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The inverse natural convection problem (INCP) in a porous medium is a highly non-linear
problem because of the nonlinear convection and Forchheimer terms. The INCP can be con-
verted into the minimization of a least-squares discrepancy between the observed and the
modelled data. It has been solved using different classical optimization strategies that require
a monotone descent of the objective function for recovering the unknown profile of the time-
varying heat source function. In this investigation we use this PDE-constrained optimization
problem as a demanding testbed to compare the performance of several state-of-the-art vari-
ants of the conjugate gradients approach. We propose solving the INCP using the scaled
nonlinear conjugate gradient (SCG) method: a low-cost and low-storage optimization tech-
nique. The method presented here uses the gradient direction with a particular spectral step
length and the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating formula
without any matrix evaluations. Two adaptive line search approaches are numerically studied
in which there is no need for solving the sensitivity problem to obtain the step length directly,
and are compared to an exact line search approach. We combine the proposed optimiza-
tion scheme for INCP with a consistent splitting scheme for solving systems of momentum,
continuity and energy equations and a mixed finite element method. We show a number of
computational tests which demonstrate that the proposed method performs better than the
classical gradient method by improving the number of iterations required and reducing the
computational time. We also discuss some practical issues related to the implementation of
the different methods.
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gradient method; consistent splitting method; mixed finite elements
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1. Introduction

The classical conjugate gradient (CCG) algorithm is probably the most widely used
approach for minimization of the least-squares functions in inverse heat conduc-
tion [1–3] and inverse natural conduction (INC) applications [4–6], to mention just
a few references. Based on the CCG method as an iterative regularization tech-
nique that requires only first-order information (i.e., the gradient function), the
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INC problem generally consists of three coupled systems, namely, the governing
systems for the direct problem, the adjoint problem and the sensitivity problem,
where the unknown strength of a time-varying heat source G(t) caused by the nat-
ural convection flow has to be recovered by measuring some temperatures in the
interior of the domain. The adjoint problem is used for computing the conjugate
gradient direction, while the sensitivity problem is used for obtaining the optimal
step length. The computation cost will rise when the problem size becomes large.
In addition, it is an ill-posed problem because a small measurement error induces
a large estimated error.

Estimating the unknown profile of G(t) can be considered in the framework of
unconstrained optimization as the following minimization problem

min
G(t)∈Rn

J(G(t)),

where J : Rn → R is the cost functional and its gradient g = g(G(t)) = ∇J(G(t))
can be computed through the adjoint method.

Problems of heat transfer in porous media are encountered in petroleum reser-
voir engineering, and geothermal reservoir engineering. As a direct problem, various
choices of numerical scheme for solving a natural convection problem in a fluid-
saturated (or a single-phase) porous medium were reported by Lewis et al [7].
Recently, we formulated the INCP in a porous medium that focused on a special
treatment of the nonlinear convection and Forchheimer terms using the primitive
variable formulation (similar topics but different types of governing equations in a
porous medium can be found in [8, 9]). Emphasis is also placed upon the numeri-
cal convergence of the unknown time-varying heat source profiles by means of the
Fletcher-descent gradient expression using the CCG method [10] (see Algorithm
1). Other descent optimization strategies are based on the classical Newton or
Gauss-Newton methods requiring second-order information (i.e., Hessian matrix)
for finding the solution of the ill-posed problem [11]. In general, any descent opti-
mization method is guaranteed to decrease the objective function monotonically.
However, this fact does not imply convergence from any initial model and therefore
an exhaustive line search procedure is required to ensure convergence (e.g., [12]),
which is what happens in our numerical experiments [10]. Therefore, an important
step in a classical gradient descent optimization approach is the choice of the step
length which can be obtained by a line search method. One of the methods relies
on the solution of the sensitivity problem. One learns that an efficient line search
guarantees a sufficient decrease in the objective function relative to the step length
which ensures convergence to a stationary point. The question arises: is it possi-
ble to avoid the calculation of the sensitivity problem when searching for the step
length?

Another noted optimization technique is the scaled nonlinear conjugate gradient
(SCG) algorithm. As reported by Hager and Zhang [13], the SCG method is classi-
fied as a non-linear CG method. The SCG has superior characteristics as compared
to the CCG because there is no need to solve a system of sensitivity equations,
rather it uses the adaptive monotone and nonmonotone learning strategies to ob-
tain the step length, which is based on an iteration process. As we shall see below,
the SCG is defined and customized for solving back-propagation learning prob-
lems which is also suitable for our purpose. Different versions of SCG for various
applications exist in the literature, for example, [14–19]. In this paper, we shall
closely follow a SCG version of Andrei’s formulation [20, 21]. The key features of
this algorithm can be summarized as follows:
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(1) The spectral conjugate gradient method is used which not only preserves
the general characteristics of classical conjugate gradient methods, but also
contains a quasi-Newton BFGS updating formula without involving any
matrix computations, other than using a few scalar product calculations.

(2) To ensure better performance, the search direction is periodically restarted
when all scaled conjugate gradient algorithms are used. The restart proce-
dure of Birgin and Mart́ınez is used.

(3) The parameter scaling for the gradient is chosen as the spectral gradient
by means of using two consecutive values.

The main focus of this work is to evaluate the accuracy and efficiency of two
commonly found methods, namely the adaptive monotone and nonmonotone SCG
methods for the estimation of the unknown heat source in INCP in a porous
medium. Using the INCP as a demanding test problem, our goal is to bench-
mark these optimization methods in order to understand the different trade-offs
affecting their performance, especially in comparison to the classical approaches.

All the field variables in the direct, adjoint and sensitivity problems are computed
using a second-order decoupled scheme based on the mixed finite element (FE)
formulation which, to the best of our knowledge, is a novel approach in a PDE–
constrained optimization problem. In order to reduce the numerical boundary layer
effect for the pressure, which stemmed from the Hodge-Helmholtz decomposition
in conjunction with the pressure incremental scheme, Shen and Guermond [22]
proposed an efficient scheme for solving the decoupling of the velocities and pressure
consecutively at each time step, which they named the consistent splitting scheme
(CSS). In this work, the CSS was used for divorcing the velocity and pressure field
variables from the momentum equations and handling the continuity equations.
Hence, the accuracy of the energy equation corresponding to the direct, the adjoint
and the sensitivity problems will be improved.

The paper consists of six sections. In Section 2, we introduce the natural convec-
tion problem in a porous medium as a direct problem. In Section 3, we introduce
the formulation of inverse analysis and the concept of the so-called iterative regu-
larization technique. In Section 3, we also revisit the adjoint variable method for
finding the solution of the unknown profile of the time varying heat source using
the CCG method, where the adjoint and sensitivity problems are formulated. In
Section 4, we introduce two versions of adaptive SCG algorithms for solving the
INCP which will be used in the following sections. In Section 5, we examine the
feasibility and stability of the CSS with the mixed FE as a vehicle for solving
the INCP. Section 6 contains few summarizing remarks. A second-order scheme in
space and in time for solving the INCP is formulated in two Appendices.

