
MATH 4L03 Assignment #2 Solutions

Due: Friday, September 27, 11:59pm.

Upload your solutions to the Avenue to Learn course website. Detailed
instructions will be provided on the course website.

1. For each of the following formulas find formulas that are in disjunctive
normal form and conjunctive normal form that are logically equivalent
to it.

(a) (p ∧ q) → r.

(b) (p ∨ q) ∧ (¬p ∨ r).
(c) (p ∨ q) ↔ c.

Solution:

(a) (p∧ q) → r is logically equivalent to ¬p∨¬q∨ r (CNF). The DNF
formula equivalent to this is long. Since the formula is logically
equivalent to ¬p∨¬q ∨ r, then it is the disjunction of all possible
conjuncts, except for the unique one, (p∧q∧¬r) that corresponds
to the only truth assignment that falsifies the formula. It looks
like

(¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r)∨
(¬p ∧ ¬q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∨ q ∨ r).

(b) (p ∨ q) ∧ (¬p ∨ r) is logically equivalent to

(p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r),

a formula in DNF. It is logically equivalent to the following CNF
formula:

(p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ r).

(c) (p ∨ q) ↔ c is logically equivalent to

(p ∧ q ∧ c) ∨ (p ∧ ¬q ∧ c) ∨ (¬p ∧ q ∧ c) ∨ (¬p ∧ ¬q ∧ ¬c),

a formula in DNF. It is logically equivalent to the following CNF
formula:

(p ∨ q ∨ ¬c) ∧ (p ∨ ¬q ∨ c) ∧ (¬p ∨ q ∨ c) ∧ (¬p ∨ ¬q ∨ c).
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2. Let α be a formula whose only connective symbols are ¬, ∨ and ∧. Let
α′ be the formula obtained by replacing each occurrence of ∨ in α by ∧,
each occurrence of ∧ in α by ∨ and each occurrence of a propositional
variable by its negation.

For example, if α is the formula:

(p1 ∨ (¬p2 ∧ p1))

then α′ is:
(¬p1 ∧ (¬¬p2 ∨ ¬p1)).

Show, for any formula α, that α′ is logically equivalent to ¬α.

Solution: The fact that α′ is logically equivalent to ¬α will be proved
by induction on the length of the formula α.

For α of length 0, say α = pi we see that α
′ is just ¬pi. So α′ is actually

equal to ¬α and the logical equivalence follows.

Assume the fact is true for all suitable formulas of length k or less and
let α be a formula of length k+1 whose only logical connectives are ∨,
∧ and ¬. Then there are three cases to consider:

� α = (β ∨ γ) for some formulas β and γ. Since these formulas
are shorter than α, then our inductive hypothesis applies to them,
yielding that β′ is logically equivalent to ¬β and γ′ is logically
equivalent to ¬γ. We see that α′ is just (β′ ∧ γ′) (this actually
requires another inductive argument, but should be clear), and
so by our hypothesis, we get that α′ is logically equivalent to
(¬β∧¬γ). This formula is logically equivalent (using De Morgan’s
Law) to ¬(β ∨ γ), which is just ¬α as required.

� α = (β ∧ γ) for some formulas β and γ. This case is similar to
the previous one and can be proved by repeating the previous
argument with ∧ in place of ∨ and vice versa.

� α = ¬β. Then as β has length less than α, we know by our
inductive hypothesis that β′ is logically equivalent to (¬β). Then,
α′ = ¬β′ and so is logically equivalent to ¬¬β. Of course, this
formula is just ¬α and so we are done.

3. Let τ and ρ be formulas and Γ a set of formulas with τ a tautology.

2



(a) Prove that Γ |= τ .

(b) Prove that τ |= ρ if and only if ρ is a tautology.

Solution: To show that Γ |= τ we need to show that for all assignments
ν, if ν satisfies Γ then ν satisfies τ . Since τ is a tautology, then ν satisfies
τ for all assignments ν, in particular, for those which also satisfy Γ.
Thus Γ |= τ .

If ρ is any formula, then from what has been established in a), τ |= ρ
if ρ is a tautology. Conversely, if τ |= ρ, then consider any assignment
ν. We need to show that ν satisfies ρ in order to prove that ρ is a
tautology. But, since τ is a tautology, we have that ν satisfies τ . From
τ |= ρ we conclude that ν satisfies ρ as required.

4. Let ϕ, ψ, and θ be formulas. Show that

(ϕ→ (ψ → θ)) |= ((ϕ→ ψ) → (ϕ→ θ)).

