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Drag force in the open-loop control of the cylinder wake
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In this paper we are interested in identifying the physical mechanisms that accompany mean drag
modifications in the cylinder wake flow subject to rotary control. We consider simple control laws
where the obstacle rotates harmonically with frequencies varying from half to more than five natural
frequencies. In our investigation we analyze the results of the numerical simulations at Re5150. All
the simulations were performed using the vortex method, which in the paper is outlined and
benchmarked. We confirm the earlier findings concerning mean drag reduction at higher forcing
frequencies and show that for the considered values of Re this control technique is energetically
inefficient. The main result is that changes of the mean drag are achieved by modifying the
Reynolds stresses and the related mean flow correction. The controlled flows are carefully
characterized in terms of these fields. Drag reduction is related to elongation of the recirculation
bubble. It is argued that mean drag reduction is associated with control driving the mean flow
toward the unstable symmetric state~the basic flow!. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1432695#
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I. INTRODUCTION

Bluff body wakes play a very important role in variou
engineering applications. This is mainly due to the prese
of big concentrated eddies, the so-called Be´nard–von
Kármán vortices, which are intrinsically related to forces a
ing on the obstacle. Furthermore, bluff body wakes poss
several intriguing features, e.g., strong mean flow effects~see
Zielińska et al.1,2!, which also make their study very inte
esting from the physical point of view. The effective contr
of wake flows constitutes a challenge in fluid dynami
From the implementation point of view, one of the simple
control methods is the rotary motion of the obstacle. T
configuration is shown in Fig. 1. One of the first attempts
the rotary control of the cylinder wake was made by Taned3

Then this technique was systematically studied in the la
ratory by Tokumaru and Dimotakis,4 who by applying a very
simple sinusoidal control law at Re515 000 obtained a re
markable modification of the flow pattern, including signi
cant suppression of vortex shedding, accompanied by
stantial drag reduction. This effect was further investiga
under various flow and control conditions by other resear
ers, e.g., Filleret al.5 studied the response of the separa
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shear layers to small amplitude oscillations, Lu and Sa6

focused on the modifications of the flow patterns due to c
trol, Shiels7 and Shiels and Leonard8 primarily studied the
Reynolds number effect on vortex dynamics in the control
flows, Beak and Sung9,10 and Fujisawaet al.11,12 investigated
the wake behavior in the presence of lock-on, whereas B
et al.13 studied the secondary and tertiary lock-on. In a rec
study Chenget al.14 presented a comprehensive analysis
the flow pattern modifications occurring at and close
lock-on in the controlled flows. In another recent investig
tion, He et al.15 used the tools of the optimal control theo
to optimize the frequency and amplitude of harmonic os
lations. Our objective in the present study is to revisit th
control strategy in the laminar regime and with a fairly bro
range of forcing frequencies, in a similar vein as was done
Tokumaru and Dimotakis.4 We will use the theory of slightly
supercritical wakes to unravel the critical physical mech
nisms accompanying the observed drag reduction with a
ticular focus on modifications of the mean velocity and t
Reynolds stress fields. An analysis of these mechanisms
how they are affected by the rotary control constitutes
primary objective of this paper. We presume that the cruc
mechanisms remain similar in the controlled wake flows
higher values of the Reynolds number. Another issue we
also address here is the power budget of the controlled flo
This work is a computational study. We simulate here
plane infinite wake flow at the Reynolds number Re5150.
The structure of the paper is as follows: in Sec. II we pres

ess:
f

© 2002 American Institute of Physics
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811Phys. Fluids, Vol. 14, No. 2, February 2002 Open-loop control of the cylinder wake
some both rigorous and phenomenological concepts rel
to slightly supercritical wake flows, with a particular emph
sis on the relation between the mean fields and the hydro
namic forces; then we briefly introduce the vortex meth
used in all the simulations and validate it by presenting so
standard benchmarks; this is followed by a presentation
the results of the numerical simulations; a discussion of th
results from the perspective developed in this work c
cludes the paper. In Appendix A we present qualitative ana
sis of the Poisson equation linking pressure modificati
and the Reynolds stresses. In Appendix B we give so
more details concerning the fundamentals and impleme
tion of the vortex method.

II. WAKE FLOWS: PHENOMENOLOGY AND BEYOND

The standard phenomenological model~see, e.g., Mathis
et al.16 and Dušek et al.17! for the wake dynamics near th
Hopf bifurcation predicts that, when the Reynolds numb
reaches its critical value Rec , the steady symmetric state b
comes unstable and bifurcates to a periodic solution. In
supercritical regime the steady symmetric state still exi
but is unstable and as such cannot be obtained in labora
conditions. As will be shown later, it can nevertheless
easily obtained in numerical simulations. This solution is
ten referred to as thebasic state~e.g., Zielińska et al.1 and
Ref. 2!. It was proposed by Dusˇek et al.17 and Dušek18 that
every hydrodynamic quantity in the saturated supercrit
wake flow ~i.e., for t→`! be represented as a sum of
certain steady field, i.e., the basic flow, and a superposi
of harmonics. This proposition presupposes that the velo
field in the whole flow domain oscillates with the sam
single global frequency, a property known as theglobal
modebehavior~e.g., Goujon-Durandet al. in Ref. 19; Zie-
lińska and Wesfreid in Ref. 1!. Here we give this represen
tation in terms of the streamfunctionC` ,

C`~x,y,t !5Cb~x,y!1 (
n52`

`

cn~x,y!eingt, ~1!

FIG. 1. Flow configuration with control.
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whereCb is the streamfunction corresponding to the ba
flow, and cn are the spatial envelopes associated with
particular harmonics. All relevant flow quantities can be
covered by applying suitable differential operators toC` ,
and this procedure naturally carries over to the spatial en
lopes of the harmonics. The amplitude of oscillations w
frequencyng ~i.e., thenth harmonic! at the point (x0 ,y0) is
given by 2ucn(x0 ,y0)u. This quantity thus represents the sp
tial variation of the oscillation amplitude and therefore h
often been referred to as theglobal modeamplitude~e.g.,
Zielińska et al.1 and Dušek18!. All oscillations vanish at in-
finity, hence we have the property lim(x,y)→0ucnu→0. The
symbolg denotes the fundamental frequency of vortex sh
ding at saturation. This frequency is often normalized to g
the Strouhal number of the natural vortex shedding Snat

5g D/uV`u. As a matter of fact, relation~1! is the limiting
case~for t→`! of a more general relation, allowing for
slow evolution of the envelopescn , the so-called ‘‘slow dy-
namics.’’ Here we consider the saturated case when all t
sients have died out, hence the time dependence of the
velopescn is suppressed. The basic flowCb is the unstable
solution of the steady-state Navier–Stokes system obta
for a supercritical value of Re. Structurally, it is related to t
solution obtained in the subcritical conditions and is char
terized by symmetry with respect to the centerline. Whe
representation of the form~1! is now plugged into a bilinear
expression~like the nonlinear term in the Navier–Stoke
equation!, then one of the terms we obtain is proportional
(n,m52`

` cncmei (n1m)gt. It is straightforward to observe tha
whenm52n, i.e., when thenth harmonic interacts with its
complex conjugate, this results in a zero frequency~station-
ary! mode. In other words, the presence of a fluctuating fi
gives rise to a steady correction to the background field. T
phenomenon is a particular example of the triadic interact
~for modes with frequencies 0,ng, and 2ng!. This zero
frequency mode is conventionally named thenonlinear mean
flow correction. Its characteristics in various hydrodynam
instabilities are surveyed by Craik in Ref. 20, whereas
properties of this field in the wake flow were recently inve
tigated by Zielińska et al.2 It was shown that this field ac
counts for the remarkable alteration of the mean veloc
profile and shortening of the recirculation length observed
unsteady wakes. On the other hand, it is well known that
time series of drag consists of even harmonics, whereas
consists of odd harmonics. This motivates looking at the z
mode, i.e., the first even harmonic in Eq.~1!, as regards
sources of the mean drag modifications.