2. Direct Problem

Let Ω be a bounded domain in the Euclidean space R2 with a piecewise smooth
boundary ∂Ω. A fixed final time is denoted by tf . Let ∂Ω = ∂Ω1 ∪ ∂Ω2, where
∂Ω consists of two piecewise smooth boundaries. A brief outline of the governing
equations for the direct problem is given below, whereas equations for the adjoint
and the sensitivity problems will be presented in Section 3. The aim of the di-
rect problem is to determine a time history of the velocity, the pressure and the
temperature fields driven by an estimated strength of a time-varying heat source
G(t) in (0, tf ]. The non-dimensional momentum, continuity and energy equations
in a porous medium at the representative elementary volume (REV) scale can be
written as follows:
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Direct Problem



1
ϵ

∂u

∂t
+

1
ϵ2

(u · ∇)u = −∇p+
RνPr

ϵ
∇2u −

(
Pr

Da
+

Fϵ√
Da

|u|
)

u

+RaPrTj in Ω × (0, tf ]
∇ · u = 0 in Ω × (0, tf ]
u = 0 on ∂Ω × (0, tf ]

σr
∂T

∂t
+ (u · ∇)T = αm∇2T +G(t)δk(x− x†)δk(y − y†) in Ω × (0, tf ]

T |∂Ω1
= 0 and

∂T

∂x

∣∣∣∣
∂Ω2

= 0 on ∂Ω × (0, tf ]

(1)

with the initial conditions

u(x, t = 0) = 0 and T (x, t = 0) = 0 in Ω, (2)

where u(x, t) = (u, v) is the volume-averaged vector field, p(x, t) is the volume-
averaged pressure scalar field, T (x, t) is the volume-averaged temperature scalar
field, |u| =

√
u2 + v2 is the absolute velocity, x = (x, y) is a point of interest in R2

and t is the time. From left to right in (1), the momentum equation is a balance
between the following: unsteady, inertia, pressure gradient, viscous (or Brinkman),
Darcy, Forchheimer, and buoyancy terms.

The following non-dimensional variables are defined:

x =
x′

dx
, y =

y′

dy
, t =

αmt
′

d2
y

, u =
dyu

′

αm
, T =

T ′ − T ′
cold

T ′
hot − T ′

cold

,

p = p⋆ − (T ′
cold − T ′

ref)
d3
y

α2
m

αgy, p⋆ =
d2
yp

′

ρα2
m

,

and T ′
ref = 1

2(T ′
hot+T

′
cold) is the average temperature of the system, ϵ is the porosity

of the porous medium, Rν is the viscosity ratio, Pr =
ν

αm
is the Prandtl number,

Da =
K

d2
x

is the Darcy number, and Ra = αg
(T ′

hot − T ′
cold)d

3
y

αmν
is the Rayleigh

number, where σr is the ratio between the heat capacities of the solid and the fluid

phases, K is the permeability, Fϵ =
1
ϵ3/2

1.75√
150

is the inertial coefficient, α is the

thermal expansion, g is the gravitation constant, αm is the thermal diffusivity, ρ
is the density, ν is the kinematic viscosity, j is the unit vector in the y-direction,
T ′

hot is the nominal bottom temperature, T ′
cold is the dimensional temperature at

the top boundary, dx is half of the width and dy is half of the depth of the cavity.
The dimensionless strength of the heat source G(t) is related to the dimensional

strength G′(t′) as follows:

G(t) =
G′(t′)dy

(T ′
hot − T ′

cold)k̃d
3
x

,

where k̃ is thermal conductivity. The characteristic temperature of the system T ′
hot

is related to the characteristic magnitude of the dimensional heat source G′
ref by
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the following relation:

T ′
hot − T ′

cold =
G′

ref

k̃
.

Combining Ra and the above result gives

Ra = αg
d3
yG

′
ref

αmνk̃
.

The function δk(x− x†) approximates the point source in the cavity and becomes
the Dirac delta function as k tends to infinity, and is defined by

δk(x− x†) =
k

2 cosh2(k(x− x†))
.

Then, δk(y− y†) can be defined similar to δk(x− x†). In this work, k = 20 is used.

3. Formulation of Inverse Analysis

It is convenient from both the theoretical and computational point of view to
formulate inverse problems as optimization problems. The objective function J =
J(G(t)) of the optimization problem may have the form of the sum of the squares
of the difference between the calculated temperature T (xm, t) = T (xm, t;G(t)) and
the measured temperature T †(xm, t), namely:

J =
1
2

M∑
m=1

∫ tf

0

(
T (xm, t) − T †(xm, t)

)2
dt, (3)

where M denotes the total number of temperature measurements. The calculated
temperature T (xm, t) is obtained from (1) - (2), whereas the measured temperature
T †(xm, t) at the cavity xm = (xm, ym), m = 1, · · · ,M is assumed to be known. To
get these measured values, one solves (1) - (2) with some known time-varying heat
source G(t) at an interior point x† = (x†, y†) of the spatial domain.

The INC problem in a porous medium consists of finding the strength of a time-
varying heat source G(t) at an interior point x† = (x†, y†) of the spatial domain
while the temperature measurements at the cavity xm = (xm, ym) are available as
a function of time. Figure 1 shows the geometry, coordinates, source and sensor
(or thermocouple) locations of the INCP.

3.1. Minimization with classical conjugate gradient method

The iterative CCG method, as applied to the estimation of the time-varying heat
source G(t), is given by [23]:

GK+1(t) = GK(t) − ρKdK(t), (4)

where the superscript K denotes the number of iterations (or the loop of CCG iter-
ation). The direction of descent dK(t) is obtained as a conjugation of the gradient
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Figure 1. Geometry, coordinates, source and sensor (or thermocouple) locations.

direction ∇JK(t) = ∇J
(
GK(t)

)
and of the previous direction of descent as:

dK(t) = ∇JK(t) + γKdK−1(t), (5)

where ∇JK(t) = ∇J(GK(t)) and γK is the conjugation coefficient that can be
obtained from the Polak-Ribiere, the Fletcher-Reeves, or the Fletcher conjugate
descent expression, just to name a few possible choices.

In order to implement the iterative algorithm given by (4) - (5), one usually needs
to develop expressions for the optimal step length ρK and for the gradient direction
∇JK(t) by making use of two auxiliary problems, known as the sensitivity problem
and the adjoint problem respectively.

3.2. Iterative Regularization Technique as a Stopping Criterion

Recording and analysis of measured data are important tasks in the formulation
of the INC problem. Unfortunately, due to the ubiquity of noise, the measured
temperature data are always corrupted by noise to some degree. In this paper, we
assume that the measurements containing random errors were obtained by adding
an error term to the error-free measurements resulting from the solution of the
direct problem:

Tmeasured(= T †) = Tfree + ωσ (6)

where Tfree are the error-free measurements; ω is a random variable with normal
distribution, zero mean, and unitary standard deviation; and σ is the standard
deviation of the measurement errors, which is supposed constant. If a constant
error level is assumed throughout the measurement, then

T (xm, t) − Tmeasured(xm, t) ≃ σ (7)

is admissible and advisable. Two cases are considered [24]:

(1) By ignoring the noise, i.e., σ = 0, formula (4) is iterated until G(t) satisfies
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the following stopping criteria:

∥ GK+1 −GK ∥2
L2(0,tf )

∥ GK ∥2
L2(0,tf )

≤ ε1,

where ∥ f ∥2
L2(0,tf )=

∫ tf
0 (f(t))2 dt is the norm of a function f belonging

to L2(0, tf ) space, GK is the Kth iterate for G(t) and ε1 is a fixed small
number ranging from 10−3 to 10−10. In what follows, we adopt the simplified
notation ∥ ∗ ∥=∥ ∗ ∥L2(0,tf ). The selection of tolerance, ε1 which depends
on the choice of the specific time-varying heat source will vary.

(2) In the case of the measured temperature data with noise , i.e., σ ̸= 0, the it-
erative process is stopped based on the residual criterion or the discrepancy
principle [25], i.e. upon fulfilment of the stopping criterion:

J(GK(t)) ≤ ε2, (8)

where ε2 is defined by

ε2 =
1
2

M∑
m=1

∫ tf

0
σ2dt. (9)

Equation (9) can be interpreted as the integrated error of the measured data
having a constant standard deviation σ on a whole time interval [0, tf ]. If
the function J has a minimum value that is larger than ε2, the following
criterion is used to stop the iteration:

J(GK+1) − J(GK) < ϵt, (10)

where ϵt is a prescribed small number.