Does
((ϕ→ ψ) → (ϕ→ θ)) |= (ϕ→ (ψ → θ))?

Solution: Truth tables can be used to show that both logical impli-
cations hold, i.e., that the two formulas are logically equivalent (the
table will have 8 rows) or by an informal argument: If ν is a truth
assignment that falsifies ((ϕ → ψ) → (ϕ → θ)) we need to show that
it also falsifies (ϕ → (ψ → θ)). But if ν falsifies the first statement,
then it must falsify ϕ → θ and satisfy ϕ → ψ, so ν(ϕ) = ν(ψ) = T
and ν(θ) = F . But this assignment also falsifies (ϕ → (ψ → θ)), as
required.

Conversely, if ν is a truth assignment that falsifies (ϕ→ (ψ → θ)) then
it follows that ν(ϕ) = ν(ψ) = T and ν(θ) = F as well. But then ν
falsifies ((ϕ→ ψ) → (ϕ→ θ)).

5. A set of formulas Σ is called semantically closed if:

for every formula α, if Σ |= α, then α ∈ Σ.

(a) Prove that the set of tautologies is semantically closed. (Hint: use
problem 3 a))
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(b) Prove that if Γ is semantically closed, then it contains every tau-
tology.

(c) Prove that the intersection of any collection of semantically closed
sets is a semantically closed set.

(d) Prove that for every set Γ, there is a smallest set of formulas (with
respect to inclusion) which contains Γ and which is semantically
closed (call this set the semantic closure of Γ).

(e) What is the semantic closure of the set {p,¬p}?

Solution:

(a) Let Ω be the set of tautologies. To show that Ω is semantically
closed, we must show that for any formula α, if Ω |= α then α is
a tautology. So, suppose that Ω |= α, and let ν be a truth assign-
ment. Since every truth assignment satisfies every tautology, then
ν satisfies Ω. But then Ω |= α implies that ν satisfies α. Thus
we have shown that every truth assignment satisfies α and so we
conclude that α is a tautology.

(b) Let Γ be semantically closed and let τ be a tautology. Then from
problem #3 we see that Γ |= τ . Since Γ is assumed to be seman-
tically closed, it follows that τ ∈ Γ.

(c) Let I be some set and {Γi : i ∈ I} be a collection (indexed by
I) of semantically closed sets. Let Γ be the intersection of the Γi,
i ∈ I. To show that Γ is semantically closed, suppose that Γ |= α.
Since Γ ⊆ Γi for each i ∈ I then it follows that Γi |= α for each
i ∈ I. Since the Γi are semantically closed, it follows that α ∈ Γi

for each i ∈ I. This implies that α is in the intersection of the
Γi’s and so α ∈ Γ. Thus Γ is semantically closed.

(d) The set of all formulas is semantically closed, so there is at least
one semantically closed set which contains Γ. Let Γ be the in-
tersection of all semantically closed sets which contain Γ. So,
Γ is a subset of every semantically closed set which contains Γ.
From part (c) of this problem we see that Γ is semantically closed
(and of course, contains Γ). It is the smallest such set, since as
noted earlier, Γ is a subset of every semantically closed set which
contains Γ.
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Here is another solution: Let Γ be the set of all formulas which
are logically implied by Γ. Then Γ is contained in this set, since
Γ |= γ for all γ ∈ Γ. This set is semantically closed, for if Γ |= α,
then Γ |= α and thus, by definition, α ∈ Γ.

Γ is the smallest semantically closed set which contains Γ since if
∆ is any other semantically closed set which contains Γ, then for
α ∈ Γ we have that Γ |= α, implying that ∆ |= α, which in turn
implies that α ∈ ∆ since ∆ is semantically closed. Thus Γ ⊆ ∆.

(e) Since every formula is logically implied by {p1,¬p1} it follows that
the set of all formulas is the semantic closure of this set.

6. Let Σ be a set of formulas and α and β be formulas.

(a) Show that if either Σ |= α or Σ |= β then Σ |= (α ∨ β).
(b) Show, by example, that the statement: “if Σ |= (α∨β) then either

Σ |= α or Σ |= β” is false in general.

