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In this paper we compare the geometrical alignment properties of Fourier- and wavelet-filtered statistically
stationary two-dimensional turbulence. The goal is to study the preferential alignment angle of vorticity
gradient with respect to the compressing eigenvector of the rate-of-strain tensor, and use this quantity as a
measure of how the two filtering methods affect the small scale geometric structure of the flow. The principal
result is that for the case of the incoherent part obtained through wavelet filtering the probability density
function of this angle is flat, meaning that this field is effectively unstructured and therefore dynamically
passive. On the contrary, the corresponding field obtained through Fourier filtering reveals a bump at the angle
/4, which indicates the presence of dynamically active filament-type structures. These results provide evi-
dence that, unlike the wavelet filtering, the Fourier filtering does remove dynamically important information
from the flow.
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[. INTRODUCTION the assumption of scale separability of the turbulent flow
dynamics. The validity of this hypothesis is still debated and
The paper addresses the issue of computing and modeling the present work we propose and analyze a different
of infinite-dimensional dynamical systems when there is namethod of filtering which no longer requires this assumption.
spectral separability, and therefore multiscale behavior ocBy means of nonlinear wavelet filteringee Farge and co-
curs. Such systems arise in many problems in continuunyorkers[2—4]) we split a given flow field into a coherent
mechanics and, as an example, we will consider twoand an incoherent part, corresponding to strong and weak
dimen;ional statistically s}ationary turbulence. The ultimateyayelet coefficients, respectively. Both components are mul-
objective is to compute high Reynolds number flows correyiscale, put exhibit distinct statistical behaviors. For two-

sponding to fully developed turbulence. Although these argyimensional flows the coherent contribution corresponds to

d|$3|_pat|ve phenomena, they are dominated by nonlmea_r d ocalized vortices which are characterized by a non-Gaussian
namics, hence the number of degrees of freedom drastical

increases with the Reynolds number. Even though for finite orticity probability density functiofPDF) and a long range

Reynolds numbers the number of degrees of freedom reQorrelanon. On the other hand, the incoherent contribution

mains finite, it is still computationally intractable. Therefore, corrg;ponds to a residual flow, which gxh|b|ts a Gaussian
it is necessary to distinguish between active and passive gyorticity PDF. and a short range correlatl{)’Bl].' :
grees of freedom. The latter are slaved to the former in the [0 two-dimensional flows the wavelet-filtering method
sense that they do not exhibit their own nonlinear dynamicsCONSIStS in projecting the vorticity fielé = dv /dx—du/dy
The general approach is to deterministically compute théU and v are the two velocity componentonto a two-
evolution of the active degrees of freedom, whereas the indimensional orthogonal wavelet basis spanned by the wave-
fluence of the passive ones is only statistically modeled, al€ts ¥, with the multindexu characterizing the scale, po-
their intrinsic dynamics is essentially negligible. HereafterSition, and direction of each basis functififi. In this study
we will compare two different approaches to the problem ofve used the Coifman 12 wavelet which is compactly sup-
separation of modes, namely, using the Fourier- and waveleROrted and has four vanishing moments. The coherent vor-
filtering methods. A preliminary version of this work, includ- Uity field w-. is then reconstructed by taking only thel/vave-
ing simulations at a lower resolution, appeared in REf. let coefficients with absolute value larger thao+
=(4ZInN)~*2 This threshold in the wavelet space depends
only on the total enstroph¥, which is half of theL 2 norm of
vorticity, and on the resolutioN, which is directly related to
The Fourier filtering is based on the separation betweethe Reynolds number, without amyg hocadjustable param-
low and high wave number modes and is characterized by aeters[3]. The choice of the threshold is motivated by statis-
given cutoff wave number. This is one of the traditional fil- tical theorems for optimal denoising in the presence of
ters used in large Eddy simulatidhES) to compute high  Gaussian noisgs]. The wavelet filtering is the basis for an
Reynolds numbers flows. This classical approach relies oalternative approach to the computation of large Reynolds

