
MATH 3GR3 Assignment #1 Solutions
Due: Friday, September 22, 11:59pm

Upload your solutions to the Avenue to Learn course website.
Detailed instructions will be provided on the course website.

1. Determine which of the following relations are equivalence relations.
For those that are, describe the partition that arises from it.

(a) R = {(a, b) ∈ Z2 : ab > 0}

Solution: As presented, R is a binary relation on the set Z. R is
not an equivalence relation on the set Z since the pair (0, 0) is not
in R and so R is not reflexive. R is symmetric and transitive and
contains (a, a) for all non-zero integers a and so on the set Z\{0},
R is an equivalence relation. Two elements of Z \ {0} are related
by R if and only if they have the same sign and so R partitions
this set into two parts, the set of positive integers, and the set of
negative integers.

(b) R = {(a, b) ∈ R2 : |a| = |b|}

Solution: R is an equivalence relation on R since:

� For all a ∈ R, |a| = |a| and so (a, a) ∈ R. (Reflexivity)
� For all a, b ∈ R, if (a, b) ∈ R then |a| = |b| and so |b| = |a|,
hence (b, a) ∈ R. (Symmetry)

� For all a, b, c ∈ R, if (a, b) ∈ R and (b, c) ∈ R then |a| = |b|
and |b| = |c| and so |a| = |c|. Thus (a, c) ∈ R. (Transitivity)

Two elements of R are equivalent if they have the same absolute
value and so R partitions R into sets of the form {−a, a} for a a
positive real number. The number 0 is only related to itself and
so {0} is the only one-element block of the partition determined
by R.

(c) For a, b ∈ N, a ∼ b if and only if the number of digits in the
decimal representations of a and b are the same.

Solution: The relation ∼ is an equivalence relation on N:
� Reflexivity is automatic, since every a ∈ N, has a definite
decimal (base 10) representation.
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� For all a, b ∈ N, if a ∼ b then the number of digits in the
base 10 representations of a and b are the same and so b ∼ a.
(Symmetry)

� For all a, b, c ∈ N, if a ∼ b and b ∼ c then all three numbers
have the same number of digits in their base 10 representa-
tions and so a ∼ c. (Transitivity)

Here are the blocks of the partition determined by ∼:

{0, 1, 2, . . . , 9}, {10, 11, 12, . . . , 99}, {100, 101, . . . , 999}, . . . ,

Note that there are an infinite number of blocks in this partition,
one for each positive natural number. Also note that each block
is finite. (Question: for n > 0, how big is the block consisting of
all n-digit numbers?)

(d) For a, b ∈ R, a ∼ b if and only if |a− b| ≤ 2.

Solution: This relation is not an equivalence relation since it is
not transitive (but it is reflexive and symmetric). For example,
1 ∼ 2.5 and 2.5 ∼ 4, but 1 ̸∼ 4.

2. Let G = {e, x, y} be any group with three elements. Produce the
Cayley (multiplication) table for G.

Solution: The following is the Cayley table for G:

· e x y
e e x y
x x y e
y y e x

Justification: The first row and first column values are determined by
the equation e·g = g ·e = g for all g ∈ G, since e is the identity element.
Since each row and column of the table provides a permutation of G
then the value of x · y must be either y or e. If xy = y then by
cancelation, e = y, a contradiction. Thus, xy = e. From this it follows
that xx = y. Similarly, we can show that yx = e and yy = x.

3. Let G = {e, x, y, z} be a group with four elements, with e the identity
element. Show that there are exactly two possibilities for the Cayley
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table forG, up to a rearrangement of the elements. This means that any
Cayley table that can be obtained from another one by, for example,
interchanging y with z in all places in the table, should be considered
as the same table.

Solution: As in the previous question, the first row and column of the
table are determined since e is the identity element. Let’s consider the
possible values for xx. Since the second row is a permutation of G then
xx ∈ {e, y, z}.

Case 1: xx = e. Then xy = z, since the third column is a permutation
of G and so xy ̸= y. It then follows that xz = y. By symmetry,
it follows that yx = z, zx = y. At this point, there are only two
possibilities for yy, either e or x and both of them lead to Cayley
tables, as indicated below.

· e x y z
e e x y z
x x e z y
y y z e x
z z y x e

· e x y z
e e x y z
x x e z y
y y z x e
z z y e x

Case 2: xx = y. Then xy = z, xz = e, yx = z, zx = e, yz = x, zz = y,
yy = e, and zy = x are all forced. This completes another Cayley table,
that is the same as the second table above, up to a rearrangement of
the letters.

Case 3: xx = z. This case is similar to case 2.

4. Prove that every non-abelian group G has at least six elements, i.e.,
every group of size 5 or less is abelian.

Solution:

Using the previous two questions and the fact that every group of size
2 or less is abelian, it will suffice to show that every 5 element group
G is abelian. Suppose that G = {e, x, y, z, w} is a group and that the
elements x and y do not commute, i.e., xy ̸= yx. It follows that xy
and yx must take on the values {z, w} since, for example, if xy = e
then x−1 = y, implying that yx = e as well. xy = x can be ruled
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out, since this would imply that y = e. Note that this shows that any
non-abelian group must have at least 5 elements and so we really don’t
need to refer to the previous two problems.

So, we may assume that xy = z and yx = w. Let’s consider xx. Since
the second column of the Cayley table of G is a permutation, it follows
that xx takes on a value from {e, y, z}. But xx ̸= z, since z already
appears in the second row of the table. So either xx = e or xx = y.
If xx = y, then we have that w = yx = (xx)x = x(xx) = xy = z, a
contradiction. So, xx = e. Similarly, we can conclude that yy = e.
From this, we can fill in a few more values of the Cayley table of G, in
particular, zy = w. But then, x = xe = x(yy) = (xy)y = zy = w, a
contradiction. Thus xy ̸= yx is not possible and so G is abelian.