Many iterative methods exhibit a self-regularizing property in the sense that
early termination of the iterative process has a regularizing effect [26].

There are two main features of the iterative regularization technique (IRT):

(1) the iteration index K plays the role of the regularizing parameter α used
in the Tikhonov method [27], and

(2) the stopping rule (e.g., (8) or (10)) plays the role of the parameter selection
method.

Physically speaking, the expected solution is assumed to be sufficiently accurate
and close to the exact one when the difference between the measured and estimated
heat source has fallen into the specified order of magnitude of the measurement
errors (see (7)).

3.3. Adjoint Variable Method

The use of the CG method for the minimization of the objective function J in
(3) requires the solution of auxiliary problems, known as sensitivity and adjoint
problems. The sensitivity problem given here is used to determine the variation
of the dependent variables due to changes in the unknown quantity. Hence, the
temperature sensitivity δT can be defined as the directional derivative of T at G
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in the direction of δG:

δT = lim
ε→0

T (G+ εδG) − T (G)
ε

. (11)

The remaining variables can be defined similar to (11). Based on the definition of
the sensitivity problem, the following sets of sensitivity equations for the momen-
tum, continuity and energy equations together with the same initial and boundary
conditions as their counterparts given in the direct problem are easily obtained:

Sensitivity Problem



1
ϵ

∂δu

∂t
+

1
ϵ2

(δu · ∇u + u · ∇δu) = −∇δp

+
RνPr

ϵ
∇2δu − Pr

Da
δu − Fϵ√

Da

(
u · δu
|u|

u + |u|δu
)

+RaPrδTj in Ω × (0, tf ]

∇ · δu = 0 in Ω × (0, tf ]
δu = 0 on ∂Ω × (0, tf ]

σr
∂δT

∂t
+ δu · ∇T + u · ∇δT = αm∇2δT + d(t)δk(x− x†)δk(y − y†) in Ω × (0, tf ]

δT |∂Ω1
= 0 and

∂δT

∂x

∣∣∣∣
∂Ω2

= 0 on ∂Ω × (0, tf ]

(12)

with the initial conditions

δu(x, t = 0) = 0 and δT (x, t = 0) = 0 in Ω, (13)

where δu = (δu, δv) is the sensitivity of the velocity vector field, δp is the sensitivity
of the pressure scalar field, δT is the sensitivity of the temperature scalar field and
d(t) is a conjugate search direction that is determined by the iterative procedure
of the conjugate gradient method.

To minimize J with respect to G, in an infinite-dimensional space, one needs the
gradient of J , ∇J , that is given by

δJ(G; δG) =
∫ tf

0
∇JδGdt. (14)

The function δJ(G) is interpreted as the directional derivative of J at G in the
direction of δG.

With the definition of the objective function in (3), Equation (14) might be
expressed using the Dirac delta function as an integral over the space domain and
time, where all quantities are determined at the specified measurement location
xm. Introducing the adjoint variables ξ, q, and η as the Lagrange multipliers, we
will ensure that the state variables corresponding to the minimum of objective
function (3) will also satisfy the the direct problem. Hence, the direct problem is
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a constraint to the minimization of (3). Now, the function δJ(G; δG) becomes

δJ(G) =
∫ tf

0

∫
Ω

(
T (xm, t) − T †(xm, t)

)
δT

M∑
m=1

δ(x− xm)δ(y − ym)dΩdt

+
∫ tf

0

∫
Ω

ξ ·
(

1
ϵ

∂δu

∂t
+

1
ϵ2

(δu · ∇u + u · ∇δu) + ∇δp

−RνPr
ϵ

∇2δu +
Pr

Da
δu +

Fϵ√
Da

(
u · δu
|u|

u + |u|δu
)
−RaPrδTj

)
dΩdt

+
∫ tf

0

∫
Ω
q (∇ · δu) dΩdt

+
∫ tf

0

∫
Ω
η

(
σr
∂δT

∂t
+ δu · ∇T + u · ∇δT − αm∇2δT − δG(t)δk(x− x†)δk(y − y†)

)
dΩdt,

(15)

where δ(·) is the Dirac delta function and ξ = (ξx, ξy).
By performing integration by parts on the last three terms appearing on the

right-hand side of (15), applying the initial and boundary conditions of the sensi-
tivity problem for δT and also requiring that the coefficients of δT in the resulting
relations vanish, the following adjoint problem is formed:

Adjoint Problem

1
ϵ

∂ξ

∂τ
− 1
ϵ2

u · ∇ξ = −∇q +
RνPr

ϵ
∇2ξ − 1

ϵ2
ξ · (∇u)T − η∇T

−Pr

Da
ξ − Fϵ√

Da

|u|2ξ + (ξ · u) u

|u|
in Ω × (0, tf ]

∇ · ξ = 0 in Ω × (0, tf ]
ξ = 0 on ∂Ω × (0, tf ]

σr
∂η

∂τ
− u · ∇η = αm∇2η +RaPrξy

+
∑M

m=1

[
T (x, y, τ) − T †(x, y, τ)

]
δ(x− xm)δ(y − ym) in Ω × (0, tf ]

η|∂Ω1
= 0 and

∂η

∂x

∣∣∣∣
∂Ω2

= 0 on ∂Ω × (0, tf ]

(16)

with the final conditions

ξ(x, t = tf ) = 0 and η(x, t = tf ) = 0 in Ω, (17)

where ξ is the adjoint velocity field, q is the adjoint pressure field, η is the adjoint
temperature field and the superscript T denotes the transpose. To solve adjoint
problem (16) backward in time with the end condition at the physical time t = tf ,
one usually proceeds with the change of time variable τ = tf − t. Through this
transformation, the adjoint problem becomes an initial value problem in τ .

In Equation (14), the directional derivative of the functional in the direction
δJ(G; δG) simplifies to

δJ(G; δG) =
∫ tf

0

∫
Ω
ηδk(x− x†)δk(y − y†)dΩδG(t)dt. (18)
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By comparing (14) and (18), the gradient functional ∇J might be found as follows:

∇J =
∫

Ω
ηδk(x− x†)δk(y − y†)dΩ. (19)

The minimization of the objective function is accomplished by an iteration regu-
larization, using (4) - (5). The sequence of approximations for the unknown strength
of a time-varying heat source may be constructed using the following steps of the
CCG method, as shown in Algorithm 1.
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Algorithm 1 Classical Conjugate Gradient
1: Assume GK(t), where G0(t) = Constant.
2: Calculate the velocity and temperature fields by solving (1) and (2) from t = 0

to t = tf .
3: Solve adjoint equations (16) and (17) from τ = 0 to τ = tf .
4: Update the scalar γK using the Fletcher-descent expression:

γK =

∫ tf
0

(
∇JK(t)

)2
dt

−
∫ tf
0 dK−1(t)∇JK−1(t)dt

. (20)

5: Update the conjugate search direction dK :{
d0(t) = ∇J0(t) =

∫
Ω ηδk(x− x†)δk(y − y†)dΩ if K = 0

dK(t) = ∇JK(t) + γKdK−1(t) if K ≥ 1.
(21)

6: Solve sensitivity equations (12) and (13) from t = 0 to t = tf .
7: Determine the optimal step length ρK :

ρK = argmin{J(GK − ρKdK)} =
δJK

LK
, (22)

where

δJK =
M∑
m=1

∫ tf

0

(
T (xm, t) − T †(xm, t)

)
δT (xm, t)dt (23)

and

LK =
M∑
m=1

∫ tf

0
(δT (xm, t))

2 dt. (24)

8: Set

GK+1(t) = GK(t) − ρKdK(t).

