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Abstract

In this investigation we address the problem of adjoint–based optimization of PDE systems
in moving domains. As an example we consider the one–dimensional heat equation with
prescribed boundary temperatures and heat fluxes. We discuss two methods of deriving
an adjoint system necessary to obtain a gradient of a cost functional. In the first approach
we derive the adjoint system after mapping the problem to a fixed domain, whereas in
the second approach we derive the adjoint directly in the moving domain by employing
methods of the noncylindrical calculus. We show that the operations of transforming the
system from a variable to a fixed domain and deriving the adjoint do not commute and that,
while the gradient information contained in both systems isthe same, the second approach
results in an adjoint problem with a simpler structure whichis therefore easier to implement
numerically. This approach is then used to solve a moving boundary optimization problem
for our model system.

Key words: optimal control, adjoint equations, moving domains
PACS:47.85.L-, 44.05.+e, 47.55.dr

1 Introduction

In this investigation we are interested in the computational solution of optimal con-
trol problems for a class of partial differential equationsdefined in variable do-
mains. In such cases the shape of the domain is itself unknownand must be de-
termined as a part of the solution of the direct (forward) problem. Applications
of such problems are manifold and mostly include modeling and control of sys-
tems involving change of phase, such as solidification [1], and data assimilation for
problems involving a free surface, such as the shallow watermodels in atmospheric
and oceanic sciences [2]. Our own investigation is motivated by the problem of
optimization of advanced welding processes in automotive manufacturing. Thus,
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generally speaking, we are interested in PDE–constrained optimization problems

min
u,φ

j(u,φ),

subject toG(u,φ) = 0,

(1)

whereu and φ are, respectively, the state of the system and the control,j(u,φ)
is the cost functional andG(u,φ) = 0 represents the PDE constraint. Noting that,
subject to certain assumptions onG , we haveu = u(φ), one usually rewrites (1) in
an equivalent unconstrained formulation using the reducedcost functionalJ (φ) ,

j(u(φ),φ) (“,” means equality by definition) as

min
φ
J (φ). (2)

In our presentation hereafter we will skip the adjective “reduced”. Problem (2) can
be solved using any of gradient–based approaches, such as the conjugate gradient
method, or a variant of the quasi–Newton approach [3]. A central ingredient of
any such technique is computation of the gradient∇J of the cost functional with
respect to the control variableφ. For problems involving optimization of PDE sys-
tems such a gradient can be conveniently obtained in terms ofthe solution of a
suitably defined adjoint system [4], which ensures that thisgradient respects the
PDE constraints. This adjoint–based approach has lead to many successful appli-
cations of optimal control to problems governed by PDEs in meteorological data
assimilation [5], flow control [6] and mixing [7], to mentionjust a few areas. How-
ever, when dealing with PDE problems defined in moving domains, one needs to
address several issues which do not arise in fixed–domain problems. First of all,
this domain variability must be properly accounted for in the derivation of the lin-
ear perturbation equation, the so–called “tangent linear model”, based on which
the adjoint system is subsequently defined. Secondly, the domain variability must
also be accounted for in the definition of the inner product defining the adjoint.
Depending on how the variable domain is described mathematically, one can dis-
tinguish two general cases [8]. Denoting a time–dependent domainΩ(t) and its
boundary∂Ω(t), whereΩ(t)⊂ R

d andd is the spatial dimension, animplicitly de-
fined domain is characterized by the condition∀x∈∂Ω(t) F(x) = f0 for a function
F : R

d → R and a constantf0 ∈ R. Thus, the domain boundary is an isocontour
of the functionF. This formulation is natural, for instance, in problems involving a
change of phase. On the other hand,explicitly defineddomains are characterized by
the condition∀x∈∂Ω(t) ẋ = g(t,u), whereu is a vector of the dependent variables in
the problem andg(t,u) is a function describing the velocity of the domain bound-
ary. This formulation is more natural in free–surface problems. Given an implicitly
defined domain, it is usually possible to construct the corresponding explicit def-
inition using the implicit function theorem. In this investigation we will focus on
optimization of PDEs in implicitly defined variable domains; the companion prob-
lem concerning explicitly defined domains is left for the future.

The optimization problem becomes particularly interesting when the cost func-
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tional J (φ) is expressed in terms of the evolution of the domain boundaries. This
may correspond, for example, to the situation when a part of the domain boundary
should follow a prescribed trajectory. This problem is closely related to the shape
optimization problem [9], where certain mathematical techniques we will use orig-
inated. As a matter of fact, the problem of optimizing the temporal evolution of a
domainΩ(t) ⊂ R

d, wheret ∈ [0,T], can be equivalently regarded as the problem
of optimizing the shape of a “tube”∪t∈[0,T]{t}×Ω(t) embedded in an extended
time–space domain[0,T]×R

d. However, the approach we will discuss below is
preferable from the computational point of view, as it avoids the use of the bound-
ary curvature defined with respect to the time–space coordinates.

Adjoint–based optimization of PDE systems in variable domains has received only
limited attention in the literature. Control of a free–surface problem with the do-
main defined explicitly was considered in [2,10]. Control ofa Stefan problem sim-
ilar to the problem addressed here was investigated in [11],but using less general
methods than the approach discussed in the present study. Adjoint–based methods
were also used for optimal control of solidification fronts by Zabaras (see [12] for
a review). These investigations, however, applied the equation for the domain evo-
lution as a “soft” constraint only, i.e., it was not enforcedexactly as an equality
constraint, but its violations were instead penalized in the cost functional. Conse-
quently, calculation of the cost functional gradient did not differ much from the
case involving a fixed domain. Yet another approach was adopted by Hinze and
Ziegenbalg in [13,14] who applied adjoint–based optimization to a two–phase Ste-
fan problem with the interface parametrized as a graph of a function. Recently, there
has also been some interest in the use of level set methods forshape and topology
optimization [15]. In our investigation we are interested in a problem where the
control has the form of the Neumann boundary condition on a part of the boundary.
The mathematical theory for the particular case with the velocity of the boundary
serving as the control variable was presented in a recent monograph [16]. In our
present investigation we will employ elements of this theory.

Our goal in this study is to assess, from the computational viewpoint, two methods
of calculating the cost functional gradient∇J in the presence of a PDE constraint
in a variable domain. In the first approach we use a suitable mapping to transform
the system from a moving to a fixed domain in which it is then optimized. We will
show that the adjoint system obtained in this way has a ratherawkward structure
characterized by the presence of integral constraints. In the second approach we use
the methods of the noncylindrical calculus [16] in order to differentiate the origi-
nal PDE system with respect to evolution of the domain. We will observe that the
adjoint system obtained in this way will have a simpler structure while still contain-
ing the same gradient information. Feasibility of this approach will be confirmed
with computations concerning our model problem. For the sake of simplicity and
in order to emphasize the generic, discretization–independent, character of problem
addressed here, we will follow the “differentiate–then–discretize” approach [4] in
which an expression for the gradient can be obtained using the infinite–dimensional
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PDE formulation which has to be subsequently discretized.

