Assignment 2, Math 2S3
Due Feb. 4 in class
(1) (a) How many elements are in an n-dimensional vector space over the field with 2 elements, Z_{2} ?
(b) How many invertible 2×2 matrices are there over Z_{2} ? How many invertible 3×3 matrices are there over Z_{2} ? You can use the fact that for a matrix to be invertible, the columns must be linearly independent.
(c) Write out an expression for the number of invertible $n \times n$ matrices over Z_{2}.
(2) Show that if U and W are finite-dimensional K-vector spaces, $\operatorname{dim}(U \times W)=\operatorname{dim}(U)+\operatorname{dim}(W)$.
(3) Suppose that U and W are finite dimensional subspaces of some K-vector space V. Compute the dimension of $U+W$. Hint: Begin with a basis for $U \cap W$.
(4) For $n \times n$ matrices over $K, M_{n}(K)$, a particularly interesting linear functional is the trace: if $A=\left(a_{i j}\right)$ then

$$
\operatorname{tr}(A)=a_{11}+\ldots+a_{n n}
$$

Show that for any two matrices $A, B \in M_{n}(K), \operatorname{tr}(A B)=$ $\operatorname{tr}(B A)$.