9: If
∥ GK+1(t) −Gex(t) ∥2

2

∥ Gex(t) ∥2
2

or J(GK) is less than tolerance ε1 or ε2, STOP

Otherwise, set K = K + 1, return to STEP 2
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For Algorithm 1, the following observations are made:

• The optimal step length ρK in the direction dK(t) is obtained by minimizing
J(GK − ρKdK) with respect to ρK , where

J(GK − ρKdK) =
1
2

M∑
m=1

∫ tf

0

(
T (xm;GK − ρKdK) − T †(xm, t)

)2
dt, (25)

and by using a first-order Taylor series approximation for the estimated temper-
ature, we have

T (xm;GK − ρKdK) = T (xm;GK) − δT (xm, t)ρK . (26)

Putting (26) into (25) together with (11), expanding the quadratic integrand
term, differentiating (25) partially with respect to ρK and setting the resulting
equation equal to zero, Equation (22) is immediately obtained.

• We observe that the gradient functional is always zero when t = tf . Hence, the
final time values of the estimated history of G(t) cannot be predicted and the
estimated values G(t) deviate from the exact values near the final time condition.
In this work, we let ∇J(tf ) = ∇J(tf − ∆t). Therefore, the singularity at t = tf
can be avoided and a reasonable inverse solution can be calculated.

• For each iteration in Algorithm 1, we need to compute 15 unknowns for updating
G(t). In what follows, we shall use the SCG method in order to avoid the com-
putation of the sensitivity problem. In essence, we simply ignore Step 6 and Step
7. In turn, using the SCG method, we calculate the direct and adjoint problems
twice per iteration.

4. Scaled Conjugate Gradient

In what follows, we shall study a discrete version of the given model. All unknown
variables are defined in a finite dimensional space. We consider in reasonable detail
a computational algorithm implementing the ideas mentioned in the Introduction.
The algorithm uses function values only, employing the scalar product to compute
all the scaling parameters when required. First we summarize the basic algorithm
which is based on the works of Andrei [20, 21].

4.1. Spectral Conjugate Gradient Method

Motivated by the work of Birgin and Mart́ınez [28], the general form of the con-
jugate gradient method is given by

dK(t) = −θK∇J(GK) + γKsK−1(t), (27)

where θK is a scalar parameter that is to be determined, γK =(
θKyK−1 − sK−1

)T ∇J(GK)

(yK−1)T sK−1
is obtained by the quadratic function minimization,

sK−1 := sK−1(t) = GK(t) − GK−1(t) and yK−1 := yK−1(t) = ∇JK − ∇JK−1 =
∇J(GK(t)) −∇J(GK−1(t)).

We observe that if θK = 1, then we obtain the classical CG method based on
the choice of the scalar parameter γK . However, if γK = 0, then another class of
algorithms based on the choice of the parameter θK is considered. Two possibilities
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could occur: a positive scalar or a positive definite matrix. The former case would
correspond to the steepest descent algorithm if θK = 1, while the latter would
give the Newton or the quasi-Newton algorithm if θK =

(
∇2J(GK(t))

)−1. Hence,
Equation (27) preserves a characteristic mixture of the quasi-Newton and the CG
methods if θK ̸= 0 and γK ̸= 0.

By following the ideas of Perry [29] and Shanno [30, 31] and rearranging the
expressions in (27), the conjugate search direction can be written as

dK = −

[
θKI − θK

sK−1
(
yK−1

)T
(yK−1)T sK−1

+
sK−1

(
sK−1

)T
(yK−1)T sK−1

]
∇JK = −QK∇JK . (28)

Shanno [30, 31] concluded that the CG method is exactly equal to the quasi-
Newton BFGS method in which at each step the approximation to the inverse
Hessian matrix is restarted as the identity matrix I. One observes that

(
yK−1

)T
QK =

(
sK−1

)T
, (29)

is similar, but not identical, to the quasi-Newton equation, which requires that the
inverse Hessian matrix HK should be updated in such a way as to satisfy:

HKyK−1 = sK−1. (30)

In order to not only guarantee that the matrix QK is symmetric and positive
definite, but to also get a true quasi-Newton updating expression, Andrei [20]
proposed the following update:

QK,∗ = θKI − θK
yK−1

(
sK−1

)T + sK−1
(
yK−1

)T
(yK−1)T sK−1

(31)

+

[
1 + θK

(
yK−1

)T
yK−1

(yK−1)T sK−1

]
sK−1

(
sK−1

)T
(yK−1)T sK−1

which satisfies

QK,∗yK−1 = sK−1. (32)

Therefore, the conjugate search direction is

dK = −QK,∗∇JK . (33)

There is no need to directly compute the matrix QK,∗, since with the computation
of only four scalar products the direction now becomes

dK = −θK∇JK + θK
(
∇JK

)T
sK−1

(yK−1)T sK−1
yK−1 (34)

−

[(
1 + θK

(
yK−1

)T
yK−1

(yK−1)T sK−1

) (
∇JK

)T
sK−1

(yK−1)T sK−1
− θK

(
∇JK

)T
yK−1

(yK−1)T sK−1

]
sK−1,
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Like the well-known BFGS update to the inverse Hessian, which is currently
by-far the best update of the Broyden class, the inverse Hessian is defined by

HK = HK−1 −
HK−1yK−1

(
sK−1

)T + sK−1
(
yK−1

)T
HK−1

(yK−1)T sK−1
(35)

+

[
1 +

(
yK−1

)T
HK−1yK−1

(yK−1)T sK−1

] (
sK−1

)T
sK−1

(yK−1)T sK−1
,

with (31). Equation (35) is exactly the same as the quasi-Netwon BFGS method,
where at each step the approximation of the inverse Hessian is restarted as the
identity matrix multiplied by the scalar θK .

By recalling the result established in [21], we have:

Theorem 4.1 Assume that J is strongly convex and Lipschitz continuous on the
level set L0 = { t ∈ Rn| J(G(t)) ≤ J(G(t0))}. If at every step of the conjugate gra-
dient (4) with dK given by (34) and the step length ρK selected to satisfy the Wolfe
conditions (44) and (45), then either ∇JK = 0 for some K, or limK→∞∇JK = 0.

4.2. Birgin and Mart́ınez Restarts

A more sophisticated and popular restarting criterion has been proposed by Birgin
and Mart́ınez [28] which consists of testing to see if the angle between the current
direction and the gradient is sufficiently acute. Therefore, at step R− 1 when:(

dR−1
)T ∇JR > −10−3 ∥ dR−1 ∥∥ ∇JR ∥ (36)

the algorithm is restarted using the direction given by (34).
Otherwise, for K−1 ≥ R, we consider the same idea used to get (31), i.e. that of

modifying the gradient ∇JK with a symmetric and positive definite matrix which
best estimates the inverse Hessian without any additional storage requirements.
Therefore, the direction dK , for K − 1 ≥ R, is computed using a double update
scheme as:

dK = −HK∇JK (37)

where

HK = HR −
HRyK−1

(
sK−1

)T + sK−1
(
yK−1

)T
HR

(yK−1)T sK−1
(38)

+

[
1 +

(
yK−1

)T
HRyK−1

(yK−1)T sK−1

] (
sK−1

)T
sK−1

(yK−1)T sK−1

and

HR = θRI − θR
yR−1

(
sR−1

)T + sR−1
(
yR−1

)T
(yK−1)T sK−1

+

(
1 + θR

(
yK−1

)T
yK−1

(yK−1)T sK−1

)
sK−1

(
sK−1

)T
(yK−1)T sK−1

. (39)
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The key features of (38) and (39) do not involve any matrix computation. Two
following terms, HR∇JK and HRyK−1, can simply be calculated as:

ϑ ≡ HR∇JK = θR∇JK − θR
(
∇JK

)T
sR−1

(yR−1)T sR−1
yR−1 (40)

+

[(
1 + θR

(
yR−1

)T
yR−1

(yR−1)T sR−1

) (
∇JK

)T
sR−1

(yR−1)T sR−1
− θR

(
∇JK

)T
yR−1

(yR−1)T sR−1

]
sR−1

and

ϖ ≡ HRyK−1 = θRyK−1 − θR
(
yK−1

)T
sR−1

(yR−1)T sR−1
yR−1 (41)

+

[(
1 + θR

(
yR−1

)T
yR−1

(yR−1)T sR−1

) (
yK−1

)T
sR−1

(yR−1)T sR−1
− θR

(
yK−1

)T
yR−1

(yR−1)T sR−1

]
sR−1,

which involves 6 scalar products. Using (40) and (41), the descent direction (37)
at any non-restart step can be calculated as:

dK = −ϑ+

((
∇JK

)T
sK−1

)
ϖ +

((
∇JK

)T
ϖ
)
sK−1

(yK−1)T sK−1
(42)

−

(
1 +

(
yK−1

)T
ϖ

(yK−1)T sK−1

) (
∇JK

)T
sK−1

(yK−1)T sK−1
sK−1,

which involves only 4 scalar products.
Andrei [20, 21] defined the search direction dK from (42) as a double quasi-

Newton update scheme. Inspection of (42) indicates that the term
(
yK−1

)T
sK−1 >

0 is sufficient to ensure that the direction dK given by (42) is well-defined, and it
always preserves a descent direction.

4.3. Parameter Scaling

One of the choices of the scalar θK is known to lead to the spectral gradient method,
namely:

θK =

(
sK−1

)T
sK−1

(yK−1)T sK−1
,
(
yK−1

)T
sK−1 > 0 (43)

which was proposed by Barzilai and Borwein [32], and further analyzed by Ray-
dan [33] and Fletcher [34]. Barzilai and Borwein (43) used two new step length ap-
proximations to the secant equation underlying the quasi-Newton methods which
can be obtained by minimizing ∥ θKsK−1 − yK−1 ∥. Using the property of sym-
metry, and by minimizing ∥ θKsK−1 − yK−1 ∥ with respect to θK , one gets (43).
The scalar parameter given by (43) is the inverse of the Rayleigh quotient (e.g.,
see [19]).
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4.4. Updating the Step length

The step length is adapted using the choice of Shanno and Phua in CONMIN [35]
which exploits the conjugate search values and the step-length from the previous
iteration, where

ρK =


1

∥ ∇J(G0) ∥
, K = 0

ρK−1 ∥ dK−1 ∥
∥ dK ∥

, otherwise.

4.5. Monotone Line Search

In general, a line search algorithm is an iterative method which generates a se-
quence of step length estimates ρK that satisfy the Armijo-Wolfe (or Powell-Wolfe)
conditions as follows (e.g., [12]):

At iteration K, let 0 < σ1 ≤ σ2 < 1 and let dK be any descent direction. If

J(GK − ρKdK) − J(GK) ≤ σ1ρ
K∇J(GK)dK , (44)

and (
∇J(GK − ρKdK)

)T
dK ≥ σ2

(
∇J(GK)

)T
dK (45)

are satisfied, then ρK is updated and the updated time-varying heat source is given
by GK − ρKdK ; otherwise, ρK is reduced [12] when conditions (44) and (45) are
not satisfied. We can see from the inequalities (44) and (45) that new function
evaluations GK+1 are required whenever ρK is reduced at iteration K. The first
inequality (44), called Armijo’s condition, guarantees that the error function is
sufficiently reduced at each iteration, while the second inequality (45) called the
curvature condition prevents the step length from being too small and it is always
positive, since it implies that

(
sK−1

)T
yK−1 > 0. Here the step length parameters

we used are σ1 = 10−3 and σ2 = 0.9.

4.6. Nonmonotone Line Search

Although a number of algorithms can be proved to be globally convergent using
Powell-Wolfe conditions (44) and (45), it is not surprising that such methods would
be inefficient in the sense that the iterates may be trapped in a narrow curved
valley of objective functions. To remedy this situation, Grippo [36] proposed a
nonmonotone learning strategy that uses the accumulated information with regard
to the most recent values M of the cost functional:

J(GK − ρKdK) − max
0≤L≤M

J(GK−L) ≤ σ1ρ
K∇J(GK)dK , (46)

and (
∇J(GK − ρKdK)

)T
dK ≥ σ2

(
∇J(GK)

)T
dK , (47)

where M is a positive integer, known as a nonmonotone learning horizon. Some
salient features of nonmonotone Wolfe’s conditions are summarized as follows:
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• It was shown in [37] that increasing the function values in the nonmonotone Wolfe
conditions (46) and (47) has no affect on the global convergence properties.

• The general idea behind nonmonotone strategies is that, in practice, the first
choice of a trial point by a minimization algorithm hides a lot of useful informa-
tion about the problem structure and that such knowledge can be deteriorated
by the decrease imposition [18].

• In the first inequality, the integer M controls the amount of monotonicity that is
permitted, in comparison with (45) and (47), where both inequalities are identical
and do not depend on the choice of step length.

An elegant way for adapting the constant M throughout the local estimation of
the Lipschitz constant was proposed in [15] and uses Cauchy’s method [38, 39]:

MK =


MK−1 + 1, if ΛK < ΛK−1 < ΛK−2,

MK−1 − 1, if ΛK > ΛK−1 > ΛK−2,

MK−1, otherwise,
(48)

where ΛK is the local estimation of the Lipschitz constant at the K-th iteration

ΛK =
∥ ∇J(GK) −∇J(GK−1) ∥

∥ GK −GK−1 ∥
. (49)

4.7. Four Algorithms

Let N be the final number of iterations. Let us summarize the most important
features of the considered algorithms as follows:

• The governing, adjoint and sensitivity systems (1) - (2), (16) - (17), and (12) -
(13) are discretized using the CSS and the mixed FE methods (see Appendices
A and B for details), so that the corresponding discrete problems (A1) - (A4),
(A5) - (A8) and (A9) - (A12) are obtained.

• The skeleton of Algorithm 2 is similar to that of Algorithm 1, and is referred
to as the modified scaled CG method, however, the search direction (see (34)
and (42)) and Birgin and Mart́ınez restarts are used.

• The sequence of approximations for the unknown strength of a time-varying heat
source may be constructed using the following steps of the adaptive monotone
and adaptive nonmonotone SCG methods in Algorithm 3 and Algorithm 4, re-
spectively. Firstly, there is no need to calculate Steps 19 and 20 in Algorithm 2.
Secondly, the difference between these two algorithms concerns the determina-
tion of the step length via conditions (44) and (45), or (46) and (47). Hence, the
direct and adjoint problems need to be computed twice per iteration. We add
the condition on the step length that satisfies these two Wolfe’s conditions, i.e.,
ρK = 2ρK , because we try to avoid the situation where ρK reduces rapidly. The
steps of adaptive monotone SCG methods are listed in Algorithm 3. Algorithm
4 is then constructed when Steps 21 and 22 in Algorithm 3 are replaced by the
following

21: if the step-length ρK satisfies nonmonotone Wolfe’s conditions (46) and (47)
22: if J(GK − ρKdK) − max0≤L≤M J(GK−L) < 10−3 then
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Algorithm 2 Modified Scaled Conjugate Gradient
1: Initiate G0, and select the parameters 0 < σ1 ≤ σ2 < 1.
2: for K := 0 to N do
3: if ∇J(GK) = 0 or J(GK) < ε2 then
4: return G∗ = GK ; J(G∗) = J(GK)
5: end if
6: Calculate the velocity and temperature fields by solving (1) and (2) from

t = 0 to t = tf .
7: Solve the adjoint equations using (16) and (17) from τ = 0 to τ = tf .
8: if K := 0 then
9: d0 = ∇J(G0);

10: else

11: Compute the scaling factor θK =

(
sK−1

)T
sK−1

(yK−1)T sK−1
.