Taking the time average~denoted^•&! of Eq. ~1!, we
obtain ^C`(x,y,t)&5Cb(x,y)1c0(x,y). Thus, every mean
quantity in the supercritical regime consists of two parts:
basic field and the mean flow correction~the zeroth mode!.
In agreement with this, the mean dragcD also consists of the
two contributions:~i! the dragcD

b of the basic flow that at a
given Re is fixed and cannot be modified, and~ii ! the drag
cD

0 of the mean flow correction that represents the aver
influence of the oscillatory flow and can be modified by su
able manipulation of the Be´nard–von Ka´rmán vortices,

cD5cD
b 1cD

0 . ~2!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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As will be discussed in detail below, the mean flow corre
tion arises due to nonlinear self-interaction of the oscillat
part of the flow. Its dragcD

0 increases the total drag of th
flow, which is schematically shown in Fig. 2. Obviously, th
mean drag can be entirely characterized using the m
fields ~including the Reynolds stresses!. Thus, our main in-
terest in this paper is to analyze the relation between
oscillatory flow components, the nonlinear mean flow c
rection, and the drag. Below we derive the equation gove
ing the behavior of the nonlinear mean flow correction, a
see how this field contributes to drag. At every point t
velocity may be split into its meanVm and fluctuating part
V8 as V5Vm1V8, where^V&5Vm and ^V8&50. In accor-
dance with the remarks made above, the mean field ca
further split, thus

Vm5Vb1V0, ~3!

whereVb represents the basic flow, i.e., the unstable, ste
and symmetric state, andV0 is the mean flow correction~the
zeroth mode!. It should be remarked here that decomposit
~3! is fairly general and does not involve any assumptio
The same decomposition can be made for pressure. We
strict our attention here to the case when themeanvalue of
the boundary velocity, i.e., the control, is zero. This is na
rally satisfied by any time-periodic forcing. Now we take t
time-averaged Navier–Stokes equation in the conserva
form ~a‹b denotes the dyadic product of the two vectorsa
andb, i.e., @a‹b# i j 5aibj !,

“"~Vm‹Vm!52“pm1mDVm2“"^V8‹V8&,

“"Vm50,
~4!Vm50, on the boundaryG0 ,

Vm→V` , for uxu→`,

the equation for the basic flow~i.e., the steady state Navier
Stokes equation!,

FIG. 2. Schematic showing the increase of drag due to the appearan
vortex shedding and the related mean flow correction. The insets repr
the structure of the basic flow~drag indicated by the dashed line! and the
unsteady flow~drag indicated by the solid line! at a given supercritical Re
Downloaded 21 Jan 2002 to 132.239.20.19. Redistribution subject to A
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“"~Vb‹Vb!52“pb1mDVb,

“"Vb50,
~5!Vb50, on the boundaryG0 ,

Vb→V` , for uxu→`,

and subtract the latter from the former. Using decomposit
~3!, we obtain

“"~V0‹V0!52“p01mDV02“"~V0‹Vb1Vb‹V0!

2“"^V8‹V8&,

“"V050, ~6!

V050, on the boundaryG0 ,

V0→0, for uxu→`.

This is the equation that governs the behavior of the m
flow correctionV0 ~i.e., the zeroth mode! arising due to the
nonlinear self-interaction of the oscillatory part of the flo
The last two terms on the rhs have the form of the diverge
of the dyadic tensors: the first of them represents interac
of the mean flow correctionV0 with the basic flowVb and
the second the influence of the fluctuating part of the flo
The second term thus involves the Reynolds stress te
^V8‹V8&. As a matter of fact, when oscillatory control
applied, the term“"^V8‹V8& indirectly represents its effect
on the mean flow correction, and therefore also on the a
ciated mean dragcD

0 . The relation between the mean flo
correction and the Reynolds stresses was first studied
Maurel et al. in Ref. 21.

It is well known ~see, e.g., Henderson in Ref. 22! that in
bluff body wakes the main contribution to drag comes fro
pressure. At Re5150 pressure drag constitutes appro
mately 81% of the total drag. Thus, drag modifications
mainly achieved by changing the pressure drag and be
we focus on how the pressure drag is affected by the os
latory part of the flow. In this we follow the ideas develope
by Mittal and Balachandar in Ref. 23. Taking the divergen
of the first equation in the system~6!, we obtain

~7!

We see that, due to linearity of the Poisson equation,
solution of ~7! can be represented as the sump05p0bc

1p0b1p0rs. In Eq.~7! we schematically indicate the rhs an
boundary terms associated with each element in this s
The first term (p0bc) is related to the Neumann-type boun
ary conditions in~7!. The termp0b corresponds to the influ
ence of the mean flow correction fieldV0 and its interaction
with the basic flowVb @i.e., the first divergence term on th
rhs in ~7!#. The termp0rs represents the effect of the Rey
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813Phys. Fluids, Vol. 14, No. 2, February 2002 Open-loop control of the cylinder wake
nolds stresses@i.e., the last term on the rhs in~7!#. Owing to
the nature of the relation~7!, we will say that the fieldsp0b

and p0bc represent theindirect influence, and the fieldp0rs

thedirect influence, of the Reynolds stresses on the press
drag. It was shown by Mittal and Balachandar in Ref. 23 t
in the case of the bluff body wake the fieldp0b is essentially
insensitive to modifications of the Reynolds stresses. C
versely, the fieldp0rs was shown to strongly depend on the
distribution. Based on this observation we will assume t
the effect of the Reynolds stresses on the pressure dra
mainly contained in the fieldp0rs that satisfies the following
equation:

Dp0rs52“"@“"^V8‹V8&#,

~n"“ !p0rs50. ~8!

The above assumption is particularly true when the co
pared flows have similar mean velocity fields. In Appendix
we analyze this equation to assess how the magnitude
the distribution of the Reynolds stresses^V8‹V8& affect the
quantityrG0

p0rsnxds, i.e., the corresponding pressure dra
In Sec. IV we will use those results to link the changes of
Reynolds stress distribution and magnitude to drag mod
cations in the controlled flows.

