Assignment 3, Math 2S3
Due Feb. 25 in class
(1) Show that if A is an $n \times n$ matrix over K then

$$
\{f \in K[x]: f(A)=0\}
$$

is an ideal. Conclude that the generator of this ideal is the minimal polynomial of A and it divides the characteristic polynomial of A.
(2) We say that an $n \times n$ matrix N is nilpotent if for some $r, N^{r}=0$. What is the characteristic polynomial of a nilpotent matrix?
(3) Use the fact that every $n \times n$ matrix over C is similar to an upper triangular matrix to show that if A is an $n \times n$ matrix over C then $A=D+N$ where D is a diagonalizable matrix and N is a nilpotent matrix.
(4) Given an example of an $n \times n$ complex matrix with a single eigenvalue whose minimal polynomial has degree n and an example where the minimal polynomial has degree less than n.