12: Compute the conjugate direction dK in (34).
13: if Condition (36) is satisfied then
14: Compute the restart direction dK in (34);
15: else
16: Compute the standard direction dK in (42);
17: end if
18: end if
19: Solve the sensitivity equations using (12) and (13) from t = 0 to t = tf .
20: Determine the optimal step length ρK using (22) - (24).
21: Set GK+1 = GK − ρKdK .
22: end for
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Algorithm 3 Adaptive Monotone Scaled Conjugate Gradient
1: Initiate G0, and select the parameters 0 < σ1 ≤ σ2 < 1.
2: for K := 0 to N do
3: if ∇J(GK) = 0 or J(GK) < ε2 then
4: return G∗ = GK ; J(G∗) = J(GK)
5: end if
6: Calculate the velocity and temperature fields by solving (1) and (2) from

t = 0 to t = tf .
7: Solve the adjoint equations using (16) and (17) from τ = 0 to τ = tf .
8: if K := 0 then
9: d0 = ∇J(G0);

10: ρ0 =
1

∥ ∇J(G0) ∥
;

11: else

12: Compute the scaling factor θK =

(
sK−1

)T
sK−1

(yK−1)T sK−1
.

13: Compute the conjugate direction dK in (34).
14: if Condition (36) is satisfied then
15: Compute the restart direction dK in (34);
16: else
17: Compute the standard direction dK in (42);
18: end if

19: ρK = ρK−1 ∥ dK−1 ∥
∥ dK ∥

.

20: end if
21: if the step length ρK satisfies Powell-Wolfe’s conditions (44) and (45) then
22: if J(GK − ρKdK) − J(GK) < 10−3 then
23: ρK = 2ρK ;
24: else
25: ρK = ρK ;
26: end if
27: else

28: ρK =
ρK

2
;

29: end if
30: Set GK+1 = GK − ρKdK .
31: end for
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5. Results and Discussions

The main goal of our computational experiments is to investigate the performance
of Algorithms 1–4 on the INCP. We are interested in two main aspects, namely,
the rate of convergence of the different Algorithms as quantified by the number
of iterations required to reach a certain level of accuracy in the reconstruction
of the heat source function, and also in the actual CPU time required to reach
such a level of accuracy. This is related to the fact that iterations performed with
different algorithms will typically require different computational times. Two sets
of computational experiments, corresponding to temperature measurements with
and without noise, cf. (6), are presented to address the two questions mentioned
above. In both problems we have adopted the following heat source function, also
studied in [4], as the exact solution:

Gex(t) = −750
4
t

(
t− 1

3

)2

(t− 1) + 1.0, where 0 ≤ t ≤ 1. (50)

The computer implementation of the discussed Algorithms was done in FOR-
TRAN 90, and represents a further development of the code used for studying the
direct problem of natural convection in porous media [40, 41]. All computations
were performed on a Linux Cluster with one processor of 2GB of RAM and 2.6GHz
using the serial FORTRAN compiler at CUHK. For all numerical computations,
an initial guess of G(t) is fixed to 0.5. In our investigations we used the following
values of the material properties and other parameters: porosity ϵ = 0.4, the vis-
cosity ratio Rν = 1, the Prandtl number Pr = 1, the Darcy number Da = 10−2,
the ratio of heat capacities σr = 1, the ratio of thermal conductivities σm = 1 and
the Rayleigh number Ra = 104. Unless otherwise stated, a uniform mesh layout
1292/652 for the mixed FE method is used. The final time is tf = 1 and in the
numerical integration of the governing, sensitivity and adjoint systems we used the
the time-step ∆t = ∆τ = 0.025. The heat source and the sensor are located at
(0.75,−0.75) and (0.43750,−0.6875), respectively, cf. Figure 1. We used a single
measurement M = 1.

In studying the computational performance of the Algorithms, we will focus on
the following quantities:

• Ke — the number of iterations required to reach a certain accuracy, given by e,
in the reconstruction of the heat source function G;

• td — the cumulative CPU time of the direct solver;
• ta — the cumulative CPU time of the adjoint solver;
• ts — the cumulative CPU time of the sensitivity solver;
• td,J and ta,∇J — the cumulative CPU times for the direct and adjoint solvers

required to calculate the cost functional and the gradient expression using
(44) and (45), or (46) and (47);

• tcg — the cumulative CPU time of the CG or SCG steps which is not included
in the times already mentioned above.

For each iteration in Algorithm 1 and Algorithm 2, the total CPU time is td +
ta + ts + tcg, whereas in Algorithm 3 and Algorithm 4, the total CPU time is
td + ta + td,J + ta,∇J + tcg. The relative error between the approximate solution
obtained at the Kth iteration and exact solution (50) is defined as

e(GK) =
∥ GK −Gex ∥2

∥ Gex ∥2
.
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5.1. Numerical Performance of Four Algorithms

For the case with noise–free measurements, Our computational results obtained
for the four Algorithms are collected in Figure 2 which shows the reconstructions
of the heat source functions obtained after a different number of iterations and
Figure 3 which shows the history of the decrease of the objective function J(GK)
with iterations. Additional data concerning the CPU times of the different elements
of the four algorithms are presented in Table 1.

In regard to the data shown in Figures 2 - 3 and Table 1, we would like to make
the following comments:

• All four algorithms converged to the same minimizer and were able to recover
the unknown time-dependence of the heat source function; we add that the value
of G(t) at the terminal instant of time t = tf was also reconstructed correctly.

• The SCG Algorithms showed improved convergence in comparison to the CCG
Algorithm requiring significantly fewer iterations to achieve a given level of ac-
curacy of reconstruction; Algorithm 4 converged the fastest requiring about a
third of the iterations needed by the CCG Algorithm.

• The faster convergence of the SCG Algorithms was partially offset by the larger
computational cost of a single iteration for these approaches; however, the SCG
Algorithms still performed better than the CCG Algorithm in terms of the total
computational time, with Algorithm 4 exhibiting the best efficiency.

5.2. Effect of Noise Level

Finally, we study the effects of random errors in the measured temperature data
on the quality of the reconstruction. To fix attention, we will focus exclusively on
Algorithm 4, which in the previous section was found to have the best performance
of all the Algorithms tested. Here Algorithm 4 is employed with a fixed iteration
number as a stopping rule. The noisy data was generated from the solution of the
INCP corresponding to the following heat source functions

Gex(t) = −2 cos(2πt) + 6, (51)

Gex(t) = −1.5 cos(2πt) − 0.5 cos(4πt) − 0.5 cos(6πt) − 1.5 cos(8πt) + 6 (52)

by adding adding noise with σ = 0.01, 0.03 and 0.05 according to formula (6),
see Figure 4. In Figures 5 and 6, the robustness of reconstruction is assessed by
comparing the heat source functions reconstructed from the noisy data against
exact functions given in (51) and (52). In the numerical solution of the direct
and adjoint problems we used the uniform mesh layout 652/332 for the mixed
FE method. The final time is tf = 1 with the time-step sizes ∆t = ∆τ = 0.025
and ∆t = ∆τ = 0.0167 in the reconstructions corresponding to (51) and (52),
respectively. Inspection of Figures 5(a), (c), (e) and 6(a), (c), (e) indicates that,
as expected, increasing the measurement errors leads to a loss of accuracy in the
estimation of the heat source function.