III. NUMERICAL SIMULATIONS

In this section we very briefly introduce and validate o
numerical method. In all the studies reported here we use
vortex method, which is described in some detail in Appe
dix B. Here we only present the system of partial different
equations governing the problem and show some stan
benchmark tests for our method. In the present study we
the vortex method to solve the two-dimensional~2-D! vor-
ticity transport equation,

]v

]t
1~V"“ !v5mDv,

v5
]v
]x

2
]u

]y
,

]u

]x
1

]v
]y

50,

V5Vb on the boundaryG0 , ~9!

V→V` , for uxu→`,

Vu t505V0 , in V,

whereV5@u,v# is the velocity field,v the ~scalar! vorticity
field, and m is the coefficient of viscosity. The system
complemented with a suitable initial conditionV0 and the
boundary conditionsVb and V` representing, respectively
the velocity of the boundary and the free-stream velocity
infinity. Note that in the above vorticity equation both th
initial and boundary conditions are expressed in terms
velocity, rather than vorticity. In exterior multiconnected d
mains~e.g., the 2-D cylinder wake!, the above system mus
be complemented by an integral constraint on the vortic
produced on the boundary~e.g., Gunzburger and Peterson24!.
It ensures that wake energy remains finite at all times
that the pressure recovereda posteriorifrom the velocity and
vorticity fields will be single-valued~e.g., Nowakowski
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et al.25!. This constraint has the following form~it must be
written for each ‘‘hole’’ in the computational domain!:

mE
0

L ]v

]n
ds5E

0

LS ]V

]t
"t1~V"n!v Dds, ~10!

wheret stands for the wall-tangential versor. This constra
is obtained by projecting the Navier–Stokes equation on
direction tangential to the boundary, integrating it along t
perimeter and then requiring that the pressure jump be e
to zero. This condition implies that the total diffusive vorti
ity flux across the boundary~equal to the amount of circula
tion produced on the boundary! must be compensated b
angular acceleration of the body and the wall–normal vor
ity advection. Obviously, the latter vanishes for circular o
stacles.

Here we present only the most important benchmarks
the method. For further validation and as well as more imp

FIG. 3. A comparison of the dependence of the mean total and pressure
~a!, the vortex shedding Strouhal number~b!, and the length of the recircu
lation bubble~c! on the Reynolds number for the present simulations a
reference results available in the literature.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Downloaded 21 J
TABLE I. Numerical parameters used in the wake simulations with the rotary control at Re5150 andW
52.0. The maximum rotation angle is denotedwmax, the time stepDt, the blob radiusr b , and the approximate
number of vorticesNb . The cases analyzed in greater detail are marked in boldface.

Stf
Stf
Stnat

wmax ~deg! Dt r b Nb (3103)

No control ¯ ¯ ¯ 0.05 0.0178 300
A 0.09 0.5 406 0.05 0.0178 400
B 0.16 0.89 228 0.05 0.0178 380
C 0.18 1.0 203 0.05 0.0178 320
D 0.20 1.11 183 0.05 0.0178 340
E 0.36 2.0 101 0.025 0.0178 270
F 0.70 3.89 52 0.0125 0.0178 240
G 0.90 5.0 41 0.0125 0.0178 240
H 1.00 5.56 37 0.0125 0.0178 240
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mentation details the reader is referred to Protas.26 In Fig.
3~a! we show the dependence of the mean total and pres
drag coefficientscD and cD

p on the Reynolds number. Fo
Re575, 150, and 500 we show two data points, the low
branch representing the unstable, steady symmetric solu
~the basic flows!, and the upper the oscillatory flows. Th
two branches obviously correspond to the two curves sc
matically shown in Fig. 2. Our data is compared against
results obtained by Shiels7 ~also using a vortex method!,
Henderson’s fit22 approximating his results over a broa
range of Re, the experimental dataset of Wieselberger,27 and
the steady-state results of Fornberg28 ~cf. the lower curve in
Fig. 2!. Note that, as explained by Mittal and Balachandar
Ref. 23, for Re higher than about 180, the 2-D computat
tends to systematically overestimate drag. Next, in Fig. 3~b!
we compare our results for the dependence of the Stro
number of vortex shedding Stnat on Re to the Henderson’s fi
summarizing his data,29 the empirical relationship propose
by Feyet al. in Ref. 30 and the results obtained by Baek a
Sung.10 Finally, in Fig. 3~c! we show the dependence of th
length of the recirculation bubble on the Reynolds numb
Our results are compared against the experimental dat
Coutanceau and Bouard31 and the numerical data of Zielin´-
ska et al.2 For supercritical values of Re~i.e., Re>46! two
branches are observed in Fig. 3~c!: the lower one represent
the mean values obtained in the oscillatory flows, wher
the upper corresponds to the unstable steady symmetric
lutions ~i.e., the basic flows!. We conclude by saying that in
all these benchmarks our results are in fair agreement
the available reference data.

IV. RESULTS OF THE SIMULATIONS

A. Control parameters

In the present section we proceed to discuss the c
trolled flows. In all the cases studied here control has
form of the rotary oscillation of the cylinder with the insta
taneous rotation rateẇ(t) given by the formula

ẇ~ t !5ẇ0 sin~2p f t !5W
2uV`u

D
sinS 2p Stf

uV`u
D

t D , ~11!

where the frequencyf and the rotation amplitudeẇ0 are
expressed in terms of nondimensional parameters: the S
an 2002 to 132.239.20.19. Redistribution subject to A
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hal number Stf5 f D/uV`u and the normalized amplitudeW
5ẇ0 D/ (2uV`u) ~which gives the ratio of the peak circum
ferential velocity to the free stream at infinity!. These two
parameters entirely characterize the control. In all our sim
lations we putW52.0. According to the arguments pre
sented by Tokumaru and Dimotakis in Ref. 4, this value
already sufficient for effective control. Our simulations a
performed at Re5150, which is still before the onset of 3-D
effects. In Table I we summarize the numerical parame
and also the parameters characterizing the forcing in all
runs. The forcing frequency Stf ranges from one-half to more
than five natural shedding frequencies and for convenie
the corresponding flows are labeled A–H. In the table
also indicate the maximum rotation angles~in degrees! in the
various cases. For every forcing frequency our simulatio
are performed for some time after transients have died
and the saturated state has been reached, so that conv
statistics can be obtained. Higher forcing frequencies
quired that a finer time stepDt should be used. Under suc
forcing conditions, however, the statistically steady state w
reached much faster and the total computational time of
run remained comparable to that required at lower forc
frequencies.

The results of the simulations will be presented in t
theoretical framework established in Sec. II. They will
shown for all the cases A–H detailed in Table I and will
compared against the uncontrolled flow at the same R
nolds number. Apart from this, we choose three sets of fo
ing conditions that we will analyze more closely: the subh
monic forcing ~A!, the resonant forcing~C!, and the high-
frequency forcing~G!. These cases appear most repres
tative for all the studied forcing conditions and are marked
boldface in Table I.

