the fixed
domainQ which yields

o AU 2% +EL  4v A

%?a* =0 in (0,7] (41b)

a0 | [b(g)—b |

L aua - [(;2761 in (0,T] (41c)
Logll

0|_r =0 in [~1,1]. (41d)

We emphasize that the structure of this system is diffeiamd, arguably simpler,
than the structure of system (16) obtained by first transilognproblem (3) to a
fixed domain and then deriving the adjoint. This observailiostrates the fact that
the operations of transforming a problem to a fixed domaindariving the adjoint
do not, in general, commute. Since both adjoint problemsainrithe same gradi-
ent information, in our computations in Section 6 we use the with the simpler
structure, namely, (41). The solutions of the direct, pddtion and adjoint prob-
lems in the variable domain are computed by first transfogni8), (33) and (40)
to the fixed domain, solving the resulting fixed—domain systeand then trans-
forming the solutions back to the variable domain. We sttkasthis is done for
convenience only and is independent of how the adjoint systectually derived.

As regards the computational cost, in the 1D case it will begmally smaller for
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system (41) than for system (16) which is due to the simpleéheraatical structure
and fewer dependent variables in system (41). Because shthe reason, imple-
mentation of system (41) is going to be more straightforwthah in the case of
system (16). It appears that the computational advantdghe ormulation based
on the adjoint system derived in the variable domain are gytinbe even more
significant in the case of the spatial dimension larger thag since in such situ-
ations the computational cost of the approach based on aingappthe variable

domain to a fixed domain will be increased by the cost of det@ng this mapping

(transformatio’ in Fig. 1). Indeed, while in the two—dimensional (2D) casetsu
a transformation could possibly be found using conformagbpiag techniques, no
such tools seem to be readily available in the three—dimeas{(3D) case. In con-
trast, such limitations do not exist in the approach in whiod adjoint system is
derived in the variable domain, and in fact in [28] we applisttechnique to a
complicated problem in 3D.

6 Numerical Examples

In this Section we provide numerical examples illustratimg concepts introduced
above. For the sake of clarity, we will use a rather simpleaaggh to the numerical
solution of problems (10) and (41) combining a spectralagation discretization

in space with an explicit Euler discretization in time [2Gjiven the smoothness of
solutions and the high accuracy of the spectral discrébimphccurate results can be
obtained already with very few grid points in space, andithe step restriction due

to the explicit time discretization can be easily accomntedarlo fix attention, we
consider the following values of the parameters: 1073, T = 300,w = —2 with

the initial conditionug (&) = —&2+ 1. Unless stated otherwise, the results presented
below were obtained usirg = 10 grid points in space and the time stip= 102
Analysis of the consistency of the gradient calculationidates that already at
this spatial resolution the truncation errors become coatga to round—off errors,

so that using finer spatial resolution is unnecessary. Auéoen of the solution

u of problem (3) in space and time corresponding to the comiftl = @(t) =
0.25+ 1.75(1— %) is shown in Fig. 2a. The contrgh will also serve as the initial
guess for iterations (7). In our model optimization probléme target trajectory
of the right boundanyb(t) is given by a tabulated function (see Fig. 4d below).
Cost functional (5) is augmented with a Tikhonov—type ragahtion term, i.e.,
1(9) = 9(9) + Jo(®), where %o(®) 2 1 [3 (90— @)?dt and we choosé = 107,
The solutionsy’ and u* of the perturbation and adjoint problems (33) and (40)
corresponding to the initial guegg are shown in Figs. 2b and 2c. In Fig. 2d we
show the direct and adjoint transverse fiefland{* at the boundariea(t) and
b(t). While the adjoint transverse fielif does not appear in final form (40) of the
adjoint system, we show it here for completeness. To fix &tenin perturbation
problem (33) the control perturbation was taken in the faift) = Asin(ZTr%),
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Fig. 2. Space—time evolution of (a) solutiaf model system (3), (b) solutian of pertur-
bation system (33) and (c) solutiari of adjoint problem (37); dotted lines represent pos-
itive values and dashed lines represent negative valudseddifferent solutions, Fig. (d)
shows the direct transverse fields(vanishing at = 0) and the adjoint transverse fields
¢* (vanishing att = T) which are parts of the solutions of problems (33) and (3@g; t
transverse fields correspond to (solid lime¥ a(t) and (dotted linex = b(t).

whereA > 0 is an arbitrary constant. We note that solutions of botlp#gréurbation
and adjoint problems evolve in the domdk(t) obtained as a part of the solution
of the original problem (3). As expected, the solutidrof perturbation problem
(33) is concentrated close to the left boundary a(t), whereas the solution® of
adjoint problem (37) is concentrated close to the right lataumpx = b(t).