In order to mitigate the effect of the noise and perform further regularization
of the reconstructions corresponding to the noisy data from Figure 4, we adopted
the technique based on the Sobolev gradients [42]. The Sobolev gradients ∇JS ∈
H1

0 [0, 1] can be easily obtained from the usually employed L2 gradients ∇J ∈
L2[0, 1] (see (19)) by solving the following elliptic boundary-value (in time) problem
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with homogeneous Neumann boundary condition:{(
I − λ2∇2

)
∇JS = ∇J, in [0, 1]

n · ∇JS = 0, on ∂[0, 1]
(53)

where n denotes the unit outward normal vector on ∂[0, 1] and λ ∈ R is a regu-
larization parameter representing the cut-off length-scale below which the gradient
information is essentially filtered out as result of solving (53) for ∇JS , see [42]. For
discretization of (53) a 1D piecewise linear finite element is used. By constructing
the mass and stiffness matrices on the left-hand side of (53) and the lumped mass
matrix on the right-hand side of (53), the weak form is solved by an iterative solver.
In all our calculations reported here we set λ = 0.1. Effectiveness of the reconstruc-
tions based on the Sobolev gradients described above is demonstrated in Figures
5(b), (d), (f) and 6(b), (d), (f). This data should be compared with the results from
Figures 5(a), (c), (e) and 6(a), (c), (e) which were obtained using the “classical”
L2 gradients, cf. (19), with the same number of iterations as the stopping rule. It
should be emphasized that the approach based on the Sobolev gradients leads to
estimates of the heat source function which are both significantly smoother and
also more accurate, except for the endpoints of the interval [0, 1].

6. Concluding Remarks

In this investigation we considered the application of a number of state-of-the-
art gradient-based minimization algorithms to the solution of a complex PDE-
constrained optimization problem. This model problem arises in the context of the
time-dependent inverse natural convection problem, and is quite typical for many
inverse and optimization problems in fluid mechanics [43]. Determination of the
gradient direction in such problems typically involves the solution of a suitably-
defined adjoint system. An important question which often arises in practical ap-
plications concerns the efficient determination of the length of the step along the
descent direction. This study was conducted to assess the trade-offs inherent in the
different approaches to this problem, namely, techniques relying on a rather coarse
approximation of the optimal step size which have a fairly small computational
cost per iteration, and techniques employing a more accurate approximation of the
optimal step size and therefore having a larger computational cost per iteration.
We carefully examined, both in terms of the rate of convergence and the corre-
sponding computational time, the performance of four state-of-the-art algorithms
based on the conjugate gradients. It was found that, when compared to the classical
CG method with the step size determined based on the solution of the sensitivity
equations, the adaptive nonmonotone SCG algorithm exhibited more rapid con-
vergence. This accelerated convergence was the consequence of a more accurate
determination of the step size in the adaptive nonmonotone SCG algorithm, which
also resulted in a higher computational cost per iteration of this algorithm. How-
ever, the benefit of the more rapid convergence exhibited by this algorithm was
not negated by the higher per-iteration cost since it still achieved the best per-
formance in terms of the total CPU time. While the improvement in performance
was not very large, essentially it improved by a factor of two or so, the adaptive
nonmonotone SCG algorithm could be recommended for the solution of problems
such as INCP given the modest additional effort required for its implementation in
comparison to the classical CG approaches. We also considered the solution of the
reconstruction problem in the presence of noisy measurements and demonstrated
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that the use of Sobolev gradients, which are quite straightforward to implement
in the context of gradient-based optimization, can have a significant regularizing
effect.
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(a) Algorithm 1
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(b) Algorithm 2
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(c) Algorithm 3
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(d) Algorithm 4

Figure 2. The reconstructions of the heat source obtained with the four Algorithms after different numbers
of iterations.

Algorithm 1 e(GK) Ke J(GK) CPU time in seconds
10−3 4 1.9079E-04 209.15 + 255.96 + 270.05 + 2.74 = 737.90
10−4 97 1.0451E-05 5.0363E3 + 6.7110E3 + 7.0088E3 + 66.75 = 1.8823E4
10−5 255 6.8141E-07 1.2905E4 + 1.7928E4 + 1.8687E4 + 175.26 = 4.9696E4
10−6 549 3.1323E-09 2.7866E4 + 3.8098E4 + 3.9765E4 + 374.23 = 1.0610E5

Algorithm 2 e(GK) Ke J(GK) CPU time in seconds
10−3 4 1.1814E-04 212.10 + 298.19 + 274.83 + 2.90 = 788.02
10−4 29 7.1226E-06 1.4917E3 + 2.072E3 + 2.0586E3 + 19.90 = 5.6425E3
10−5 111 1.0259E-07 5.3000E3 + 7.3882E3 + 8.1656E3 + 73.33 = 2.0927E4
10−6 240 9.8179E-10 1.1439E4 + 1.5911E4 + 1.7658E4 + 158.68 = 4.5166E4

Algorithm 3 e(GK) Ke J(GK) CPU time in seconds
10−3 4 3.4541E-04 215.35 + 257.89 + 218.08 + 258.66 + 3.79 = 953.77
10−4 20 2.7464E-06 1.0737E3 + 1.3094E3 + 1.0896E3 + 1.2928E3 + 19.10 = 4.7846E3
10−5 93 1.2573E-08 4.9601E3 + 6.1499E3 + 4.9594E3 + 6.0862E3 + 88.42 = 2.2244E4
10−6 191 1.0223E-09 1.0067E4 + 1.2706E4 + 1.0039E4 + 1.2559E4 + 181.52 = 4.5552E4

Algorithm 4 e(GK) Ke J(GK) CPU time in seconds
10−3 4 1.8181E-04 179.49 + 251.55 + 179.84 + 253.18 + 3.56 = 867.62
10−4 20 2.5622E-06 1.0458E3 + 1.4285E3 + 1.0316E3 + 1.4223E3 + 19.78 = 4.9479E3
10−5 93 2.0508E-08 4.7762E3 + 6.5171E3 + 4.6655E3 + 6.4516E3 + 90.54 = 2.2501E4
10−6 188 8.5956E-10 9.5563E3 + 1.3079E4 + 9.3506E3 + 1.2949E4 + 180.76 = 4.5116E4∗

Table 1. Comparison of the four Algorithms with respect to the number Ke of iterations required to reach a

prescribed accuracy of reconstruction e(GK) and the corresponding computational time.
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Figure 3. Decrease of objective function J(GK) as a function of iterations for different Algorithms.
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(b) Example (II)

Figure 4. Local temperature data at the location (0.4375,−0.6875) with noise against time.
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(a) σ = 0.01: e(GK ) = 2.5879E-3 & K = 5
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(b) σ = 0.01: e(GK ) = 1.6242E-3 & K = 5
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(c) σ = 0.03: e(GK ) = 2.4173E-2 & K = 5
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(d) σ = 0.03: e(GK ) = 4.2448E-3 & K = 5
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(e) σ = 0.05: e(GK ) = 5.5466E-2 & K = 4
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(f) σ = 0.05: e(GK ) =1.0177E-2 & K = 4

Figure 5. The estimation of the strength of a quadratic heat source varying with time as a sinusoidal
function.
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(a) σ = 0.01: e(GK) = 3.1654E-3 & K = 20
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(b) σ = 0.01: e(GK) = 2.3953E-3 & K = 20
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(c) σ = 0.03: e(GK) = 1.3235E-2 & K = 8
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(d) σ = 0.03: e(GK) = 7.1001E-3 & K = 8
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(e) σ = 0.05: e(GK) = 2.1971E-2 & K = 5
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(f) σ = 0.05: e(GK) = 1.2363E-2 & K = 5

Figure 6. The estimation of the strength of a quadratic heat source varying with time as a symmetric
sinusoidal curve-like function.
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Appendix A. Discretization in Time using the Consistent Splitting Scheme

This Appendix summarizes the use of the CSS for the direct problem, the adjoint
problem and the sensitivity problem.