Il. FOURIER AND WAVELET FILTERING
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number flows called the coherent vortex simulati@VS) wherem=Vw/|Vw|, andS is the strain tensorS=3(VV
[3,6,7]. In this method the evolution of the active degrees of+ VVT'). The above relation simplifies to

freedom is computed in an adaptive basis which dynamically

tracks the coherent part of the flgw,7,8. In short, in the

LES method theesolvedcomponents are the low wave num- e= 5 Co32a), ()
ber modes, while for the CVS method the coherent modes

are resolvedregardless of their scale. Thewresolvedparts  \yhereq is the angle between the vorticity gradiéhi and
correspond to the high wave number and the incoherenhe compressing eigenvectsy of the strain tensoB. The

modes in the LES and CVS methods, respectively. above formula clarifies the relation that holds between the
alignment of vorticity gradient with the principal axes of
lIl. GEOMETRICAL ALIGNMENT strain and the dynamics of vorticity filaments: vorticity gra-

dients are steepened by the strain field when they lie within
The objective of the present paper is to compare the twehe range ofr/4 from the principal direction of compression
filtering methods in terms of the structural and dynamicals,. An equivalent analysis can be formulated in terms of
properties of the resolved and unresolved fields obtained asdvorticity %=V X (wk) which is the dual vector with re-
result. It therefore constitutes a part of a larger effort whereinspect to vorticity gradient and is always tangent to vorticity
we seek to provide solid foundations for the CVS methodisolines. Herek denotes the unit vector perpendicular to the
We examine the geometrical statisticsee, e.g., Ashurst pjane of motion. In this caser would correspond to the
et al.[9], Constantin10], and Tsinobef11]) to analyze the angle between divorticityy and the principal direction of
dynamical and structural properties of the filtered fields. Instretchings; .

the context of two-dimension&RD) turbulence the issue of The above analysis is based on the assumption that the
central interest is the interaction of thin, elongated filamentsgtrain field remains frozen in time. The validity of this crite-
produced by vortex interactions, with the strain field generyion was questioned by Basdevant and Philipovitch in Ref.
ated by coherent vortices. The unresolved pal’t can be rq15] However, in our investigation we perform space aver-
garded as dynamically passive as long as its evolution i§ges of instantaneous intensities of vorticity gradient produc-
constrained by the resolved part. In this case the unresolveghn. Therefore, we do not have to resort to linearization in
part should not exhibit its own dynamics. If, on the otherorder to compute the magnitude of the nonlinear term. Con-
hand, the background field does contain some filamentaryequently, the question of how long this linearization remains
structures then, as shown by Kevlahan and F&i@8 this  valid is not relevant here. The investigations of Hua, Klein,
field undergoes instability and may reveal dynamically sig-and Lapeyre(e.g., Refs[16—18) improve the Weiss crite-
nificant behavior. As argued by Weiss in REE3], this phe-  rjon to account for temporal variation of the strain tensor.
nomenon is described by the equation for the evolution of |n Ref. [14] it was shown by Protast al. that the 2D
vorticity gradientsV w (tensor quantities are underlined forced turbulence exhibits, in the mean, preferential align-

ment of the vorticity gradient with the principal direction of
9 T compressiors,. Magnitude of this alignment was shown to
EJFV'V)V(D:—(E) Vo, (1) depend on the Reynolds number and the dissipation model

(Newtonian or hyperviscous dissipatjofierein we use the

) ~ same diagnostics to explore the internal structure of the vor-

where (VV)" denotes the transpose of the velocity gradienticity fields obtained with the two different filtering methods.
tensor. In the above we neglect the viscous term, as its role ig the case of the Fourier filtering we consider the alignment
only to limit the growth of vorticity gradients, whereas we property observed in the fields corresponding to high and
are interested in the nonlinear effects associated with thelgy wave numbers. Similarly, for the case of the wavelet
stretching and folding. In Ref13] it was also argued that fijjtering we analyze the alignments in the coherent and the

amplification of vorticity gradients is intrinsically related to packground part. We also provide results concerning the total
the stretching term on the right-hand side of E#) and  field which was used for filtering.

