Assignment 2, Math 2S3 Due Feb. 4 in class

- (1) (a) How many elements are in an *n*-dimensional vector space over the field with 2 elements, Z_2 ?
 - (b) How many invertible $2 \ge 2$ matrices are there over Z_2 ? How many invertible $3 \ge 3$ matrices are there over Z_2 ? You can use the fact that for a matrix to be invertible, the columns must be linearly independent.
 - (c) Write out an expression for the number of invertible $n \times n$ matrices over Z_2 .
- (2) Show that if U and W are finite-dimensional K-vector spaces, $\dim(U \times W) = \dim(U) + \dim(W).$
- (3) Suppose that U and W are finite dimensional subspaces of some K-vector space V. Compute the dimension of U + W. Hint: Begin with a basis for $U \cap W$.
- (4) For $n \times n$ matrices over K, $M_n(K)$, a particularly interesting linear functional is the trace: if $A = (a_{ij})$ then

$$tr(A) = a_{11} + \ldots + a_{nn}$$

Show that for any two matrices $A, B \in M_n(K)$, tr(AB) = tr(BA).