Next we proceed to analyze the consistency of the gradigrabtained using sys-
tem (41). A standard test [22] consists in computing thee@ax differential (i.e.,
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Fig. 3. Measure of the errok(g) in determination of the cost functional gradient us-
ing adjoint system (41) for (a) different time steps [(c&€) At = 5.0- 102, (squares)
At =2.0-1072, and (trianglesit = 1.0- 10~?] with a fixed perturbatioom= 1 and spatial
resolutionN = 10, (b) different spatial resolutions [(circleN)= 6, (squaresN = 8, and
(triangles)N = 10] with a fixed perturbatiom = 1 and time stegt = 1.0- 102, and (c)
different perturbations [(circlean = 1, (squaresm = 3, and (triangles)n = 15] with a
fixed spatial resolutio = 10 and time step\t = 1.0- 1072,

the directional derivative) of the cost functionglp) in some arbitrary directiog/
using relation (38) and comparing it to the result obtaineth & forward finite—
difference formula. Thus, deviation of the quantite) = W from unity
is a measure of the error. In order to focus on the gradientpeed using the
adjoint system, in the cost functional here we do not inclingeTikhonov regular-

ization term. Moreover, in order to exclude the interpaaterrors, in these tests
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we also seb = 1.0. In Fig. 3 we show the behavior &fe) corresponding t@= @
and different time stepAt (Fig. 3a), different numbers of grid points in the spatial
discretizationN (Fig. 3b) and different perturbationg(t) = sin(mZTr%) (Fig. 30),
with the remaining parameters held fixed. As expected, adielirigures reveal an
increase of the error for large values g@fwhich is due to the truncations errors,
and also for very small values @&f which is due to the subtractive cancellation
(round—off) errors. In Fig. 3a and 3b we observe that, as ¢ngpbral and spa-
tial discretizations are refined, &) approaches the unity for intermediate values
of €. In Fig. 3c we remark that, while the error increases foréargequencies of
the perturbatiory/ (t), in all cases shown it remains small and close .t98. We
emphasize that, since we are using the “differentiate—ttlisgretize” rather than
“discretize—then—differentiate” approach, the gradsdrmuld not be expected to be
accurate up to the machine precision [4]. Finally, we renthek the range o€
where the values af(€) are close to the unity spans between four and five orders
of magnitude.

Finally, we move on to discuss the results of optimizatiosirégards descent algo-
rithm (7), we choose the Polak—Ribiere version of the coajegradient method
[3]. This is a popular approach to solution of unconstraiaptimization problems
and we refer the reader to [23] for an analysis of its convecgeproperties and to
[24] for a discussion of some new developments. We obserntadpeated solution
of problems (3) and (40) followed in the optimization proséy an update of the
boundary conditions in (3) may exhibit the tendency to afgptie high—frequency
noise. Motivated by the work of Jameson [25,26], and alsounyearlier investi-
gations [27], we get around this difficulty by requiring thia¢ gradlents belong to
the Sobolev spacel*(0,T) with the norm defined a§zl|y: 2 5 22+ y?(F)?dt
which ensures smoothness of the descent directipisdn adjustable parameter
which, unless otherwise stated, is fixed/as1). The Sobolev gradiemHlj is ob-
tained using (8) withk = H(0,T), (38) and the definition of thel ! inner product
associated with the norh || 41 as

/OD ch+y2 5 o A= /vu @t (42)

from which, after performing integration by parts and assymomogeneous Dirich-

let boundary conditions deHl] att = 0 andt = T, we obtain the smoothed gra-
dient as a solution of the following Helmholtz problem

92 Hi
1- O =Vu*|_,\,
( yzatz) 1 J ‘a(t) (43)
H1 H
O ]}t:O =0 ]}t:T =0.

In Fig. 4a we compare the originhp gradient]7 and the smootheH?* gradient

DHlj obtained at the fifth iteration. In order to make the smodajteffect of (43)
more visible, the Sobolev gradient shown in Fig. 4a was cdatpusingy = 100.
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Fig. 4. (a) Comparison of (dotted line) the gradient]J and (solid line) the Sobolev
gradientDHl 7 (vertical scale in the figure is arbitrary), (b) decreasehaf ¢ost functional

7 with the numbemn of iterations, (c) (dotted line) the initial guess for thentol @, and
(solid line) the optimal controfp as a function of time and (d) (dotted line) the initial
trajectoryb(qy), (dashed line) target trajectobyand (solid line) optimal trajectorb(fp) of

the right boundary as a function of tiniethe inset magnifies the differences between the
three trajectories close to the end of the time window.