The structure of the paper is as follows: in the next Section we introduce the one–
dimensional (1D) model optimization problem that will serve as our example, in
Section 3 we derive an expression for the cost functional gradient using a mapping
to a fixed domain, an approach to gradient calculation in a variable domain em-
ploying the noncylindrical calculus is presented in Section 4, whereas in Section
5 we compare the two approaches, then computational examples are presented in
Section 6, while conclusions and outlook are deferred to Section 7.

2 Statement of the Model Problem

Here we introduce our PDE–constrained optimization problem. The governing sys-
tem has the form of a 1D heat equation defined on a variable domain Ω(t) ,

[a(t),b(t)]⊂ R

∂u
∂t

−ν
∂2u
∂x2 = 0 in (0,T]× [a(t),b(t)], (3a)

∂u
∂x

∣
∣
∣
∣
a(t)

= φ(t),
∂u
∂x

∣
∣
∣
∣
b(t)

= w in (0,T], (3b)

u
∣
∣
a(t) = u

∣
∣
b(t) = ub in (0,T], (3c)

u
∣
∣
t=0 = u0 in [a(0),b(0)], (3d)

whereν ∈ R
+ is the diffusion coefficient (R+ does not include 0),w,ub ∈ R rep-

resent the Neumann and Dirichlet boundary data andu0 : Ω(0) → R is the initial
condition. We will assume thatw 6= 0 anda(t) < b(t) for all timest ≥ 0. The func-
tion φ : [0,T] → R

+ in Neumann boundary condition (3b) is ourcontrol. We note
that, comparing to the heat equation in a fixed domain, system(3) has more bound-
ary conditions. The reason is that two additional relationsare needed to determine
the evolution of the domain given bya(t) andb(t). This is done by invoking the
implicit function theorem in order to differentiate conditions (3c)

du
dt

∣
∣
∣
∣
a(t)

=
∂u
∂t

+
∂u
∂x

da
dt

=
dub

dt

∣
∣
∣
∣
a(t)

= 0 =⇒ Va ,
da
dt

= −
∂u
∂t
∂u
∂x

∣
∣
∣
∣
∣
a(t)

(4)

and likewise forVb , db
dt . Relation (4) is well–defined owing to the assumptions

made on the Neumann data in (3b). In the context of the heat transfer problems,
conditions (3b) represent the heat flux across the boundary,whereas conditions (3c)
mean that the temperature at the boundary∂Ω(t) is constant and equal toub (e.g.,
the phase change temperature). Thus, system (3) may be regarded as a modified
form of the one–phase Stefan problem [17] (the actual Stefanproblem is character-
ized by somewhat different heat flux conditions). Finally, we emphasize that, even
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though equation (3a) alone is formally linear, moving domain problem (3) is in fact
nonlinear.

As regards the choice of the cost functional, we are interested in expressions de-
pending on theevolutionof the domain and will use

J (φ) =
1
2

Z T

0
[b(t;φ)−b(t)]2dt, (5)

whereb(t) represents the desired trajectory of the right boundaryb(t). Cost func-
tional (5) can be supplemented with a Tikhonov–type penaltyterm, as required for
regularization [18]. Thus, our optimization problem consists in finding the Neu-
mann boundary conditionφ at the left boundary, so that the trajectory of the op-
posite boundary follows a prescribed path. We conclude by saying that, given the
diffusive nature of equation (3a), this is a strongly ill–posed inverse problem. A
quantitative characterization of ill–posedness of this problem could be done by ex-
amining the singular value decomposition (SVD) of the Hessian of cost functional
(5) [19]. This would, however, require the computation of the second–order differ-
entials of (5) which is outside the scope of the present paper.

A local minimizer φ̂ of our problem is characterized by the first–order optimal-
ity conditions which imply the vanishing of the Gâteaux differential, defined as
J ′(φ;φ′) , limε→0

1
ε [J (φ+ εφ′)− J (φ)], of (5)

∀φ′ J
′(φ̂;φ′) = 0, (6)

whereφ′ is an arbitrary perturbation of the control. The local minimizer φ̂ can be
found using an iterative descent algorithm

φ(n+1) = φ(n) +B(∇J (φ(n))), n = 1, . . . ,

φ(1) = φ0,
(7)

wheren is the iteration count andφ0 the initial guess for the control variable. Rep-
resentation (7) is generic and specific algorithms, such as,e.g., the steepest descent,
conjugate gradients, or Newton’s method, can be obtained bymaking an appropri-
ate choice of the operatorB [3]. The cost functional gradient∇J (φ) is extracted
from the Gâteaux differentialJ ′(φ;φ′) using the Riesz theorem

(∇J ,φ′)X = J ′(φ;φ′), (8)

where(·, ·)X is the inner product in the Hilbert spaceX .
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W(t)

Fig. 1. Schematic transformationW =W(t) of the moving domainΩ(t) to the fixed domain
Ω̃.

3 Gradient via Mapping to a Fixed Domain

In this Section we present an approach to computing the gradient∇J of cost func-
tional (5) based on a transformation of problem (3) to a fixed domain (Fig. 1). In
the original system (3) the domainΩ(t) is characterized by the positions of its two
endpointsa(t) andb(t). In order to simplify the resulting expressions, we will use
instead the variables

L(t) , b(t)−a(t), (9a)

x0(t) ,
a(t)+b(t)

2
, (9b)

i.e., the domain width and the position of the domain centerpoint. Introducing the
coordinateξ ∈ Ω̃ , [−1,1], the transformation fromΩ(t) to the fixed domain
Ω̃ is defined by the change of variablesx = x(t,ξ) = L(t)

2 ξ + x0(t) and ũ(t,ξ) =

u(t,x(t,ξ)). Noting that the differential operators transform as∂u
∂x = ∂ũ

∂ξ
2
L , ∂2u

∂x2 =

∂2ũ
∂ξ2

4
L2 , and ∂u

∂t

∣
∣
x = ∂ũ

∂t

∣
∣
ξ(t,x) + ∂ũ

∂ξ

∣
∣
t
dξ
dt , the transformation of system (3) to the fixed

domainΩ̃ yields

∂ũ
∂t

−
∂ũ
∂ξ

2ẋ0 +ξL̇
L

−
4ν
L2

∂2ũ
∂ξ2 = 0 in (0,T]× [−1,1], (10a)

∂ũ
∂ξ

∣
∣
∣
∣
−1

=
L
2

φ,
∂ũ
∂ξ

∣
∣
∣
∣
1
=

L
2

w in (0,T], (10b)