B. Flow patterns

We begin the discussion of the results with a brief ana
sis of the flow patterns in the controlled flows. In Fig. 4 w
present the vorticity fields obtained in the numerical simu
tions. First, as a reference, in Fig. 4~a! we show the pattern
obtained in the flow with no forcing. Then, Figs. 4~b!–4~i!
correspond to the controlled flows with forcing as indicat
~cases A–H!. In all the figures solid lines represent positiv
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. The vorticity fields from the
numerical simulations at Re5150 for
the flows with no forcing and with the
forcing conditions A through H. For
clarity, the contour lines for the ex-
tremal vorticity values are not shown
th
d
f
n

u-
tly

that
d.
is-
re-
tex
ase.
with
nd

vol-
ies
and dashed lines negative, vorticity values. In Fig. 4~a! one
can see the familiar Be´nard–von Ka´rmán vortex street. In
Fig. 4~b! ~case A!, it is replaced by big vortices with the
wavelength twice as big as in the uncontrolled case. For
resonant and nearly resonant forcing conditions presente
Figs. 4~c!–4~e! ~cases B, C, D! one can see the formation o
two arrays of regular vortices that get rearranged dow
stream. Figure 4~f! ~case E! represents an intermediate sit
ation where regular vortices still exist, but are significan
less coherent. Finally, in Figs. 4~g!–4~i! ~cases F, G, and H!
Downloaded 21 Jan 2002 to 132.239.20.19. Redistribution subject to A
e
in

-

corresponding to the highest forcing frequencies, we see
the Bénard–von Ka´rmán vortices are noticeably weakene
The concentrated vorticity in the recirculation zone is d
rupted and forms undulations with the wavelength cor
sponding to the forcing frequency. As a result, the vor
shedding is less intense comparing to the uncontrolled c
We note here that these observations are in agreement
the laboratory experiments reported by Goujon-Dura
et al.32 The simulations presented above produced huge
umes of data. Pointwise analysis of the velocity time ser
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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~not shown here! allows us to classify the response of th
system to forcing as follows: in cases B, C, D, where
forcing frequency is close to the natural frequency, the s
tem oscillates with the forcing frequency and can be the
fore considered ‘‘locked,’’ in cases A, E, and G the forcin
frequency is a multiple of Stnat and harmonic frequencies ar
detected, whereas in cases F and H the forcing frequenc
incommensurable with Stnat and the response of the system
quasiperiodic. Comparing to the quasiperiodic cases, the
plitude of the velocity fluctuations is increased in the lock
states. As the forcing frequency crosses the natural
quency, the phase of vortex shedding exhibits a jump. Al
these observations confirm that the present simulations a
agreement with standard reference results concerning fo
wakes~e.g., Fujisawaet al.,11 Lu and Sato,6 Baek and Sung,9

and Chenget al.14!.
We conclude our presentation of the flow patterns

showing the basic flow, i.e., the unstable steady symme
solution of the Navier–Stokes system, also at Re5150. It
was obtained in the numerical simulation using the techni
described in Appendix B. This state obviously correspond
no forcing. An infinitesimal perturbation can destabilize
and trigger the onset of vortex shedding. The basic state
significantly lower drag than the corresponding solution w
vortex shedding@cf. the lower branches in Figs. 2 and 3~a!#.
In Fig. 5 we show the streamline pattern of this flow,
streamlines apparently better than vorticity field characte
steady flows. A remarkable feature of this flow is the elo
gated recirculation bubble behind the cylinder@see also the
unstable branch in Fig. 3~c!#.

C. Drag

Inspection of Figs. 4~a!–4~i! shows that the rotary con
trol significantly affects the shedding pattern and one
thus expect the drag force to vary under the different forc
conditions. To quantify this effect, in Fig. 6 we present t
meanvalues of the drag coefficientcD as a function of the
forcing Strouhal number Stf . In this figure we also indicate
the values ofcD characterizing the uncontrolled flow wit
the natural vortex shedding and the basic flow at the sa
Re. The vertical dotted line represents the Strouhal num
of the natural vortex shedding~for Re5150, Stnat50.18!. The
first observation to be made here is that the drag coeffic
cD is increased at lower and decreased at higher forcing

FIG. 5. Streamlines for the basic flow at Re5150.
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quencies. As regards the behavior of drag for nearly reson
forcing frequencies, our results are qualitatively consist
with those reported by Tokumaru and Dimotakis,4 Lu and
Sato,6 Fujisawaet al.,11 and by Chenget al.14 As the forcing
frequency is decreased from the values slightly higher
slightly lower than the natural frequency, the drag coefficie
sharply increases and reaches values approximately
times higher than in the uncontrolled case. This clos
agrees with the results obtained by Chenget al.14 at Re
51000 andW52.0. Results presented by those auth
for different rotation amplitudesW, as well as the data re
ported by Fujisawaet al.11 ~Re520 000,W50.1– 0.38! and
by Tokumaru and Dimotakis4 ~Re515 000,W52.0! reveal
the same qualitative trends. Different actual values of d
obtained in those studies show that the effect of control
pends on the Reynolds number and the amplitudeW of the
rotary oscillations~higher Re results in lower drag for forc
ing close to resonant!. In the cases G and H drag reductio
reached about 25%, which is less than in the studies by
and Sato,6 Shiels7 and Tokumaru and Dimotakis.4 However,
all these investigations were performed at higher Re. T
shows that the amount of drag reduction obtained by rot
control of the cylinder wake is Reynolds number depende
As explained in Sec. II@cf. Fig. 2 and Eq.~2!#, the mean drag
in the cylinder wake comes from two contributions: the dr
of the basic flow and the drag associated with the mean fl
correction. Obviously, the variation of the mean drag o
served in Fig. 6 was achieved by modifying the mean fl
correction field. Further below we address this issue
greater detail. We also observe here that, as the forcing
quency increases, the values of the mean drag approac
value of drag in the basic flow (cD

b ), however, they never
become smaller than that. Nonetheless, this does not im
that the mean drag coefficient monotonously decreases a
forcing frequency is increased. In fact, the simulations p
formed by the authors at Re5500 ~not reported here!, those
by Chenget al.14 and by Lu and Sato6 at Re51000, He
et al.15 at Re5200 and Re51000, and the laboratory exper
ments by Tokumaru and Dimotakis4 at Re515 000, suggest
the presence of some optimal forcing frequency beyo
which the mean drag increases. The value of this freque
again seems to depend on the Reynolds number and th

FIG. 6. The mean values of the drag coefficientcD versus the forcing
Strouhal number Stf for Re5150. The coefficients are also shown for th
flow with no control and the basic flow.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tation amplitude. When the total drag in the controlled flo
(cD) approaches the drag in the basic flow (cD

b ), then this
implies that the drag of the mean flow correction is driven
close to zero. This observation points to the following the
retical question: is it possible, under periodic forcing con
tions, to obtain a flow with the mean drag lower than in t
basic flow? In other words, is it possible to obtain a me
flow correction field with negative drag? For the case of
rotating cylinder this remains an open question. However,
the case of the pitching airfoil, a partially affirmative answ
to this question was provided by the laboratory study by
and Platzer.33