takes place in the hyperbolite., strain dominatedregions
of the flow. They are characterized by the Weiss parameter
Q=s},+5%,— w? being greater than zeros{;=2du/dx=
—2dvldy and si,=duldy+dvldx are the strain compo- Here we analyze the vorticity fields obtained in a direct
nentg. Conversely, the elliptic regions of the flow, i.e., where numerical simulation of the two-dimensional incompressible
Q<0, remain neutral with respect to the global dynamics ofNavier-Stokes equations with periodic boundary conditions
vorticity gradients. As demonstrated by Pro&isal. in Ref.  in both directions. We used a fully-dealiased pseudospectral
[14], the dynamics of vorticity gradients can be quantified bycode with constant forcing in Fourier space at the wave num-
examining their normalized instantaneous production eate berk;=4 and Newtonian dissipation. Due to the inverse en-
defined as ergy cascade specific to 2D turbulent flows, we also had to
add large scale dissipation in the form of Rayleigh friction
(i.e., proportional to the streamfunctiprmTime stepping was
e=— ) carried out using the second order backward finite-difference
(S:9)Y2 scheme on the viscous terms and the Adams-Bashforth ex-
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TABLE |. Comparison of thelL? norms of several flow quantities and the average alignment paran{eefsr the resolved and
unresolved fields obtained using the two different filters.

Filtering method Number of coefficients E=3[|V|2dx Z=3[|w|?dx P=3/|Vw|?dx (e)
Fourier Low-pass 0.7% 99.4% 90.8% 36% 0.16065
High-pass 99.3% 0.6% 9.2% 64% 0.00158
Wavelet Coherent 0.7% 99.2% 94.3% 55% 0.13316
Incoherent 99.3% 0.4% 5.7% 49% 0.00127

trapolation scheme on the advection terms. Computations Fig. 1 we show the PDFs for the Fourier high-pass filtered
were performed at the resolutioN=512 for time long field, the wavelet background field and, for comparison, the
enough to ensure that a statistically steady regime watptal field. The total field has the distribution typical for the
reached(characterized by the fact that the energy spectrun2D turbulent flows(cf. Ref. [14]), with large values for
no longer changgsin Table | we compare the® norms of  angles close to zero and small for angles approachify

the relevant dynamic quantities and the field-averaged valuephe PDF of the incoherent field is close to uniform distribu-
of the alignment parametes for the Fourier and wavelet tjon implying that this field is almost structureless. On the
filter. In both cases we have the same fraction of retainedgntrary, the Fourier high-pass filtered field reveals a distinct
modes, which is equal to 0.7% of the total number of mode%ump at the angler/4. As illustrated in Fig. 2 and in the

N. Note that, as explained above, the averages afe re- o riyation presented in the Appendix, this situation corre-

stricted to hyperbolic parts of the flow domain only. Onesponds, in an average sense, to the case when an isolated

should observe that for the case of wavelet filtering the eni/orticity filament is embedded in its own strain field, and

ergy and palinstrophy fractions in the resolved and unre- : o .

soved pars o'l adk Up 10 100%.This s die o e | T27E 1 HaTent e s . e s it st

that the wavelet decomposition is orthogonal for the vorticity P P _ _' P .
mentary, dynamically active structures are present in the

field, but only approximately orthogonal for its gradient and ) . . . :
for the velocity. We observe in Table | that the wavelet filter Fourier high-pass filtered field. These observations are fur-

captures more enstrophy and palinstrophy in the resolvewer corroborated by the unregqlved fields shO\_/vn in Fig. 3. In
fields than the Fourier filter. As regards the average value dfi9- 3@ we present the vorticity of the Fourier high-pass
the alignment parametey we find different behaviors in the filtered field with its own compressing eigenvectsgs We
resolved and unresolved fields. In the latter case the valug¥te that well defined, elongated structures are present and,
are smaller by two orders of magnitude comparing to thén agreement with the data in Fig. 1, the corresponding
total field. eigenvectors form angles close t0/4 with the filaments.

Interesting information is revealed by the PDFs of theThis confirms that the observed structures are indeed fila-
alignment anglex computed for the different filtered fields. mentary in nature. On the contrary, the unresolved field ob-
tained from wavelet filtering is completely random and does
not reveal any preferential alignment with its compressing
eigenvectors. This implies that filamentary structures are ab-
sent here. As regards the resolved pdRg. 4), i.e., the
coherent field in the case of wavelet filtering and the low-
pass filtered field in the case of Fourier filtering, they both
fairly well capture the PDF of the alignment angle observed
for the total field. In the case of the wavelet filtering, how-
ever, the PDF is slightly underestimated.