ũ
∣
∣
−1 = ũ

∣
∣
1 = ub in (0,T], (10c)

ũ
∣
∣
t=0 = ũ0 in [−1,1], (10d)
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where the dot denotes differentiation with respect to the time. Cost functional (5)
becomes

J (φ) =
1
2

Z T

0

[

x0(t)+
L(t)

2
−b(t)

]2

dt. (11)

The Gâteaux differential of cost functional (11) obtainedapplying the definition
formula is given by

J ′(φ;φ′) =

Z T

0

(

x0 +
L
2
−b

)(

x′0 +
L′

2

)

dt, (12)

wherex′0 = x′0(φ;φ′) andL′ = L′(φ;φ′) are the perturbation variables which, together
with the perturbation variable ˜u′ = ũ′(φ;φ′), are the solutions of the perturbation
system

∂ũ′

∂t
−

∂ũ′

∂ξ
2ẋ0+ξL̇

L
−

∂ũ
∂ξ

(2ẋ′0+ξL̇′)L− (2ẋ0+ξL̇)L′

L2

−
4ν
L2

∂2ũ′

∂ξ2 +L′8ν
L3

∂2ũ
∂ξ2 = 0 in (0,T]× [−1,1], (13a)

∂ũ′

∂ξ

∣
∣
∣
∣
−1

−
L′

2
φ =

L
2

φ′,
∂ũ
∂ξ

∣
∣
∣
∣
1
−

L′

2
w = 0 in (0,T], (13b)

ũ′
∣
∣
−1 = ũ′

∣
∣
1 = 0 in (0,T], (13c)

ũ′
∣
∣
t=0 = 0 in [−1,1], (13d)

x′0
∣
∣
t=0 = 0, L′

∣
∣
t=0 = 0. (13e)

This perturbation system is obtained replacingφ in (10) withφ+εφ′ and represent-
ing the solutions of (10) as

ũ(φ+ εφ′) = ũ(φ)+ εũ′(φ;φ′)+O(ε2),

L(φ+ εφ′) = L(φ)+ εL′(φ;φ′)+O(ε2),

x0(φ+ εφ′) = x0(φ)+εx′0(φ;φ′)+O(ε2).

The resulting system is then linearized and simplified using(10). In expression
(12) for the Gâteaux differential the perturbationφ′ appears implicitly in the state
perturbation variablesL′ = L′(φ;φ′) andx′0 = x′0(φ;φ′), hence at this stage we cannot
use (8) to extract the cost functional gradient directly from (12). This will, however,
become possible after (12) is transformed using suitably defined adjoint variables.

We begin by introducing the adjoint variables ˜u∗ : [0,T]× Ω̃ → R, ã∗ : [0,T] → R

and b̃∗ : [0,T] → R. Then we multiply (13a) by ˜u∗ and integrate over time and
space, multiply (13b) by ˜a∗ and−b̃∗ and integrate over time, and add all the terms
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together which gives

I1 =
Z T

0

Z 1

−1

[
∂ũ′

∂t
−

∂ũ′

∂ξ
2ẋ0+ξL̇

L
−

∂ũ
∂ξ

(2ẋ′0+ξL̇′)L− (2ẋ0+ξL̇)L′

L2

−
4ν
L2

∂2ũ′

∂ξ2 +L′8ν
L3

∂2ũ
∂ξ2

]

ũ∗dξdt+
Z T

0

(
∂ũ′

∂ξ

∣
∣
∣
∣
−1

−
L′

2
φ−

L
2

φ′
)

ã∗dt

−
Z T

0

(
∂ũ
∂ξ

∣
∣
∣
∣
1
−

L′

2
w

)

b̃∗dt = 0.

(14)

Performing integration by parts with respect tot andξ, and using (13c) we obtain

I1 =

Z T

0

Z 1

−1
ũ′
[

−
∂ũ∗

∂t
+

L̇
L

ũ∗ +
∂ũ∗

∂ξ
2ẋ0 +ξL̇

L
−

4ν
L2

∂2ũ∗

∂ξ2

]

dξdt

+

Z 1

−1
ũ′ũ∗

∣
∣t=T
t=0 dξ−

Z T

0

∂ũ
∂ξ

∣
∣
∣
∣
1

(
4ν
L2 ũ∗

∣
∣
1 + b̃∗

)

−
∂ũ
∂ξ

∣
∣
∣
∣
−1

(
4ν
L2 ũ∗

∣
∣
−1+ ã∗

)

dt

+
Z T

0
L′

{
Z 1

−1

[
d
dt

(
ξ
L

∂ũ
∂ξ

ũ∗
)

+
2ẋ0+ξL̇

L2

∂ũ
∂ξ

ũ∗ +
8ν
L3

∂2ũ
∂ξ2 ũ∗

]

dξ−
φ
2

ã∗ +
w
2

b̃∗
}

dt

+
Z T

0
x′0

[
Z 1

−1

d
dt

(
2
L

∂ũ
∂ξ

ũ∗
)

dξ
]

dt+
Z T

0

L
2

ã∗φ′dt

−

[
L′

L

Z 1

−1

ξ
L

∂ũ
∂ξ

ũ∗dξ
]t=T

t=0
−

[
2x′0
L

Z 1

−1

∂ũ
∂ξ

ũ∗dξ
]t=T

t=0
.

(15)
Defining now the adjoint system as follows

−
∂ũ∗

∂t
+

L̇
L

ũ∗ +
∂ũ∗

∂ξ
2ẋ0+ξL̇

L
−

4ν
L2

∂2ũ∗

∂ξ2 = 0 in (0,T]× [−1,1],

(16a)

ũ∗
∣
∣
−1 = −

L2

4ν
ã∗, ũ∗

∣
∣
1 = −

L2

4ν
b̃∗ in (0,T], (16b)

Z 1

−1

[
d
dt

(
ξ
L

∂ũ
∂ξ

ũ∗
)

+
2ẋ0+ξL̇

L2

∂ũ
∂ξ

ũ∗ +
8ν
L3

∂2ũ
∂ξ2 ũ∗

]

dξ−
φ
2

ã∗ +
w
2

b̃∗ =

=
1
2

(

x0 +
L
2
−b

)

in (0,T], (16c)

Z 1

−1

d
dt

(
2
L

∂ũ
∂ξ

ũ∗
)

dξ = x0 +
L
2
−b in (0,T], (16d)

ũ∗
∣
∣
t=T = 0 in [−1,1], (16e)

ã∗
∣
∣
t=T = 0, b̃∗

∣
∣
t=T = 0 (16f)

and using (13d)–(13e) reduces (15) to

Z T

0

L
2

ã∗φ′dt =
Z T

0

(

x0+
L
2
−b

)(

x′0+
L′

2

)

dt = J ′(φ;φ′), (17)
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from which we can extract theL2 cost functional gradient as

∇J =
L
2

ã∗ in [0,T]. (18)

We conclude this Section by commenting on the structure of adjoint system (16).
We note that, in addition to satisfying evolution equation (16a), the adjoint vari-
able ũ∗ also has to satisfy two evolutionary integral constraints (16c) and (16d).
These constraints can be accommodated by adjusting the adjoint variables ˜a∗ and
b̃∗ in boundary conditions (16b). However, the presence of these nonlocal integral
constrains can severely complicate numerical treatment ofproblem (16). These dif-
ficulties will likely be aggravated further for problems formulated in higher spatial
dimensions.

