MATH 4L03 Assignment #2

Due: Friday, September 27, 11:59pm.

Upload your solutions to the Avenue to Learn course website. Detailed instructions will be provided on the course website.

- 1. For each of the following formulas find formulas that are in disjunctive normal form and conjunctive normal form that are logically equivalent to it.
 - (a) $(p \land q) \to r$.
 - (b) $(p \lor q) \land (\neg p \lor r)$.
 - (c) $(p \lor q) \leftrightarrow c$.
- 2. Let α be a formula whose only connective symbols are \neg , \lor and \land . Let α' be the formula obtained by replacing each occurrence of \lor in α by \land , each occurrence of \land in α by \lor and each occurrence of a propositional variable by its negation.

For example, if α is the formula:

$$(p_1 \lor (\neg p_2 \land p_1))$$

then α' is:

$$(\neg p_1 \land (\neg \neg p_2 \lor \neg p_1)).$$

Show, for any formula α , that α' is logically equivalent to $\neg \alpha$.

- 3. Let τ and ρ be formulas and Γ a set of formulas with τ a tautology.
 - (a) Prove that $\Gamma \models \tau$.
 - (b) Prove that $\tau \models \rho$ if and only if ρ is a tautology.
- 4. Let ϕ , ψ , and θ be formulas. Show that

$$(\phi \to (\psi \to \theta)) \models ((\phi \to \psi) \to (\phi \to \theta)).$$

Does

$$((\phi \to \psi) \to (\phi \to \theta)) \models (\phi \to (\psi \to \theta))?$$

5. A set of formulas Σ is called **semantically closed** if:

for every formula α , if $\Sigma \models \alpha$, then $\alpha \in \Sigma$.

- (a) Prove that the set of tautologies is semantically closed. (Hint: use problem 3 a))
- (b) Prove that if Γ is semantically closed, then it contains every tautology.
- (c) Prove that the intersection of any collection of semantically closed sets is a semantically closed set.
- (d) Prove that for every set Γ , there is a smallest set of formulas (with respect to inclusion) which contains Γ and which is semantically closed (call this set the semantic closure of Γ).
- (e) What is the semantic closure of the set $\{p, \neg p\}$?
- 6. Let Σ be a set of formulas and α and β be formulas.
 - (a) Show that if either $\Sigma \models \alpha$ or $\Sigma \models \beta$ then $\Sigma \models (\alpha \lor \beta)$.
 - (b) Show, by example, that the statement: "if $\Sigma \models (\alpha \lor \beta)$ then either $\Sigma \models \alpha$ or $\Sigma \models \beta$ " is false in general.
- BONUS: Suppose that $\theta \in Form(P, \{\neg, \leftrightarrow\})$. Prove that θ is a tautology if and only if every propositional variable occurs an even number of times in θ and the connective \neg occurs an even number of times in θ .