D. Power budget

The modifications of drag discussed above were
tained at different costs in the various cases considered. N
we proceed to analyze the energy budget of the contro
flows. In Fig. 7 we show the dependence of the mean d
power PD , the control powerPC , and the total powerP
5PD1PC on the forcing Strouhal number Stf . In the figure
we also indicate the power in the flow with no forcing~the
horizontal line! and the Strouhal number of the natural vo
tex shedding Stnat ~the vertical line!. Computation of the con-
trol power is based on the torqueM applied to the obstacle
as PC5^M ẇ& and does not account for inertial effects r
lated to the moment of inertia of the obstacle. In princip
the latter are entirely material dependent and as such ca
arbitrary. The drag power is determined as the mean pro
of the drag forceFD and the free-stream velocityPD

5^FDuV`u&. In Fig. 7 we see that for higher forcing freque
cies the drag powerPD decreases which is due to the dr
reduction discussed above. This is, however, accompanie
a significant increase of the control power, so that the to
power in all the cases far exceeds its value in the unc
trolled flow. The power saving ratio defined as

PSR5
DPD

PC
~12!

is thus everywhere less than unity. On the other hand,
study by Shiels and Leonard8 shows that for much highe
values of the Reynolds number the PSR increases an

FIG. 7. The mean values of the drag powerPD , the control powerPC , and
the total powerP versus the forcing Strouhal number Stf for the controlled
flows at Re5150. The power for the flow without control is also indicate
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Re515 000 reaches the level ofO(10). This implies that the
energetic efficiency of this control technique depends on
Reynolds number and for small values of Re the contro
energetically rather inefficient. The reason for this is that
flows at higher Re are more unstable and therefore less e
is required to push them toward a desired state, once a pr
excitation mode has been determined.

E. Mean velocity fields

In Sec. II it was shown that the mean values of the d
and lift are intrinsically linked to the mean velocity field
and the Reynolds stresses. It was argued that the mean
consists of the two contributions: the basic flow which a
given Re is fixed and cannot be modified, and the nonlin
mean flow correction field that results from self-interacti
of the oscillatory part of the flow. Thus, by manipulating th
way the Bénard–von Ka´rmán vortices are created and ad
vected, one can change the mean flow correction field
hence the drag. Below we will take a closer look at the me
velocity fields in the controlled flows, as they well represe
the mean effect of control on the flow. In Fig. 8 we show t
transverse profiles of the mean longitudinal velocityum at
different downstream stations. The results are shown for
uncontrolled flows~top figure! and the flows with the forcing
conditions A, C, and G. The mean fields are symmetric w
respect to the centerline, so the data are shown for the u
part of the flow only. Complementary information is pr
sented in Fig. 9, where we show the mean longitudinal
locity um on the centerline as a function of the downstrea
distance from the obstacle. First of all, we note that the
controlled flow and the flow with the forcing conditions
reveal a striking similarity as regards both longitudinal a
transverse profiles. This implies that in the mean sense
wakes of these flows do not differ much. The only differen
is that the controlled flow has a deeper and more elonga
recirculation bubble. The subharmonic case~A! is character-
ized by a very quick recovery of the unperturbed flow velo
ity, with the recirculation bubble shrunk almost to zero. T
profiles become bimodal downstream. On the other hand,
resonant forcing~case C! results in the profiles that chang
very little with the downstream distance. Consequently, s
flow can be considered parallel in the mean sense and
sessing a high degree of spatial organization. This prop
was already observed in Fig. 4~d!. The above characteristic
can be compared with the results reported by Tokumaru
Dimotakis ~Fig. 3 in Ref. 4!. For this purpose in Fig. 10 we
combine the transverse profiles from Fig. 8 corresponding
the downstream station ofx/D 54.0 ~4.5 in Tokumaru and
Dimotakis4!. The profiles for both the natural shedding wit
out forcing and the high-frequency forcing~case G! are char-
acterized by Gaussian-like curves with comparable values
the latter case the wake is somewhat deeper and narrowe
the study by Tokumaru and Dimotakis the wake deficit c
responding to the high-frequency forcing was remarka
smaller than in the unforced case. We relate this discrepa
to the Reynolds number effect~note that the drag reductio
obtained in Ref. 4 at Re515 000 was much bigger than i
the present study at Re5150!. Subharmonic forcing in both
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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studies resulted in the characteristic bimodal profile w
minima located off the centerline. The profile correspond
to the resonant forcing~case C! is characterized by a dee
and broad dip.

The feature that well characterizes the mean longitud
velocity in the controlled flows is the length and shape of
recirculation bubble. In Fig. 11 we show the distributions
um in the near wake obtained in the simulations of the u
controlled flow at Re5150 and the controlled flows A, C
and G. The boundary of the recirculation bubble~corre-
sponding toum50! is marked with a thick line. In this figure
we see that in the case A representing the subharmonic
ing the recirculation bubble is effectively suppressed. In
case C~resonant forcing! it is considerably shrunken com
pared to the uncontrolled case. Conversely, in the cas

FIG. 8. The transverse profiles of the mean longitudinal velocityum at
different downstream stations indicated on the abscissa for the flow wit
forcing and for the cases A, C, and G.
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G

~high-frequency forcing! the recirculation bubble is elon
gated. In all the cases except for A the shape of the bubb
preserved and characterized by a broadening close to
separation point on the cylinder boundary. In the case G
minimum of the longitudinal velocity is shifted toward th
furthermost tip of the bubble. Information about the infl
ence of the control on the lengthLRB of the recirculation
bubble is collected in Fig. 12, where we show the values
LRB in the controlled flows normalized by its value in th
uncontrolled flow as a function of the ratio Stf /Stnat. In the
figure we also indicate the length of the recirculation bub
in the basic flow at Re5150 ~cf. Fig. 5!. We see that for
Stf /Stnat,3.5 the recirculation bubble is shrunken compar
to the uncontrolled flow. On the other hand, for Stf /Stnat

.3.5 the recirculation zone is elongated. These results
be summarized by saying that higher forcing frequencies
sult in longer recirculation bubbles and in this sense the
tained flows appear more similar to the basic flow.

As explained in Sec. II, the basic flow is fixed and mod
fications of the mean velocity profiles are achieved by cha
ing the nonlinear mean flow correction through the Reyno
stresses. A distribution of the mean correction for the lon
tudinal velocity componentu05um2ub shows how the
mean flow is changed with respect to the unstable solu
~the basic flow! due to the presence of vortex shedding a

ut

FIG. 9. Profiles of the mean longitudinal velocityum as a function of the
downstream distance from the obstacle along the centerline for the cas
C, and G, the flow without forcing and the basic flow.