5. Describe the set of symmetries of a circular disc. In particular, show
that this set is infinite.

Solution: Assume that the disc is centered at the origin and that it
has radius 1. Let’s label two points by the letters A and B on the
perimeter (say the points (1, 0) and (0, 1)). A symmetry of the disc
will have the effect of moving the point A to some other position on
the unit circle. This can be achieved by rotating the disc in a counter
clockwise direction by some angle θ with value in the interval [0, 2π).
The point B must end up either to the left or the right of where the
point A was moved. If it is to the left, then the symmetry can be
described simply as a rotation of the disc by θ radians.

On the other hand, if B ends up to the right of A, then this can be
achieved by first rotating the disc by θ radians and then by reflecting
it about the radial line through the point A. Note that this second
sort of symmetry can also be described as a reflection of the disc about
some radial line. Of course, since there are an infinite number of angles
between 0 and 2π to rotate the disc by, then this symmetry group is
infinite.

Since a symmetry of the disc is completely determined by where it sends
the two points A and B, the above describes all of the symmetries of
the disc.

6. Describe the set of symmetries of a regular tetrahedron. You do not
need to provide the multiplication table for the corresponding group.

4



Solution: Label the four vertices of the tetrahedron by the letters A, B,
C, and D. Then every symmetry of the tetrahedron can be described
by some permutation σ of these four letters, since once the positions of
the 4 vertices have been determined, the symmetry is also determined.
Since there are 24 such permutations, then the symmetry group can
have at most 24 elements.

There are a number of ways to see that there are exactly 24 symmetries.
First, consider those symmetries that fix vertex A. There are exactly
6 of these: the identity, rotation by 2π/3 radians counter clockwise
about the axis through A, rotation by 4π/3 radians, and the reflections
though the three planes that contain A along with one of the other
vertices. Note that these induce the 6 symmetries of the equilateral
triangle with vertices B, C, and D. The remaining 18 symmetries
can be obtained by first applying one of these 6 symmetries, and then
applying the rotation symmetry that interchanges A with one of the
other vertices.

7. Let G be a set and ◦ a binary operation on G that satisfies the following
properties:

(a) ◦ is associative,

(b) There is an element e ∈ G such that e ◦ a = a for all a ∈ G,

(c) For every a ∈ G, there is some b ∈ G such that b ◦ a = e.

Prove that (G, ◦) is a group.

Solution: We need to show that the element e not only satisfies e◦a = a
for all a, but that a ◦ e = a. We also need to show that if b ◦a = e then
a ◦ b = e for all a, b ∈ G. Let a ∈ G and let b ∈ G with ba = e. From
the equality ee = e we get (ba)e = ba. We know that there is c ∈ G
with cb = e and so

ae = (ea)e = ((cb)a)e = (c(ba))e = c((ba)e) = c(ba) = (cb)a = ea = a.

Now, suppose that ba = e. Then b = eb = (ba)b = b(ab). Choose c ∈ G
with cb = e. Then

e = cb = c(b(ab)) = (cb)(ab) = e(ab) = ab.
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8. Let G be a group such that a2 = e for all a ∈ G. Prove that G is
abelian.

Solution: Let g, h ∈ G. Then gg = hh = (gh)(gh) = e since every
element of G has order two. From ghgh = e we can obtain ghghh = eh
and so ghg = h and from this that gghg = gh, which yields hg = gh.
Thus G is abelian.

9. Let G be a finite group. Show that the number of elements a of G with
the property that a3 = e is odd. Show that the number of elements a
of G with the property that a2 ̸= e is even.

Solution: Note that the element e of G satisfies e3 = e. To show
that the set of elements of G with this property is odd, then it will
suffice to show that the remaining elements of this set come in pairs.
If a3 = e and a ̸= e then a−1 = a2 and so a−1 ̸= a. Since a3 = e, then
(a−1)3 = (a3)−1 = e and so a−1 is in this set. Thus this set consists of
the element e and pairs of distinct elements of the form {a, a−1} and
so has odd size.

We can use the same sort of argument. Elements of the set {a ∈ G | a2 ̸=
e} come in pairs of the form {a, a−1} and so this set has even size. If
a2 ̸= e, then it follows that a−2 ̸= e and so (a−1)2 ̸= e. Furthermore,
a ̸= a−1 for such an element, or else we would have that a2 = aa−1 = e.

10. For the SageMath question, click on the following link to see a solution:
link.
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https://sagecell.sagemath.org/?z=eJxlkEFrg0AQhe-C_-FhKFWQoDY2UOipAW8eepBACWXW3ZgFXcO6Quiv7xgbE-hleDPz5pthKrxju03TPMlyYIWdXaOiVlndO_U8YHCjVMbBjJ1Q1vdK9m-SJM1eNnnymvPE0HcKHUmF8fzPvsKZrAsp8r1P1ZE2UlkmlHhC5Xtnq40LA27DnRTs4tDDG4IYy0h0IyEUrPcFMy5NLcMqLjmf0n3xlRx8j2aZshSzzA73RSJC8bFj_EQvYgQgI0HXKEBWTWvpVmePeNhcR3dQPV98pNr1Vv-Q071Bf-SRMg7-zi_XczuMFkgoHxhyZgwdta0aHLjOnxS6afgD7kRmoU2XlGujLu77amLiL2r1fMk=&lang=sage&interacts=eJyLjgUAARUAuQ==