• Direct Problem: A second-order decoupled approximation to the non-dimensional
INCP is defined as follows: Let u0 = u−1 = u(x, 0), p0 = p−1 = p(x, 0),
and T 0 = T−1 = T (x, 0). Let (un, pn, Tn) be the nth time-step to (u(x, n∆t),
p(x, n∆t), T (x, n∆t)). For n = 1, we use the first-order discretization in space,
together with the backward Euler discretization in time to obtain (u1, p1, T 1).
Then, for n ≥ 1, find un+1, pn+1 and Tn+1 such that



1
ϵ

(
3un+1 − 4un + un−1

2∆t

)
+

1
ϵ2

((2un − un−1) · ∇)un+1 +
1

2ϵ2
(∇ · (2un − un−1))un+1

−RνPr

ϵ
∇2un+1 +

(
Pr

Da
+

Fϵ√
Da

|2un − un−1|
)

un+1

= −∇(2pn − pn−1) +RaPr(2Tn − Tn−1)j,
un+1

∣∣
∂Ω

= 0.
(A1)

(∇ϕn+1,∇b) =
(

1
ϵ

(
3un+1 − 4un + un−1

2∆t

)
,∇b

)
, ∀b ∈ H1(Ω). (A2)

pn+1 = ϕn+1 + 2pn − pn−1 − RνPr

ϵ
∇ · un+1. (A3)


σr

(
3Tn+1 − 4Tn + Tn−1

2∆t

)
+ un+1 · ∇Tn+1 − αm∇2Tn+1

= G(tn+1)δk(x− x†)δk(y − y†),

Tn+1
∣∣
∂Ω1

= 0, and
∂Tn+1

∂x

∣∣∣∣
∂Ω2

= 0.

(A4)

• Adjoint Problem: Likewise, for l ≥ 1, find ξl+1, ql+1 and ηl+1 such that

1
ϵ

(
3ξl+1 − 4ξl + ξl−1

2∆τ

)
− 1
ϵ2

(ul+1 · ∇)ξl+1 +
1

2ϵ2
(∇ · ul+1)ξl+1 − RνPr

ϵ
∇2ξl+1 +

Pr

Da
ξl+1

= −∇(2ql − ql−1) − 1
ϵ2

(2ξl − ξl−1) ·
(
∇ul+1

)T +
1

2ϵ2
∇
(
ul+1 · (2ξl − ξl−1)

)
−(2ηl − ηl−1)∇T l+1 − Fϵ√

Da

(
|ul+1|2

)
(2ξl − ξl−1) +

(
(2ξl − ξl−1) · ul+1

)
ul+1

|ul+1|
,

ξl+1
∣∣∣
∂Ω

= 0.

(A5)

(∇ψl+1,∇b) =

(
1
ϵ

(
3ξl+1 − 4ξl + ξl−1

2∆τ

)
,∇b

)
, ∀b ∈ H1(Ω). (A6)
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ql+1 = ψl+1 + 2ql − ql−1 − RνPr

ϵ
∇ · ξl+1. (A7)


σr

(
3ηl+1 − 4ηl + ηl−1

2∆τ

)
− ul+1 · ∇ηl+1 − αm∇2ηl+1

= RaPr (ξy)l+1 +
∑M

m=1

[
T l+1 −

(
T †)l+1

]
δ(x− xm)δ(y − ym),

ηl+1
∣∣
∂Ω1

= 0, and
∂ηl+1

∂x

∣∣∣∣
∂Ω2

= 0.

(A8)

• Sensitivity Problem: Likewise, for n ≥ 1, find δun+1, δpn+1 and δTn+1 such that

1
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+

1
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(A9)

(∇δϕn+1,∇b) =
(

1
ϵ

(
3δun+1 − 4δun + δun−1

2∆t

)
,∇b

)
, ∀b ∈ H1(Ω). (A10)

δpn+1 = δϕn+1 + 2δpn − δpn−1 − RνPr

ϵ
∇ · δun+1. (A11)


σr

(
3δTn+1 − 4δTn + δTn−1

2∆t

)
+ un+1 · ∇δTn+1 − αm∇2δTn+1

= −δun+1 · ∇Tn+1 + d(tn+1)δk(x− x†)δk(y − y†),

δTn+1
∣∣
∂Ω1

= 0, and
∂δTn+1

∂x

∣∣∣∣
∂Ω2

= 0.

(A12)

The above systems of nonlinear partial differential equations are discretized by
the backward difference formula (BDF) in time. The time integrator used in the
momentum equations (see (A1), (A5), and (A9)) is fully implicit for the viscous
term and semi-implicit for the nonlinear advection term. Specifically, to avoid any
restriction on the time step (in other words, to ensure unconditional stability),
the advection term u · ∇u has been replaced by its skew-symmetric counterpart
(u · ∇)u + 1

2(∇ · u)u (e.g., [22]). In the adjoint and the sensitivity problems,

ignoring the factor
1
ϵ2

, the stabilisation terms become 1
2 [(∇ · u)ξ −∇ (u · ξ)] and

1
2 [(∇ · u)δu + (∇ · δu)u]. Of particular interest in (A2) is that the auxiliary pres-
sure ϕn+1, treated as a correction term, is unknown and will be determined at each
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time-step. The pressure pn+1 in (A3) is not only updated by the previous linear
extrapolation terms 2pn − pn−1 but also reduced down by the boundary layer ef-

fect along the bounded surface because of the term
RνPr

ϵ
∇ ·un+1. The correction

terms ψn+1 in (A7) and δϕn+1 in (A11), accordingly, can be interpreted similar to
the direct problem. For an in-depth discussion of the numerical implementation,
the reader should refer to [40, 41].

Appendix B. Discretization in Space Using Finite Elements

In order to solve the optimality systems of (A1) - (A4), (A5) - (A8), and (A9) -
(A12), we use the mixed FE method. Let Th be a regular FE mesh consisting of
triangular FE mesh. We define Xh, the approximation space for the velocity, as the
set of continuous functions that are piecewise quadratic on each triangular mesh of
Th. The approximation space Nh for the auxiliary pressure and pressure consists of
continuous functions that are piecewise linear on each triangular mesh. To ensure
that the auxiliary pressure and pressure are uniquely defined, we require it to have
a mean value of zero. The basic principle guiding the choice of the mixed FE
basis functions is that they should satisfy the inf-sup compatibility condition and
therefore avoid node-to-node pressure oscillations . The element pair used for the
present work is a Hood-Taylor type (see e.g., [44]); {uh, vh, Th}, {ξxh, ξ

y
h, ηh}, and

{δuh, δvh, δT h}, are interpolated in a quadratic fashion, while {ph, ϕh}, {qh, ψh},
and {δph, δϕh} are interpolated in a linear manner, as depicted in Figure B1.
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Figure B1. P2 for {uh, vh, Th}, {ξx
h, ξ

y
h, ηh}, and {δuh, δvh, δTh}; P1 for {ph, ϕh}, {qh, ψh}, and

{δph, δϕh}.
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