4 Gradient via Noncylindrical Calculus

In this Section we derive an expression for the gradient of cost functional (5) which
will directly account for the variability of the domain in which the PDE constraint
(3) is defined. Differentiation of solutions of PDEs defined in variable domains is
made possible by the use of the “noncylindrical calculus” [16] whose main results
are reviewed below, while the reader is referred to the original source for further
details. RegardingΩ0 , Ω(0) as a reference domain, we introduce the flowmap
T = T (t) to parametrize the evolution of the domain asΩ(t) = T (t)Ω0. We can
now define a noncylindrical set (a “tube”) as

Q ,
[

t∈[0,T]

{t}×Ω(t) (19)

which represent the evolution of the domainΩ(t) in the space–time “coordinates”.
The appellation “noncylindrical” refers to the fact that insuch coordinatesQ forms
a distorted tube, rather than a straight cylinder (Fig. 1, left vs. right schematic).
In the present case the domain evolution clearly depends on the controlφ, hence
Q= Q(φ). Furthermore, as is evident from the structure of system (3), one may not
in general perturb the solutionu by perturbing the controlφ withoutmodifying the
shape of the tubeQ. Consequently, every dependent variable depends on the control
variableφ through the domain evolutionQ(φ), i.e.,u = u(Q(φ)), a = a(Q(φ)) and
b= b(Q(φ)). This fact has important consequences for how differentials of the state
variables are calculated with respect to the controlφ: by the chain rule, differentia-
tion is performed first with respect to the evolutionQ of the domain which is in turn
differentiated with respect to the controlφ. This can be representedschematically
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as
Du(Q(φ))

Dφ
·φ′ =

Du(Q(φ))

DQ
︸ ︷︷ ︸

“outer” differential

·

(
DQ(φ)

Dφ
·φ′
)

︸ ︷︷ ︸

“inner” differential

, (20)

where D
Dφ corresponds to a Gâteaux or Fréchet differential with respect toφ and·X

means that the differential is calculated in the directionX. Computation of the outer
differential requires the use of the noncylindrical calculus [16] which provides the
framework for differentiation of solutions of PDEs with respect to domain evolu-
tion. The central ansatz here is that the domain evolutionQ can be parametrized
using a velocity fieldV defined on a larger (“hold–all”) domainD ⊂ R, such that
V|∂D = 0 andΩ(t) ⊂ D, and differentiation is then carried out with respect to this
velocity field. A differential with respect to domain evolution parametrized byV
is calculated in the directionW which, as the “inner” differential in (20), is in turn
expressed as a differential ofV with respect toφ computed in the directionφ′. We
emphasize that the differentials of the state variables arecharacterized by a PDE
system obtained via linearization of system (3). Since our model problem is for-
mulated in a 1D domain, many of the following results could bereduced to a more
explicit form, however, we choose to state them in a more generic form admitting
a straightforward generalization to problems in higher dimensions.

Domain evolution is parametrized using the velocity (speed) method [16] which
associates a velocity fieldV to the flowmapT , so that







∂T (t,x)
∂t

= V(t,T (t,x)), t ∈ (0,T],

T (0,x) = x, in Ω(0).
(21)

Thus, the evolution of a domainΩ(t) can be regarded as driven by the velocity field
V, i.e.,Ω = Ω(V). We can now introduce thetransverse map̃T

T̃ : Ω(t) → Ω(t,ρ) , Ω(V +ρW), (22)

which represents modifications of a domain evolutionΩ(t) due to the perturbation
ρW applied to the velocity fieldV. It can be shown [16] that the flow associated
with a transverse map (22) is given in terms of atransverse velocity field̃Z(t,ρ) as







dT̃ (t,ρ)

dρ
= Z̃(t,ρ), ρ > 0

T̃ (t,0) = x, in Ω(t).

(23)

Derivatives with respect to the pseudo–timeρ will be needed atρ = 0 only, hence
we can defineZ , Z̃|ρ=0. It is known [16] that evolution in time of the transverse
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velocity fieldZ is governed by the following initial–value problem







∂Z
∂t

+[Z,V] = W in (0,T]×D,

Z
∣
∣
t=0 = 0 in D,

(24)

where[Z,V] , ∂Z
∂xV − ∂V

∂x Z denotes the Lie bracket of the pair(Z,V) and, for con-
venience, the transverse fieldZ is defined in the hold–all domainD. Transverse
system (24) describes how the domain evolution is perturbedif the velocityV is
perturbed in the directionW. The velocity fieldsV andW, as well as system (24),
are defined at every point inD, however, from the governing system one can usu-
ally obtain explicitly the value ofV at the boundary∂Ω(t) only [cf. (4)]. Then the
fieldV in the interior of the domainΩ(t) can be reconstructed as anextensionof its
boundary values (“traces”), i.e., asV = Ext(Va,Vb), so thatVa = V

∣
∣
a andVb = V

∣
∣
b.

Likewise, the perturbation fieldW can be obtained as an extension of the boundary
values of the differential ofV, i.e.,W = Ext(Wa,Wb). The fact that the extension
fields are not explicitly, or even uniquely, defined is not a problem, since in the
subsequent developments we will only need a trace of system (24) on the domain
boundary. Now our goal is to determine how functions defined on moving domains
can be differentiated with respect to the domain evolution thus parametrized byV.
This is addressed by the following two definitions:

Definition 1 Given a function fρ : ρ → f (V + ρW) ◦ T̃ (t,ρ), where◦ denotes a
composition of maps, the noncylindrical (“tube”) materialderivative ḟ (V;W) of
f (V) at V and in the direction W is given by

ḟ (V;W) ,
d
dρ

f ρ∣∣
ρ=0. (25)

2

Definition 2 The noncylindrical (“tube”) shape derivative f′(V;W) of f(V) cal-
culated at V and in the direction W is given by

f ′(V;W) , ḟ (V;W)−
∂ f
∂x

(V)Z. (26)

2

We thus have two types of the noncylindrical (tube) derivative: the material and the
shape derivative (denoted with a dot and an apostrophe, respectively). One usually
starts by computing the former using (25) and then obtains the latter using trans-
formation (26). We are now in the position to calculate the complete Fréchet differ-
ential of a state variable in our problem, for instance, the quantityu = u(V(φ)). In
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accordance with scheme (20) and using formulas (25) and (26)we obtain

u′(V(φ);φ′) = u̇(V(φ);φ′)−
∂u
∂x

(V(φ))Z

=
d
dε
[
u(V(φ+ εφ′))

]

ε=0−
∂u
∂x

(V(φ))Z

=

[

u̇

(
d
dε

V(φ+ εφ′)
)]

ε=0
−

∂u
∂x

(V(φ))Z

= u̇(V(φ);V′(φ;φ′))−
∂u
∂x

(V(φ))Z.

