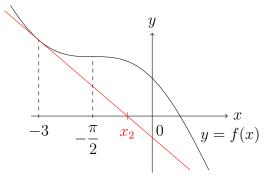
8 October 2015


 Full Name:
 Solutions

 Student # :

TA: Max Lazar

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.

[10 marks] (1) Consider the graph of the function $f(x) = \cos x - x$ below:

(a) [2] Explain why choosing $x_1 = -\frac{\pi}{2}$ would be a bad choice for your initial guess to start using Newton's method.

If we pick $x_1 = -\pi/2$, then the tangent to $f(x_1)$ is a horizontal line, which will never cross the x-axis. As a result, we won't get an x_2 value. Another way to consider this is that $f'(x_1)$ would be 0 at $x_1 = -\pi/2$, so we can't get an x_2 value by using Newton's method.

- (b) [4] Given $x_1 = -3$ as your initial guess, sketch on the graph how you would find your next guess, x_2 , using Newton's method.
- (c) [4] Given $x_1 = -3$, use Newton's method to compute x_2 .

First we should compute f'(x): $f'(x) = -\sin x - 1$. Now we're ready to find x_2 .

$$x_{2} = x_{1} - \frac{f(x_{n})}{f'(x_{n})}$$

= $x_{1} - \frac{\cos x_{n} - x_{n}}{-\sin x_{n} - 1}$
= $-3 - \frac{\cos (-3) - (-3)}{-\sin (-3) - 1}$
= $-3 - \frac{\cos 3 + 3}{\sin 3 - 1} \approx -0.660$