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The Classical Isoperimetric Problem

Among all simple closed curves in the plane R? with a given perimeter L, which has the
largest area A?
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» In R3, we ask for the solid body Q C R® with given surface area which encloses the
largest volume.

» One can ask the same question in RY, d > 4, by properly defining d-dimensional
volume and (d — 1)-dimensional surface area.

» This is a problem in shape optimization, part of the area of mathematics known as
the Calculus of Variations.



Ancient Greece

For the ancients, mathematics meant geometry, and universal and/or optimal forms were
revered.

Theorem (Zenodorus (200-140 BCE))

Among reqular polygons having the same perimeter, more sides yields more area
enclosed.

For any regular polygon, the circle with the same perimeter has greater area.

Zenodorus took it as obvious that a regular polygon contain more area than any other

polygon with the same number of sides and the same perimeter. This is not difficult to
show.



Zenodorus' method

For a regular polygon, draw in the apothem, which is the perpendicular segment
connecting the center to any side.
The apothem is the height of the isosceles triangle shown.

The area of the polygon is half of the apothem times perimeter:

The area of the circle is half of the radius times perimeter:
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The inscribed circle has smaller perimeter but its radius = apothem of the polygon; the
circle with the same perimeter will have a larger radius, hence larger area.
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Jakob Steiner (1796-1863)

Steiner gave five different proofs of the following solution of
the Isoperimetric problem:

Theorem (Steiner (1842))

If C is a simple closed curve in the plane and C is not a circle, then there is a different
simple closed curve C" with the same perimeter containing a larger area.

Steiner’s methods are all geometrical and constructive: he assumes that C is a
non-circular curve, then deforms it so that it increases the area.

Each is based on the symmetries of the circle, mainly reflections in lines which
divide the perimeter of the curve exactly in half.

The device of comparing a domain with its reflection in a line or plane has been used
in many contexts:

Alexandroff (1955): method of reflection in planes in differential geometry;
Serrin (1971), Gidas-Ni-Nirenberg (1979): extension of Alexandroff method to show
symmetry of solutions to PDE

Steiner neglected one detail: why does there exist a "best” isoperimetric curve at all?



The Isoperimetric Inequality

More modern treatments of the Isoperimetric Problem reformulate it as an inequality:

Theorem (Isoperimetric Inequality)

Let QO C R2 be a simple planar domain with perimeter L, containing area A. Then,
L% > 47A,

with equality holding if and only if the boundary curve is a circle.

The dual problem: the circle is also the curve which has the smallest perimeter
contatning a given area.

The Isoperimetric Problem is rephrased as a problem in Calculus and Analysis!
Parametrize the curve C = 0Q via r{t) = (x(t), y(t)), t € [0, 1], with 7(0) = F(1).

Then, by calculus and Green's Theorem,
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Hurwitz (1902) proved Isoperimetric Inequality using Fourier Series and Parseval's
[dentity.



The Calculus of Variations

Among all closed curves F(t) = (x(t), y(t)), t € [0, 1], with given perimeter
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Make a variation of the curve, r(t) + eV(t), for € > 0.
If ¥ maximizes area among all curves, then it should
be a maximum among these variations in e.

Using the method of Lagrange Multipliers, there is a constant A (the Lagrange multiplier!)
for which a constrained maximizer of area A(r) must satisfy:

de [A(F+ eV) — AL(Fr' + €V)] =0 when € =0,

for any choice of variation curve V(t)...



One may then derive the “critical point” equations for this maximization problem. They are
a system of ODE, the Euler-Lagrange equations,
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As r(t) may be parametrized by arclength (ie, speed +/(x'(t))? + (y/(1))? = 1), these

equations may be simplified to

y+x' = b, x— Ay =a, for constants a, b.

With X = (x —a), Y = (y — b), we get

Y=-X, X=AY = X=J\cos

=1
Y =4 )
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a circle, radius A

Karl Weierstrass (1879) proved the existence of maximizers using techniques of real
analysis and the calculus of variations.



The Double Bubble

Here's a variation on the Isoperimetric Problem: find two disjoint regions (¢, (), in the
plane, each of prescribed area, A(QQ4) = a; > 0, A(Q2) = a > 0, so that they are enclosed
by curves of least total perimeter.

By placing them in contact, they may reduce N
combined perimeter UJ

This problem was solved in 1993 by a team of undergraduate students at Williams
College (Mass.)

Theorem (Alfaro, Brock, Foisy, Hodges, & Zimba)

For any given areas ay, a > 0O, the two-region isoperimetric problem is solved by a
unique ‘standard double-bubble”: each boundary arc is circular, and the arcs meet at an
angle of 120°.

This result was extended to any finite number of regions with prescribed areas, by
Morgan & Wichiramala (2002).



The Triple Bubble!

This is a simulation of the “gradient flow" of the perimeter: in time it reduces perimeter to
find the minimizer. (Chong Wang, 2018)
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Inhibitory systems and patterns

Many models of pattern formation work through two competing mechanisms:

“Activation”, a term which is locally attractive which encourages concentration;

“Inhibition”, a term which is long range or non-local and which promotes
fragmentation.




A Nonlocal Isoperimetric Problem

For any set QO C IR? with finite area and perimeter, define an enerqy,

E(Q) = Per(Q) + y//o U/Q G(x, y) dx} dy, AQ) =M

The first term is perimeter, which we know is minimized for () = disk.

The second term involves a Green’s function, which is used in the solution of
Laplace’s equation.

This term is non-local as it involves integration over the set ().

As G(x, y) — 400 as y — x, this term is repulsive, it wants to split Q) into small
pieces and move them far away from each other.

The second term is maximized when () = disk.

Which term wins when we minimize £(Q) over all possible sets () C R??



Dilute mixtures, or the leopard's spots

Replace R? by periodic boundary conditions on a large box (ie, a 2D torus)
When the area of Q) is small, and y is large, Choksi & Peletier (2010) proved that this
happens:
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There is a form of energy for the 2-region Nonlocal Isoperimetric Problem [Ren-Wet
(2012), A-Bronsard-Lu-Wang (2019)]
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