(27)

The functions ˙u(V(φ);W) andu′(V(φ);W) represent, respectively, the material and
shape Fréchet differentials ofu(V(φ)) computed in the directionW which, by the
chain rule, is in turn given by the Fréchet differential of the velocity fieldV with
respect to the controlφ, i.e.,W = V ′(φ;φ′). Each of the material and shape dif-
ferentials appearing in (27) satisfies a PDE together with appropriate initial and
boundary conditions. We remark that for our further developments it is more con-
venient to use the equations for the shape, rather than the material, differentials.
The reason is that equations for shape differentials, as well as their adjoints, have
structure more similar to the original governing equationsthan equation for mate-
rial differentials do. This can be quite important from the implementation point of
view, as it simplifies development of the code for the adjointproblem based on an
existing code for the governing system. We can now proceed tocalculate the differ-
ential of the cost functional and derive equations for perturbations of the dependent
(state) variables.

We begin by calculating the Gâteaux differential of functional (5). This functional
depends on the controlφ through the shape of the tubeQ only, so that in view of
the above discussion it can be rewritten as

J (φ) = J (V(φ)). (28)

Now using the chain rule, the Gâteaux differential ofJ (φ) can be expressed as

J ′(φ;φ′) =
d
dε
[
J (V(φ+ εφ′))

]

ε=0 = J
′
(V(φ);

d
dε

V(φ+εφ′)
∣
∣
ε=0) = J

′
(V(φ);V ′(φ;φ′)),

(29)
whereJ

′
(V;W) is the noncylindrical differential ofJ (V) with respect to domain

evolution evaluated in the directionW = V ′(φ;φ′). The differentialJ
′
(V;W) can be

calculated as follows

J
′
(V,W) =

d
dρ

1
2

Z T

0
[b(V +ρW)−b]2dt

∣
∣
∣
∣
ρ=0

=

Z T

0
[b(V)−b]Z dt, (30)

where, in view of (23), we usedddρb(V + ρW)
∣
∣
ρ=0 = d

dρT (V + ρW)
∣
∣
ρ=0 = Z and

Z = Z(V;W) satisfies system (24). The fieldW appearing on the right–hand size
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(RHS) in (24) is obtained asW = Ext(Wa,Wb), where, by (26),

Wa = V ′(φ;φ′)
∣
∣
a = V̇(φ;φ′)

∣
∣
a−

∂V
∂x

∣
∣
∣
∣
a
Z
∣
∣
a, (31a)

Wb = V ′(φ;φ′)
∣
∣
b = V̇(φ;φ′)

∣
∣
b−

∂V
∂x

∣
∣
∣
∣
b
Z
∣
∣
b. (31b)

Using (4) and carrying out the differentiation we obtain

V̇(φ;φ′)
∣
∣
a =

d
dε

Va(φ+ εφ′)
∣
∣
ε=0 = −

∂u′

∂t +Va
∂u′

∂x +Z ∂
∂x

(
∂u
∂t +Va

∂u
∂x

)

∂u
∂x

= −
du′
dt +Z ∂

∂x

(du
dt

)

∂u
∂x

,

(32)

where all the partial derivatives are evaluated atx = a(t) andV̇
∣
∣
b can be calculated

in an analogous manner.

Employing the methods of the noncylindrical calculus outlined above and described
in detail in [16] we obtain the perturbation system characterizing the shape differ-
entialu′(V(φ);φ′) as follows

∂u′

∂t
−ν

∂2u′

∂x2 = 0 in (0,T]× [a(t),b(t)], (33a)

∂u′

∂x

∣
∣
∣
∣
a(t)

= −
∂2u
∂x2

∣
∣
∣
∣
a(t)

Z
∣
∣
a(t) +φ′

∂u′

∂x

∣
∣
∣
∣
b(t)

= −
∂2u
∂x2

∣
∣
∣
∣
b(t)

Z
∣
∣
b(t)

in (0,T], (33b)

dZ
dt

=
∂Z
∂t

+
∂Z
∂x

V = W+
∂V
∂x

Z = V̇(φ;φ′) in (0,T]×D, (33c)

u′
∣
∣
t=0 = 0 in [a(0),b(0)], (33d)

Z
∣
∣
t=0 = 0 in D, (33e)

where we simplified transverse equation (24), so that its RHScan now be expressed
in terms of (32) aṡV = Ext(V̇a,V̇b). We remark that such simplification of (24) may
not be possible in higher spatial dimensions. At this stage we still cannot use (8) to
extract the cost functional gradient∇J from (30), because the control perturbation
φ′ is not factored out, but is instead buried in perturbation system (33). This will,
however, become possible after (30) is transformed using suitably defined adjoint
variables.

We begin by introducing the adjoint variablesu∗ : Q→ R andZ∗ : [0,T]×D→ R.
We then multiply (33a) byu∗ and integrate over the tubeQ, multiply (33c) byZ∗
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and integrate over[0,T]×D, and add the two expressions together

I2 =

Z T

0

Z b(t)

a(t)

(
∂u′

∂t
−ν

∂2u′

∂x2

)

u∗dxdt+
Z T

0

Z

D

(
dZ
dt

−V̇

)

Z∗dxdt= 0. (34)

As regards the adjoint transverse fieldZ∗, we will assume for it the following rep-
resentationZ∗ = γ∗a,b(Nζ∗), whereγ∗a,b is the adjoint of the trace operatorγa,b [16],
N = 1 for x= b andN =−1 for x= a. The trace operatorγa,b assigns to every func-
tion defined on the domainΩ its boundary values ata andb, i.e., for f : Ω → R we
haveγa,b( f ) = { f |a, f |b}. The adjoint variableζ∗ is therefore supported atx = a(t)
andx = b(t) only (denotedζ∗a andζ∗b, respectively). As a result, the second term in
(34) simplifies as follows

Z T

0

Z

D

(
dZ
dt

−V̇

)

Z∗dxdt=
Z T

0

Z

D

(
dZ
dt

−V̇

)

γ∗a,b(Nζ∗)dxdt=

Z T

0

Z

D
γa,b

(
dZ
dt

−V̇

)

Nζ∗dxdt=
Z T

0

[(
dZ
dt

−V̇

)

ζ∗
]x=b

x=a
dt.