N=5 122, Unresolved Part

— Total Field

o1l High Wave number (Fourier)
------ Incoherent (Wavelet) flament
0.0
0.0 A 2
angle(Vw,s,)

FIG. 1. PDFs of the alignment angte between the vorticity

gradientVw and the compressing eigenvecspifor the total field, FIG. 2. Scheme showing the angle between the principal axes of
the Fourier high-pass filtered field, and the wavelet-backgroundtrains, ands, (dashed linesand the filament with an arbitrarily
field. shape(thick solid ling.
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Wavelet filtered incoherent field with compressing eigenvectors

FIG. 3. Vorticity magnitudelw| in the unresolved fields with

compressing eigenvectors in hyperbolic regions. In order to mag-

nify details, only theg 0,77/2] X[ 0,77/2] fraction of the whole field is
shown in both cases.

V. CONCLUSION
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N=5122, Resolved Part

2| ol Field
o1 Low Wave number (Fourier)
------ Coherent (Wavelet)
0.0
0.0 /4 /2

angle(Vw,s,)

FIG. 4. PDF of the alignment angle between the vorticity
gradientVw and the compressing eigenvecsifor the total field,
the Fourier low-pass filtered field, and the wavelet-coherent field.

scale wavelet filtering allows one to effectively retain these
nonlinear effects in the resolved fields. These findings were
established using the concept of the geometrical statistics.
Similar ideas were recently used by Dubos in R&8] for

the purpose of turbulence modeling. A natural extension of
the present investigation would be to use similar diagnostics
in order to study the filtering effect on 3D flows. First results
concerning the wavelet filtering of 3D turbulent flows were
recently reported by Farget al. in Ref. [4].
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We conclude by saying that, unlike the wavelet filtering,
the Fourier filtering does remove some dynamically impor-
tant information from the filtered field. It has the form of
filamentary structures present in the unresolved field.
Stretching and folding of such vorticity filaments is the main
mechanism of the turbulent cascade in 2D flows. Conse-

filament

FIG. 5. Scheme showing the angle between the principal axes of
quently, the unresolved field obtained from Fourier filteringstrains, ands, (dashed linesand a circular filamentsolid line).

is not in statistical equilibrium and may therefore developThis configuration is related to the arbitrarily shaped filament
nontrivial behavior. Unlike the Fourier filtering, the multi- shown in Fig. 2 through a conformal mapping.
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1 _ dv r
99159. S(z)= 5(311_ iS1)=

dz 2miz?’

(A2)

APPENDIX

In this appendix we show that the angle between the prin:rhe eigenvalues of the strain tensBrare now given by

cipal axes of strain induced by a vorticity filament and theM12= * Vsl +sd= = VS(2)S(2) (overbar denotes complex
axis of this filament is equal te/4 (this angle is the same for conjugation and the compressing eigenvector &=
both stretching and compressing directions, since due tp—s;,,A+s;,]"=[Im(S), \/S—S+ Re(S)]". The angleg that
symmetry of the strain tensor, they are mutually orthogonal this eigenvector forms with the abscis@d. Fig. 5 can be
In order to simplify calculations, we consider here the veloc-characterized as

ity field induced by a thin circular filament shown in Fig. 5.
Using a conformal mappine.g., Nehar{20]), this velocity
field can be transformed into the velocity field induced by a _ 1+cos< 20— Z)
filament with an arbitrary shagef. Fig. 2, while preserving Jsst Re(S) 2
the angle between any two intersecting curves in the two cot(B)= Im(S) - _ '
representations. In particular, the angle between the filament sm( 20— 5)
axis and the principal directions of strain will be unchanged.

This ensures generality of the derivation that follows. The

velocity field due to the circular filament is the same as thatvhere we used formul@dA2) and ¢ is the angle between the
induced by a uniform vorticity distribution within a circular normal to the filament and the abscissa. Using now the iden-
disk with radiusR and the same total circulatidn, and is tity cot(ae/2)=[1+cos)]/sin(e) we see thatB= ¢— /4,

(A3)

given by which confirms that the compressing eigenvector forms the
r angle 7/4 with the filament axigand the normal to the fila-
V(2)=(u—iv)(2)= —— (A1) meny. An analogous result obviously concerns the stretching
2miz eigenvectors; .
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