FIG. 10. The transverse profiles of the mean longitudinal velocityum at the
downstream distance ofx/D 54.0 for the flow without forcing, the basic
flow and for the cases A, C, and G.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 11. The mean values of the lon
gitudinal velocityum in the flow with
no forcing and the flows with the forc-
ing conditions A, C, and G. The thick
lines correspond toum50.
w
ig.

th

s
s
o
ol
a
r
lin
A

ed

s
ad

d
er as
orc-
b-
the

see
or-

ng

he
dis-

on-
ba-

-

n-

ss.
on-
lds

e

on
ion
w

the related Reynolds stresses. This is also a convenient
to quantify the net effect of forcing on the mean flow. In F
13 we show the distributions of the mean flow correctionu0

obtained in the simulations of the uncontrolled flow and
flows with the forcing conditions A, C, and G, at Re5150. In
order to emphasize the areas whereu0 changes sign, the line
corresponding tou050 are marked with thick lines. In area
whereu0.0 the vortex shedding accelerates the mean fl
and decelerates elsewhere. In the case of the uncontr
flow we see that the mean flow is slowed down in a sm
region just behind the obstacle and accelerated in a la
rectangular area stretching downstream along the center
Away from the centerline the mean flow is slowed down.
similar distribution of the mean flow correction is obtain
for the flow with the high-frequency forcing~case G!, with
the difference, however, that the values ofu0 in the region
just behind the obstacle are generally smaller. The con
quence of this is the elongated recirculation bubble alre
observed in Figs. 11 and 12. In the case C~resonant forcing!

FIG. 12. Dependence of the length of the recirculation bubble in the c
trolled flows normalized by its value in the uncontrolled flow as a funct
of the ratio Stf /Stnat. The length of the recirculation bubble in the basic flo
at Re5150 is also indicated.
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the region of negativeu0 behind the obstacle is shrunk an
the area where the mean flow is accelerated gets narrow
one moves downstream. In the case of the subharmonic f
ing ~case A! there is no deceleration region behind the o
stacle and the mean flow is accelerated everywhere along
centerline and decelerated away from it. In Fig. 13 we
that, except for the case G, the fields of the mean flow c
rection have significantly different distributions dependi
on the forcing frequency. In fact, as is evident from Eq.~6!,
these differences result from different distributions of t
Reynolds stresses in the controlled flows. We proceed to
cuss them below.

F. Reynolds stresses

In Sec. II it was explained that, as regards drag in c
trolled flows, the importance of the Reynolds stresses is
sically twofold, as they both directly and indirectly~i.e.,
through modifications of the mean flow! affect pressure drag
@cf. Eq. ~7!#. However, in situations when themeanflows
are similar ~e.g., the uncontrolled flow and the case G!, it
is evident from Eq.~7! that the major effect comes from
the field p0rs satisfying Eq.~8!. To quantify this effect in
Figs. 14~a!–14~c! we show the contour plots of the quan
tities guu(x

0,y0)5rG0
(]2/]x]x) G(x,y,x0,y0)uG0

nxds,

guv(x0,y0)52rG0
(]2/]x]y) G(x,y,x0,y0)uG0

nxds and

gvv(x0,y0)5rG0
(]2/]y]y) G(x,y,x0,y0)uG0

nxds ~see Ap-

pendix A for definitions and derivations!, which show how
the Reynolds stresses^u8u8&, ^u8v8&, and^v8v8& acting at
the point (x0,y0) add to the pressure drag. The actual co
tribution is obtained by multiplying the value ofguu , guv , or
gvv at the given point by the corresponding Reynolds stre
Integrating over the whole domain and adding the three c
tributions yields the total pressure drag due to the Reyno
stresses~i.e.,rG0

p0rsnxds!. The contour plots ofguu andgvv

are symmetric, and ofguv antisymmetric, with respect to th

-
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centerline, so in Fig. 14 they are shown in the upper hal
the flow domain only. We note that all of the quantitiesguu ,
guv , and gvv have different signs in different parts of th
flow domain, which means that, depending on the po
where they are acting, the Reynolds stresses may eithe
crease or decrease the pressure drag. This allows us to e
lish a link between the observed changes of drag and

FIG. 13. Contour plots of the mean flow correctionu05um2ub for the flow
without forcing and the cases A, C, and G. Numbers given in parenth
are the relative forcing frequencies Stf /Stnat. The thick lines correspond to
um50.
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modifications of the Reynolds stresses due to control.
remark here that these considerations are true when the m
velocity fields in the compared flows do not differ muc
~case G and the uncontrolled flow!, since otherwise there
may be additional modifications due to changes in the fie
p0b andp0bc. In Figs. 15, 16, and 17 we show the distrib

es
FIG. 14. Contour plots of the weights guu(x

0,y0)
5rG0

(]2/]x]x) G(x,y,x0,y0)uG0
nxds ~top!, guv(x0,y0)52rG0

(]2/]x]y)
3G(x,y,x0,y0)uG0

nxds ~middle!, and gvv(x0,y0)5rG0
(]2/]y]y)

3G(x,y,x0,y0)uG0
nxds ~bottom!. Owing to symmetry properties, in all the

cases we show only the upper half of the flow domain.
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821Phys. Fluids, Vol. 14, No. 2, February 2002 Open-loop control of the cylinder wake
FIG. 15. Contour plots of the stream
wise normal Reynolds stresses^u8u8&
for the flow without forcing and the
cases A, C, and G. Numbers given i
parentheses are the relative forcin
frequencies Stf /Stnat. Thick lines
mark the boundaries of the recircula
tion bubbles.
m
co
,

g
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nd

hear
nce
tions of the streamwise normal, shear, and cross-flow nor
Reynolds stresses obtained in the simulations of the un
trolled flow and the flows with the forcing conditions A, C
and G. In the figures, except for the ones correspondin
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the case A, where it is virtually nonexistent, we indicate t
boundary of the recirculation region. The streamwise a
cross-flow normal stresses are symmetric, and the s
stresses antisymmetric, with respect to the centerline, he
-

,
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FIG. 16. Contour plots the shear Rey
nolds stresseŝ u8v8& for the flow
without forcing and the cases A, C
and G. Numbers given in parenthese
are the relative forcing frequencie
Stf /Stnat. Thick lines mark the bound-
aries of the recirculation bubbles.
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FIG. 17. Contour plots the cross-flow
normal Reynolds stresses^v8v8& for
the flow without forcing and the case
A, C, and G. Numbers given in paren
theses are the relative forcing frequen
cies Stf /Stnat. Thick lines mark the
boundaries of the recirculation
bubbles.
d
ou
n

om
n

re
e

ffe
Fi

a
u
th
y-
n
un

ra

m
.

e
in
g
in

ld
es
st
s.