(35)

Using (34), (35) and (32), performing integration by parts with respect tot andx,
and then using (33b) we obtain

I2 =

Z T

0

Z b(t)

a(t)
u′
(

∂u∗

∂t
−ν

∂2u∗

∂x2

)

dxdt+

[
Z b(t)

a(t)
u′u∗dx

]t=T

t=0

−
Z T

0

{

u′
[

u∗V −ν
∂u∗

∂x
+

d
dt

(

ζ∗
∂u
∂x

)]}∣
∣
∣
∣
∣

b(t)

a(t)

dt+
Z T

0
νu∗
∣
∣
a(t)φ

′dt

−
Z T

0

[

Z

(

dζ∗

dt
−ν

∂2u
∂x2 u∗−

∂
∂x

(du
dt

)

∂u
∂x

ζ∗
)]b(t)

a(t)

dt

+

[(

Z−
u′

∂u
∂x

)

ζ∗
]b(t)

a(t)

∣
∣
∣
∣
∣

t=T

t=0

.

(36)

We remark that, sinceΩ(t) is time–dependent, when integrating by parts with re-
spect to time the first term in (34) we had to use the Reynolds transport theorem

Z b(t)

a(t)

∂g
∂t

dx=
d
dt

Z b(t)

a(t)
gdx− [gV]

b(t)
a(t) ,

whereg : Q→ R is an arbitrary function. Defining now the adjoint system as fol-
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lows

∂u∗

∂t
−ν

∂2u∗

∂x2 = 0 in (0,T]× [a(t),b(t)],

(37a)

u∗
∣
∣
a(t)Va−ν

∂u∗

∂x

∣
∣
∣
∣
a(t)

= −
d
dt




ζ∗a

∂u
∂x

∣
∣
a(t)





u∗
∣
∣
b(t)Vb−ν

∂u∗

∂x

∣
∣
∣
∣
b(t)

= −
d
dt




ζ∗b

∂u
∂x

∣
∣
b(t)





in (0,T], (37b)

dζ∗a
dt

−ζ∗a
∂
∂x

(du
dt

)

∂u
∂x

∣
∣
∣
∣
∣
a(t)

= ν
∂2u
∂x2

∣
∣
∣
∣
∣
a(t)

u∗
∣
∣
a(t) in (0,T], (37c)

dζ∗b
dt

−ζ∗b
∂
∂x

(
du
dt

)

∂u
∂x

∣
∣
∣
∣
∣
b(t)

= ν
∂2u
∂x2

∣
∣
∣
∣
∣
b(t)

u∗
∣
∣
b(t) +[b(φ)−b] in (0,T], (37d)

u∗
∣
∣
t=T = 0 in [a(0),b(0)], (37e)

ζ∗a
∣
∣
t=T = ζ∗b

∣
∣
t=T = 0 (37f)

and using (33d)–(33e) reduces (36) to

Z T

0
νu∗
∣
∣
a(t)φ

′dt =

Z T

0
[b(φ)−b]Z dt = J ′(φ;φ′), (38)

from which we can extract theL2 cost functional gradient as

∇J = νu∗
∣
∣
a(t) in [0,T]. (39)

We notice that the left–hand sides of adjoint transverse equations (37c) and (37d)
are, up to the factors, respectively,−∂u

∂x

∣
∣
a and−∂u

∂x

∣
∣
b, equal to the expressions on the

RHS in boundary conditions (37b). Therefore, boundary conditions (37b) can be
combined with equations (3a), (37c)–(37d) to entirely eliminate the adjoint trans-
verse variablesζ∗a andζ∗b, so that adjoint system (37) can take a simpler form

∂u∗

∂t
−ν

∂2u∗

∂x2 = 0 in (0,T]× [a(t),b(t)], (40a)

ν
∂u∗

∂x

∣
∣
∣
∣
a(t)

= 0 in (0,T] (40b)

ν
∂u∗

∂x

∣
∣
∣
∣
b(t)

=
[b(φ)−b]

∂u
∂x

∣
∣
b(t)

in (0,T], (40c)

u∗
∣
∣
t=T = 0 in [a(0),b(0)]. (40d)
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Finally, we remark that the same form of adjoint system (40) and expression for
the gradient (39) is obtained treating our problem as a shapeoptimization problem
in an extended time–space domain[0,T]×R and employing standard methods of
shape differentiation [20].

5 Discussion

In this Section we compare the two approaches to gradient computation introduced
in Sections 3 and 4. First we note that the two adjoint systems(16) and (40) provide
equivalent gradient information (18) and (39) which is due to the fact that they both
correspond to the Gâteaux differential of the same cost functional (5) with respect
to the same control variableφ. However, the structure of these adjoint systems is in
fact quite different. System (16) is defined on a fixed, time–independent, domaiñΩ,
and the evolution of the adjoint variables is constrained bytwo nonlocal conditions
(16c) and (16d). On the other hand, system (40) is defined on a time–dependent,
albeit predetermined, domainΩ(t) and does not involve any nonlocal constraints.
From the point of view of numerical solution, it is more convenient to work with a
problem defined in a fixed domain such asΩ̃. Therefore, using transformation (9)
and defining ˇu∗(t,ξ) , u∗(t,x(t,ξ)) we can now transform system (40) to the fixed
domainΩ̃ which yields

∂ǔ∗

∂t
+

∂ǔ∗

∂ξ
2ẋ0 +ξL̇

L
−

4ν
L2

∂2ǔ∗

∂ξ2 = 0 in (0,T]× [−1,1], (41a)

2ν
L

∂ǔ∗

∂ξ

∣
∣
∣
∣
−1

= 0 in (0,T] (41b)

2ν
L

∂ǔ∗

∂ξ

∣
∣
∣
∣
1
=

[b(φ)−b]
2
L

∂ũ
∂ξ

∣
∣
1

in (0,T] (41c)

ǔ∗
∣
∣
t=T = 0 in [−1,1]. (41d)

We emphasize that the structure of this system is different,and arguably simpler,
than the structure of system (16) obtained by first transforming problem (3) to a
fixed domain and then deriving the adjoint. This observationillustrates the fact that
the operations of transforming a problem to a fixed domain andderiving the adjoint
do not, in general, commute. Since both adjoint problems contain the same gradi-
ent information, in our computations in Section 6 we use the one with the simpler
structure, namely, (41). The solutions of the direct, perturbation and adjoint prob-
lems in the variable domain are computed by first transforming (3), (33) and (40)
to the fixed domain, solving the resulting fixed–domain systems, and then trans-
forming the solutions back to the variable domain. We stressthat this is done for
convenience only and is independent of how the adjoint system is actually derived.