In Fig. 4b we present the cost functionalas a function of the iteration count

We note a steady decrease bhby almost three orders of magnitude during 25
iterations. In Fig. 4c we show the initial guegs(t) for the control together with
the optimal controfp(t) determined by the algorithm after 25 iterations, whereas
in Fig. 4d we show the corresponding trajectories of thetrighundary, i.e.b(q)
andb(fp). In Fig. 4d we also include the target trajectérysee inset). Comparison
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of rather modest modifications bf(Fig. 4d) with quite significant modifications of
the corresponding contrgl (Fig. 4c) confirms a strongly ill-posed character of the
model problem investigated here,

7 Conclusions

In this investigation we addressed the problem of adjoiasell optimization of
PDE systems defined in variable domains. We showed thatforamation of the
PDE system from a variable to a fixed domain and derivatiomefadjoint do not
commute. This means that, depending on the order of thesatapes, different
forms of the adjoint system may be obtained, even though wikycontain the
same gradient information. In this sense, this problemnslar to the problem
studied in [27] where we showed that, in general, derivingiats does not com-
mute with applying differential and integral operatorssirch situations the choice
of the approach should be informed by the computationalgnags of the resulting
adjoint system. Problems such as (3), in which the actual BO&mally linear
and the nonlinearity arises through variability of the damare said to possess a
geometrimonlinearity. Thus, transformation of such problem to adigemain can
be regarded as replacing this geometric nonlinearity witlalgebraic one. For the
model problem considered here, adjoint system (40) derivétke variable domain
using methods of the noncylindrical calculus clearly hascstire more amenable to
numerical implementation than adjoint system (16) deriveslfixed domain. Fur-
thermore, the approach in which the adjoint is derived in adigomain could be
more problematic due to difficulties in finding a transforioatto the fixed domain
which can be significant, especially in a higher spatial disi@n. Our numerical
results illustrate how gradients obtained with the adjsygtem derived on a vari-
able domain can be used to solve a simple optimization pnoBlge reiterate that,
while the different PDE systems were solved numericallpgsi transformation to
the fixed domain, this was done for convenience only and wédepi@endent of how
the adjoint system was actually derived. To the best of oomkadge, the present
investigation is the first actual computational study imiad) an adjoint system de-
rived using methods of the noncylindrical calculus. Workirelerway employing
such techniques in the study of optimization of more congéid problems occur-
ring in industrial welding. An adjoint system charactemgisensitivity of such a
problem described by equations representing the consema@it mass, momentum
and energy with a change of phase is derived in [28] using ppecach presented
in Section 4. Computational results concerning this ingasion will be presented
in [29].

Another issue relevant to computational optimization ofBPEystems in variable
domains in the “discretize—then—optimize” framework is fiotential for the use
of automatic differentiation (AD). The AD approach usessfarmations of the
original source code for the governing system to generatela onplementing the
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perturbation (tangent linear) problem and the associatigmird problem [30,31].
It is well known that for the success of automatic differatitin, the original code
must meet certain criteria as regards organization, glafitstructure, interfaces,
etc. While we are not aware of any systematic studies comgethis issue, we
expect that application of AD to free boundary problems rigit be straightfor-
ward, since problems with geometric nonlinearities aremfimplemented using
operators and instructions which are difficult to diffeiat¢ (e.g., f andgot o).
On the other hand, approaches involving mapping to a fixedadtom which such
geometric nonlinearities are replaced with algebraic @agsbe more amenable to
AD.

A natural generalization of the results presented here avbel the development
of an approach to compute, for the given cost functional Hessian containing
the second—derivative information. In addition to quamtify the degree of ill-
posedness of an optimization problem, this could also makessible to apply
Newton’s method instead of gradient approach (7) to find th@mzer fp The
Hessian of the cost functional can be determined by solvifegraly of second—
order adjoint problems [32]. Derivation and implementatid such a second—order
adjoint system for the present problem is an interestingtjoie and we intend to
address it in our future research.
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