the

ega-
dary

he
olds

ing
bly
hind

the

ob-
the
We

-
e
at
t is
eir
the

cha-
ith
eri-
ith
the results are presented for the upper part of the flow
main only. We note that as regards the uncontrolled flow
results are consistent with the data presented by Balacha
et al. in Ref. 34. The distribution of̂u8u8& in the flow with
no forcing is characterized by a maximum located away fr
the flow axis and slightly removed from the recirculatio
bubble. In the case G~high-frequency forcing! this distribu-
tion appears similar, but the maximum is weaker and
moved farther downstream. There is also a region of nonz
stresses near the upper boundary of the cylinder. This di
ence can now be interpreted using the contour plots in
14~a!, where we see that when the Reynolds stresses
acting farther downstream, their contribution to the press
drag is smaller. Furthermore, as shown in Appendix A,
drag due top0rs is proportional to the magnitude of the Re
nolds stresses and that is smaller in the case G. We also
that the region of nonzero stresses close to the upper bo
ary ~case G! coincides with negative values ofguu @Fig.
14~a!#, so it has the effect of decreasing the pressure d
The cases A and C~subharmonic and resonant forcing! are
characterized by regions of strong streamwise nor
stresses extending downstream away from the centerline
regards the shear stresses^u8v8&, in the cases A and C th
maxima also extend downstream away from the centerl
In the uncontrolled flow and in the flow with the forcin
conditions G there is a region of positive stresses just beh
the obstacle followed by a region with negative stresses~note
that below the centerline the senses of the stresses wou
reversed!. In the case G the magnitude of the shear stress
lower than in the uncontrolled flow. Apart from this, ju
behind the cylinder there is a region of nonzero stresse
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corresponds to the entrainment of the fluid adjacent to
boundary by the rotating cylinder. Contour plots in Fig. 14~b!
can be used to interpret these results. We note that the n
tive shear stresses acting close to the rear cylinder boun
in case G coincide with strongly positive values ofguv in
Fig. 14~b!, and as a result yield a negative contribution to t
pressure drag. As regards the cross-flow normal Reyn
stresseŝ v8v8&, the distributions in the uncontrolled flow
and in the case G are again similar, the main difference be
that in the latter case the downstream region is noticea
weaker and there is a region with intense stresses just be
the obstacle. It corresponds to negative values ofgvv(x0,y0)
in Fig. 14~c! and therefore has the effect of decreasing
pressure drag. The cross-flow normal stresses^v8v8& in the
subharmonic case A exist in a large region behind the
stacle and are confined to a relatively small area close to
upper boundary of the obstacle in the resonant case C.
noted before~cf. Figs. 8 and 9! that the mean flows corre
sponding to the two cases~the uncontrolled flow and the cas
G! were fairly similar and it can be therefore concluded th
it is the modified distribution of the Reynolds stresses tha
the major difference between these flows in terms of th
mean characteristics. This difference also accounts for
drag decrease observed in the case G.

V. CONCLUSIONS

In this paper we have addressed various physical me
nisms that underlie modifications of drag in wake flows w
rotary control. We examined the data obtained in the num
cal simulations using the vortex method. In agreement w
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the previous studies, we found that at higher forcing frequ
cies the drag is reduced. Interestingly, the obtained va
were always slightly higher than the drag of the correspo
ing basic flow. The drag decrease observed at high forc
frequencies was lower than in other studies conducted
higher Re~e.g., Tokumaru and Dimotakis,4 Lu and Sato,6

Shiels and Leonard,8 Chenget al.,14 and Heet al.15!. The
reason for this is that at higher Re the drag of the basic fl
is significantly lower@cf. Fig. 3~a!# and therefore the drag o
the mean flow correction, i.e., thecontrollablecontribution,
is relatively bigger. This is why one can expect the contro
higher Re to be more effective in terms of drag reduction.
the low Reynolds number studied here the control was fo
to be energetically inefficient, as the control power alwa
exceeded the gain in the drag power.

The controlled flows were investigated here from t
perspective of their mean velocity profiles and the associa
fields of the Reynolds stresses. We have identified the
lowing properties of the mean fields in the flows charact
ized by drag reduction~cases G and H!, as compared to the
uncontrolled flow.

~i! The mean flows in both cases are relatively simil
except for the elongation of the recirculation bubb
in the controlled flow.

~ii ! The magnitude of the Reynolds stresses in the do
stream regions of the controlled flows is significan
decreased.

~iii ! In the controlled flows regions of nonzero Reynol
stresses are present close to the rear and upper bo
ary of the cylinder and, as is evident from the Fig
14~a!–14~c!, they all have the effect of decreasing th
drag.

Similarly, the following are the distinguishing features
the mean fields in the flows with the increased drag~cases A,
B, C, and D!.

~a! Very strong, positive mean flow correction in the ne
wake resulting in a significant shortening, or even su
pression, of the recirculation bubble.

~b! Large magnitude of the Reynolds stresses acting a
from the centerline.

The above changes of the mean velocity and Reyno
stress fields illustrate the mechanisms associated with m
fications of drag. In accordance with the arguments prese
in Sec. II, we conclude that it is the modified distribution a
decreased magnitude of the Reynolds stresses in certain
that are responsible for the observed drag reduction in s
of the controlled flows. Comparing to the flows with in
creased drag, the modifications of the mean fields in
flows with reduced drag do not appear very profound,
also the drag decrease was rather moderate~approximately
25% compared to an over 100% drag increase in the ‘‘wo
case!. It may be therefore concluded that the flows with hig
frequency forcing do not reveal strong mean field effects
the drag reduction is mainly the result of the modifications
the Reynolds stresses. This finding is also consistent w
observations of the flow patterns in controlled flows made
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Chenget al.14 Obviously, changes of the Reynolds stress d
tribution reflect the modifications of the vortex shedding p
tern, since the following two descriptions: in terms of th
mean fields and the vortex dynamics, are equivalent. In p
ticular, weakening of the Reynolds stresses acting do
stream of the obstacle is related to the lower intensity of
vortex shedding observed in the flows with reduced drag.
also showed evidence that all the forced flows with redu
drag are characterized by an elongated recirculation bu
and, conversely, in the flows with increased drag the recir
lation bubble is shrunk. This shows that the recirculati
length LRB serves as a ‘‘footprint’’ of the rotary control
Comparing our results with other studies, we concluded t
under different conditions~different Re and oscillation am
plitude W! the general trends are preserved, although
specific behavior of the controlled flows may be somew
different. The above findings also imply that the Reyno
stresses are required to completely characterize the m
properties of a time-dependent flow.
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APPENDIX A: INFLUENCE OF THE REYNOLDS
STRESS DISTRIBUTION ON THE PRESSURE DRAG

We perform here qualitative analysis of the solutions
the system~8!. Our goal is to see how changes in the Re
nolds distribution and magnitude affect the quant
rG0

p0rsnxds, i.e., the corresponding pressure drag. Syst
~8! is a homogeneous Neumann problem for the Pois
equation in an unbounded exterior domain of a unit d
representing the obstacle. Its solution thus has the form

p0rs~x,y!52E
V

G~x,y,x0,y0!
]

]xk
0

]

]xj
0 ^uk8uj8&dx0dy0,

~A1!

whereG(x,y,x0,y0) is the corresponding Green’s function
which also accounts for the presence of the boundary. H
we use the obvious notationx15x, x25y, u185u8, u28
5v8, and a summation is implied when indices are repea
(k, j 51,2). The quantities with the superscript ‘‘0’’ corre
spond to the location of the source point. Using the meth
of image points the Green’s function can be constructed
~for conciseness we use here complex notation withi
5A21!

G~x,y,x0,y0!52
1

2p S lnu~x2x0!1 i ~y2y0!u

1 lnUx1 iy2
1

x02 iy0U D . ~A2!

Now we integrate the expression~A1! by parts twice and
obtain
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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p0rs~x,y!52E
V

]2

]xk
0]xj

0 G~x,y,x0,y0!^uk8uj8&dx0dy0

1 R
G0

S ]

]xj
0 G~x,y,x0,y0!^un8uj8&

2G~x,y,x0,y0!
]

]xj
0 ^un8uj8& Dds. ~A3!