As regards the computational cost, in the 1D case it will be marginally smaller for
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system (41) than for system (16) which is due to the simpler mathematical structure
and fewer dependent variables in system (41). Because of thesame reason, imple-
mentation of system (41) is going to be more straightforwardthan in the case of
system (16). It appears that the computational advantages of the formulation based
on the adjoint system derived in the variable domain are going to be even more
significant in the case of the spatial dimension larger than one, since in such situ-
ations the computational cost of the approach based on a mapping of the variable
domain to a fixed domain will be increased by the cost of determining this mapping
(transformationW in Fig. 1). Indeed, while in the two–dimensional (2D) case such
a transformation could possibly be found using conformal mapping techniques, no
such tools seem to be readily available in the three–dimensional (3D) case. In con-
trast, such limitations do not exist in the approach in whichthe adjoint system is
derived in the variable domain, and in fact in [28] we apply this technique to a
complicated problem in 3D.

6 Numerical Examples

In this Section we provide numerical examples illustratingthe concepts introduced
above. For the sake of clarity, we will use a rather simple approach to the numerical
solution of problems (10) and (41) combining a spectral collocation discretization
in space with an explicit Euler discretization in time [21].Given the smoothness of
solutions and the high accuracy of the spectral discretization, accurate results can be
obtained already with very few grid points in space, and the time step restriction due
to the explicit time discretization can be easily accommodated. To fix attention, we
consider the following values of the parameters:ν = 10−3, T = 300,w = −2 with
the initial condition ˜u0(ξ) =−ξ2+1. Unless stated otherwise, the results presented
below were obtained usingN = 10 grid points in space and the time step∆t = 10−2.
Analysis of the consistency of the gradient calculation indicates that already at
this spatial resolution the truncation errors become comparable to round–off errors,
so that using finer spatial resolution is unnecessary. An evolution of the solution
u of problem (3) in space and time corresponding to the controlφ(t) = φ0(t) ,

0.25+1.75
(
1− t

T

)
is shown in Fig. 2a. The controlφ0 will also serve as the initial

guess for iterations (7). In our model optimization problemthe target trajectory
of the right boundaryb(t) is given by a tabulated function (see Fig. 4d below).
Cost functional (5) is augmented with a Tikhonov–type regularization term, i.e.,
J1(φ) = J (φ) + J0(φ), whereJ0(φ) , l

R T
0 (φ − φ0)

2dt and we choosel = 10−7.
The solutionsu′ and u∗ of the perturbation and adjoint problems (33) and (40)
corresponding to the initial guessφ0 are shown in Figs. 2b and 2c. In Fig. 2d we
show the direct and adjoint transverse fieldsZ andζ∗ at the boundariesa(t) and
b(t). While the adjoint transverse fieldζ∗ does not appear in final form (40) of the
adjoint system, we show it here for completeness. To fix attention, in perturbation
problem (33) the control perturbation was taken in the formφ′(t) = Asin(2π t

T ),

17



-1.0 -0.5 0.0 0.5 1.0
x

0

50

100

150

200

250

300
t

(a)

-1.0 -0.5 0.0 0.5 1.0
x

0

50

100

150

200

250

300

t

(b)

-1.0 -0.5 0.0 0.5 1.0
x

0

50

100

150

200

250

300

t

(c)

0 50 100 150 200 250 300
t

-200

-150

-100

-50

0

50

100

150

200

Z
,

*

(d)

Fig. 2. Space–time evolution of (a) solutionu of model system (3), (b) solutionu′ of pertur-
bation system (33) and (c) solutionu∗ of adjoint problem (37); dotted lines represent pos-
itive values and dashed lines represent negative values of the different solutions, Fig. (d)
shows the direct transverse fieldsZ (vanishing att = 0) and the adjoint transverse fields
ζ∗ (vanishing att = T) which are parts of the solutions of problems (33) and (37); the
transverse fields correspond to (solid line)x = a(t) and (dotted line)x = b(t).

whereA> 0 is an arbitrary constant. We note that solutions of both theperturbation
and adjoint problems evolve in the domainΩ(t) obtained as a part of the solution
of the original problem (3). As expected, the solutionu′ of perturbation problem
(33) is concentrated close to the left boundaryx = a(t), whereas the solutionu∗ of
adjoint problem (37) is concentrated close to the right boundaryx = b(t).

Next we proceed to analyze the consistency of the gradient∇J obtained using sys-
tem (41). A standard test [22] consists in computing the Gâteaux differential (i.e.,
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Fig. 3. Measure of the errorκ(ε) in determination of the cost functional gradient us-
ing adjoint system (41) for (a) different time steps [(circles) ∆t = 5.0 · 10−2, (squares)
∆t = 2.0·10−2, and (triangles)∆t = 1.0·10−2] with a fixed perturbationm= 1 and spatial
resolutionN = 10, (b) different spatial resolutions [(circles)N = 6, (squares)N = 8, and
(triangles)N = 10] with a fixed perturbationm= 1 and time step∆t = 1.0 ·10−2, and (c)
different perturbations [(circles)m = 1, (squares)m = 3, and (triangles)m = 15] with a
fixed spatial resolutionN = 10 and time step∆t = 1.0·10−2.

the directional derivative) of the cost functionalJ (φ) in some arbitrary directionφ′
using relation (38) and comparing it to the result obtained with a forward finite–
difference formula. Thus, deviation of the quantityκ(ε) ,

J (φ+εφ′)−J (φ)
ε(∇J ,φ′) from unity

is a measure of the error. In order to focus on the gradient computed using the
adjoint system, in the cost functional here we do not includethe Tikhonov regular-
ization term. Moreover, in order to exclude the interpolation errors, in these tests
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we also setb= 1.0. In Fig. 3 we show the behavior ofκ(ε) corresponding toφ = φ0

and different time steps∆t (Fig. 3a), different numbers of grid points in the spatial
discretizationN (Fig. 3b) and different perturbationsφ′(t) = sin(m2π t

T ) (Fig. 3c),
with the remaining parameters held fixed. As expected, all three Figures reveal an
increase of the error for large values ofε, which is due to the truncations errors,
and also for very small values ofε, which is due to the subtractive cancellation
(round–off) errors. In Fig. 3a and 3b we observe that, as the temporal and spa-
tial discretizations are refined,κ(ε) approaches the unity for intermediate values
of ε. In Fig. 3c we remark that, while the error increases for larger frequencies of
the perturbationφ′(t), in all cases shown it remains small and close to 0.1% . We
emphasize that, since we are using the “differentiate–then–discretize” rather than
“discretize–then–differentiate” approach, the gradientshould not be expected to be
accurate up to the machine precision [4]. Finally, we remarkthat the range ofε
where the values ofκ(ε) are close to the unity spans between four and five orders
of magnitude.