Solution: Suppose that Σ |= α. Then for all truth assignments ν,
if ν satisfies Σ then ν satisfies α. But then by the definition of the
connective ∨, we have that ν satisfies (α ∨ β), and so we have shown
that Σ |= (α∨β). Similarly, if Σ |= β we can conclude that Σ |= (α∨β).
Let Σ be the set {(p1 ∨ p2)}, α = p1 and β = p2. Then, Σ |= (α ∨ β),
since Σ = {(α ∨ β)} but Σ ̸|= α and Σ ̸|= β.

BONUS: Suppose that θ ∈ Form(P, {¬,↔}). Prove that θ is a tautology if and
only if every propositional variable occurs an even number of times in
θ and the connective ¬ occurs an even number of times in θ.

Solution: We first deal with the negation connective by showing that
the following property holds for all formulas θ ∈ Form(P, {¬,↔}).

If θ has an even number of occurrences of ¬ then it is logically
equivalent to a formula θ′ that only contains↔ and such that
the number of occurrences of each variable in θ is the same
as in θ′. If θ has an odd number of occurrences of ¬ then it is
logically equivalent to a formula ¬θ′ where θ′ only contains
↔ and such that the number of occurrences of each variable
in θ is the same as in θ′.
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We prove this by induction on the length of θ. If θ has length 0 then
it is a variable, and there is nothing to show. If the length of θ is n+1
for some n ≥ 0 and the condition holds for shorter formulas, then there
are two similar cases to consider: θ has an even number of occurrences
of ¬ or it has an odd number. Suppose that the former holds. There
are two subcases to consider: θ = ¬α or θ = (α ↔ β). In the first
subcase, since θ has an even number of occurrences of ¬, then α has an
odd number and so by induction, α ≡ ¬α′, for some α′ as in the stated
condition. But then θ ≡ ¬¬α′ ≡ α′ and we are done, since θ and α′

have the same number of occurrences of each variable.

In the other subcase, θ = (α ↔ β) and we have, by induction, that
the condition holds for α and for β. There are two possibilities: either
both α and β contain an even number of ¬’s or both contain an odd
number. In the former, we can argue as in the previous subcase to
conclude that θ ≡ (α′ ↔ β′), and in the latter we conclude that

θ ≡ (¬α′ ↔ ¬β′) ≡ ¬¬(α′ ↔ β′) ≡ (α′ ↔ β′),

showing that the condition holds for θ in this case. The other case,
where the number of occurrences of ¬ in θ is odd can be handled
similarly.

This shows that the condition holds for all formulas θ ∈ Form(P, {¬,↔
}). From this we can see that if θ has an odd number of ¬’s then it isn’t
a tautology. If θ ≡ ¬θ′ as in the condition, then the truth assignment
that sets all variables to T will satisfy θ′ (this should be proved by
induction on the length of θ′) and so falsifies ¬θ′ and hence falsifies θ.

So, now we need only consider formulas in which ¬ occurs an even
number of times. Using the above condition, we need only consider
those formulas in which ¬ doesn’t occur at all, i.e., only those formulas
θ ∈ Form(P, {↔}). We will show that such a formula is a tautology if
and only if each variable occurs an even number of times in θ.

We will prove, by induction on the length of θ ∈ Form(P, {↔}) that:

If ν is a truth assignment, then ν(θ) = T if and only if the
number of occurrences, counting repetitions, of variables p in
θ for which ν(p) = F is even.
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When θ has length 1, this condition can be seen to hold. Suppose that
θ = (α ↔ β) and the condition holds for α and β. Let ν be a truth
assignment such that the number of occurrences of variables p in θ for
which ν(p) = F is even. There are two cases to consider. In the first,
for both α and β, the number of such variables is even. In this case,
by induction, ν(α) = ν(β) = T and so ν(θ) = T . In the other case, the
number of occurrences of variables for which ν(p) = F is odd for both
α and β. Then by induction, ν(α) = ν(β) = F , and so ν(θ) = T .

Conversely, suppose that ν is a truth assignment such that ν(θ) = T .
Then either ν(α) = ν(β) = T or ν(α) = ν(β) = F . In the first case, we
have by induction that the number of occurrences of variables p with
ν(p) = F in α is even and is also even for β. But then the number of
occurrences of such variables in θ is also even, as required. The final
case, where ν(α) = ν(β) = F can be handled similarly.

So we see that if θ ∈ Form(P, {↔}) is such that each variable occurs
an even number of times, then every truth assignment must satisfy θ
and so θ is a tautology. On the other hand, if some variable p occurs
an odd number of times in θ then the truth assignment that sets p to
F and all other variables to T will falsify θ, demonstrating that θ is
not a tautology.
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