For the case of the rotating cylinder the wall–normal velo
ity fluctuationsun8 are uniformly zero, so the integrand e
pression (]/]xj

0) G(x,y,x0,y0)^un8uj8& vanishes. As regard
the second term in the boundary integral, we expand
derivative of the Reynolds stress,

]

]xj
0 ^un8uj8&5K ]un8

]xj
0 uj81un8

]uj8

]xj
0L 5K ]un8

]xj
0 uj8L , ~A4!

and then reexpress the derivatives in the polar coordin
system as

]un8

]xj
0 5

]un8

]r

]r

]xj
0 1

]un8

]w

]w

]xj
0 . ~A5!

Wall–normal velocity fluctuations do not vary with the az
muthal angle, so]un8/]w 50. By the continuity equation we
obtain

]un8

]r
52

un8

r
2

1

r

]uw8

]w
50. ~A6!
ng
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Consequently, we have]un8/]xj
0 50, j 51,2, which by~A4!

allows us to conclude that the second integrand in the bou
ary integral in~A3! also vanishes, and the pressurep0rs is
given by

p0rs~x,y!52E
V

]2

]x0]x0
G~x,y,x0,y0!^u8u8&dx0dy0

22E
V

]2

]x0]y0
G~x,y,x0,y0!^u8v8&dx0dy0

2E
V

]2

]y0]y0
G~x,y,x0,y0!^v8v8&dx0dy0.

~A7!

We note, first of all, thatp0rs is directly proportional to the
magnitude of the Reynolds stresses. Furthermore, know
the analytical expressions for (]2/]x0]x0) G(x,y,x0,y0),
(]2/]x0]y0) G(x,y,x0,y0), and (]2/]y0]y0) G(x,y,x0,y0)
we can assess how the Reynolds stresses in the diffe
parts of the flow domain contribute top0rs on the boundary,
and consequently to the pressure dragrG0

p0rsnxds. We thus

have
R
G0

p0rsnxds52 R
G0
S EV

]2

]x0]x0 G~x,y,x0,y0!U
G0

^u8u8&dx0dy0D nxds

22 R
G0
S EV

]2

]x0]y0 G~x,y,x0,y0!U
G0

^u8v8&dx0dy0D nxds

2 R
G0
S EV

]2

]y0]y0 G~x,y,x0,y0!U
G0

^v8v8&dx0dy0D nxds, ~A8!
la-
ey-

ing
-
e,
di-

by
n.
en-
which upon changing the order of integration and denoti

guu~x0,y0!52rG0
~]2/]x0]x0! G~x,y,x0,y0!uG0

nxds,

guv~x0,y0!522rG0
~]2/]x0]y0! G~x,y,x0,y0!uG0

nxds

and

gvv~x0,y0!52rG0
~]2/]y0]y0! G~x,y,x0,y0!uG0

nxds

@the subscriptuG0
meaning evaluation with (x,y) on the

boundary# gives

R
G0

p0rsnxds5E
V

guu^u8u8&dV1E
V

guv^u8v8&dV

1E
V

gvv^v8v8&dV. ~A9!
In Figs. 14 we show the contour plots ofguu , guv , andgvv
in the flow domain. The value at a given point (x0,y0) has
the meaning of the geometric weight characterizing the re
tive contribution to pressure drag of the unit strength R
nolds stresses acting at this point.

APPENDIX B: VORTEX METHOD

The vortex method is a Lagrangian approach to solv
the system~9!–~10!. The motivation for choosing this par
ticular solution method is that it is essentially grid-fre
which allows one to easily handle various boundary con
tions~including moving boundaries, etc.!. The state of the art
of the vortex methods is presented in the recent book
Cottet and Koumoutsakos35 and references quoted therei
Here we make a few remarks on the design and implem
tation of the vortex method used in the present study.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Fundamental to all vortex methods is the approximat
of the vorticity field using a superposition of vorticity pa
ticles,

v~x!>ṽ~x!5 (
k51

N

Gkjs~ ux2xku!, ~B1!

wherexk5@xk ,yk# is the location of thekth particle,Gk is
circulation ands is the core radius. The functionjs(r ) rep-
resents the axially symmetric distribution of vorticity with
the support of the particle and in the present study is cho
as js(uxu)5 1/ (2ps2) e2 uxu2/ (2s2 ), which is motivated by
simplicity and the second-order rate of convergence achie
by formula ~B1!. It is ensured that at all times the cores
the particles overlap. Every vorticity particle is displaced
the velocity field induced by all the remaining particl
through the Biot–Savart law complemented with some ad
tional potential velocity field accounting for the presence
solid boundaries,

dxk

dt
5(

j 51
j Þk

N

G jKs~xk ,xj !1“F, k51, . . . ,N. ~B2!

HereKs represents a regularization of the Biot–Savart k
nel K(x,x8)5 (1/2p)$@2(y2y8),(x2x8)#/ux2x8u2% com-
puted as the following convolution:

Ks~xk ,xj !5E
V

K~xk ,x8!js~x82xj !dx8. ~B3!

The number of particlesN used in our simulations is quit
large, usually on the order ofO(1052106), so in the evalu-
ation of particle interaction we use the fast multipole meth
~FMM! developed by Greengard and Rokhlin in Ref. 36.
application of this algorithm reduces the computational c
from O(N2) operations to approximatelyO(N logN). In the
present investigation we use the implementation of the a
rithm described by Styczek and Wald in Ref. 37. Visco
diffusion is handled using the vorticity redistribution alg
rithm of Shankar and van Dommelen.38 For every particle
this approach uses a weak approximation of the diffus
kernel on an unstructured grid leading to an underdeterm
algebraic system that is solved using a standard SIMPL
technique. If the system of the neighboring vortices is
sparse or too irregular to ensure the existence of solution
the SIMPLEX problem, new particles are added in the vic
ity of the vortex whose diffusion is computed. Thus, th
mechanism constantly maintains regularity of the Lagrang
approximation. This is necessary, since advection acts to
tort the particle grid. In our simulations new vorticity is cr
ated in the form of a singular vortex sheet characterized
linear circulation densityg(s). As shown by Prager in Ref
39, the strength of the sheet is governed by the bound
integral equation of the form

g~s!2
1

p R
G

]

]n
lnux~s!2x~s8!ug~s8!ds8522Vb

t , ~B4!

wheres and s8 are the arclength coordinates andVb
t is the

boundary value of the tangential velocity component. In
case when the obstacle is a circular cylinder the solution
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this system is available in analytical form. In the prese
study hydrodynamic forces are computed using the va
tional approach developed by Protaset al. in Ref. 40. This
method allows for the efficient calculation of forces usi
only velocity and vorticity fields. As mentioned in Sec. II, i
our investigation some attention will be given to the ba
flow, i.e., the unstable steady symmetric solution of t
Navier–Stokes system at a supercritical value of Re. Us
the vortex method such a solution is obtained by ensurin
every time step that the systems of vortices above and be
the centerline are mirror reflections of each other. This inh
its the growth of any symmetry-breaking perturbations a
ensures that the flow remains symmetric.
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