Finally, we move on to discuss the results of optimization. As regards descent algo-
rithm (7), we choose the Polak–Ribiere version of the conjugate gradient method
[3]. This is a popular approach to solution of unconstrainedoptimization problems
and we refer the reader to [23] for an analysis of its convergence properties and to
[24] for a discussion of some new developments. We observe that repeated solution
of problems (3) and (40) followed in the optimization process by an update of the
boundary conditions in (3) may exhibit the tendency to amplify the high–frequency
noise. Motivated by the work of Jameson [25,26], and also by our earlier investi-
gations [27], we get around this difficulty by requiring thatthe gradients belong to
the Sobolev spaceH1(0,T) with the norm defined as‖z‖H1 ,

R T
0 z2 + γ2(∂z

∂t )
2dt

which ensures smoothness of the descent directions (γ is an adjustable parameter

which, unless otherwise stated, is fixed asγ = 1). The Sobolev gradient∇H1
J is ob-

tained using (8) withX = H1(0,T), (38) and the definition of theH1 inner product
associated with the norm‖ · ‖H1 as

Z T

0
∇H1
Jφ′ + γ2∂∇H1

J

∂t
∂φ′

∂t
dt =

Z T

0
νu∗
∣
∣
a(t)φ

′dt (42)

from which, after performing integration by parts and assuming homogeneous Dirich-

let boundary conditions for∇H1
J at t = 0 andt = T, we obtain the smoothed gra-

dient as a solution of the following Helmholtz problem
(

1− γ2 ∂2

∂t2

)

∇H1
J = νu∗

∣
∣
a(t),

∇H1
J
∣
∣
t=0 = ∇H1

J
∣
∣
t=T = 0.

(43)

In Fig. 4a we compare the originalL2 gradient∇J and the smoothedH1 gradient

∇H1
J obtained at the fifth iteration. In order to make the smoothing effect of (43)

more visible, the Sobolev gradient shown in Fig. 4a was computed usingγ = 100.
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Fig. 4. (a) Comparison of (dotted line) theL2 gradient∇J and (solid line) the Sobolev
gradient∇H1

J (vertical scale in the figure is arbitrary), (b) decrease of the cost functional
J with the numbern of iterations, (c) (dotted line) the initial guess for the control φ0 and
(solid line) the optimal control̂φ as a function of timet and (d) (dotted line) the initial
trajectoryb(φ0), (dashed line) target trajectoryb and (solid line) optimal trajectoryb(φ̂) of
the right boundary as a function of timet; the inset magnifies the differences between the
three trajectories close to the end of the time window.

In Fig. 4b we present the cost functionalJ as a function of the iteration countn.
We note a steady decrease ofJ by almost three orders of magnitude during 25
iterations. In Fig. 4c we show the initial guessφ0(t) for the control together with
the optimal control̂φ(t) determined by the algorithm after 25 iterations, whereas
in Fig. 4d we show the corresponding trajectories of the right boundary, i.e.,b(φ0)
andb(φ̂). In Fig. 4d we also include the target trajectoryb (see inset). Comparison
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of rather modest modifications ofb (Fig. 4d) with quite significant modifications of
the corresponding controlφ (Fig. 4c) confirms a strongly ill–posed character of the
model problem investigated here,

7 Conclusions

In this investigation we addressed the problem of adjoint–based optimization of
PDE systems defined in variable domains. We showed that transformation of the
PDE system from a variable to a fixed domain and derivation of the adjoint do not
commute. This means that, depending on the order of these operations, different
forms of the adjoint system may be obtained, even though theywill contain the
same gradient information. In this sense, this problem is similar to the problem
studied in [27] where we showed that, in general, deriving adjoints does not com-
mute with applying differential and integral operators. Insuch situations the choice
of the approach should be informed by the computational properties of the resulting
adjoint system. Problems such as (3), in which the actual PDEis formally linear
and the nonlinearity arises through variability of the domain, are said to possess a
geometricnonlinearity. Thus, transformation of such problem to a fixed domain can
be regarded as replacing this geometric nonlinearity with an algebraic one. For the
model problem considered here, adjoint system (40) derivedin the variable domain
using methods of the noncylindrical calculus clearly has structure more amenable to
numerical implementation than adjoint system (16) derivedin a fixed domain. Fur-
thermore, the approach in which the adjoint is derived in a fixed domain could be
more problematic due to difficulties in finding a transformation to the fixed domain
which can be significant, especially in a higher spatial dimension. Our numerical
results illustrate how gradients obtained with the adjointsystem derived on a vari-
able domain can be used to solve a simple optimization problem. We reiterate that,
while the different PDE systems were solved numerically using a transformation to
the fixed domain, this was done for convenience only and was independent of how
the adjoint system was actually derived. To the best of our knowledge, the present
investigation is the first actual computational study involving an adjoint system de-
rived using methods of the noncylindrical calculus. Work isunderway employing
such techniques in the study of optimization of more complicated problems occur-
ring in industrial welding. An adjoint system characterizing sensitivity of such a
problem described by equations representing the conservation of mass, momentum
and energy with a change of phase is derived in [28] using the approach presented
in Section 4. Computational results concerning this investigation will be presented
in [29].

Another issue relevant to computational optimization of PDE systems in variable
domains in the “discretize–then–optimize” framework is the potential for the use
of automatic differentiation (AD). The AD approach uses transformations of the
original source code for the governing system to generate a code implementing the
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perturbation (tangent linear) problem and the associated adjoint problem [30,31].
It is well known that for the success of automatic differentiation, the original code
must meet certain criteria as regards organization, clarity of structure, interfaces,
etc. While we are not aware of any systematic studies concerning this issue, we
expect that application of AD to free boundary problems might not be straightfor-
ward, since problems with geometric nonlinearities are often implemented using
operators and instructions which are difficult to differentiate (e.g.,if andgoto).
On the other hand, approaches involving mapping to a fixed domain in which such
geometric nonlinearities are replaced with algebraic onescan be more amenable to
AD.

A natural generalization of the results presented here would be the development
of an approach to compute, for the given cost functional, theHessian containing
the second–derivative information. In addition to quantifying the degree of ill–
posedness of an optimization problem, this could also make it possible to apply
Newton’s method instead of gradient approach (7) to find the minimizer φ̂. The
Hessian of the cost functional can be determined by solving afamily of second–
order adjoint problems [32]. Derivation and implementation of such a second–order
adjoint system for the present problem is an interesting question and we intend to
address it in our future research.
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