1. Exercise 1.2.3 on Page 8:

List all possible arrangements of the four letters m, a, r, and y. Let C_{1} be the collection of the arrangements in which y is in the last position. Let C_{2} be the collection of the arrangements in which m is in the first position. Find the union and intersection of C_{1} and C_{2}.

Answer:
$C_{1}=\{a m r y$, army, mary, mray, ramy, rmay $\} \quad C_{2}=\{$ mary, mayr, mray, mrya, myar, myra $\}$

$$
\begin{gathered}
C_{1} \cup C_{2}=\{\text { amry, army, mary, mray, ramy, rmay, mray, mrya, myar, myra }\} \\
C_{1} \cap C_{2}=\{\text { mary }, \text { mray }\}
\end{gathered}
$$

2. Exercise 1.3.3 on Page 8:

A coin is to be tossed as many times as necessary to turn up one head. Thus the elements c of the sample space \mathcal{C} are $H, T H, T T H, T T T H$, and so forth. Let the probability set function P assign to these elements the respective probabilities $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$, and so forth. Show that $P(\mathcal{C})=1$. Let $C_{1}=\{c$ is $H, T H, T T H, T T T H$, or TTTTH $\}$. Compute $P\left(C_{1}\right)$. Next, $C_{2}=\{c$: c is TTTTH or TTTTTH $\}$. Compute $P\left(C_{2}\right), P\left(C_{1} \cap C_{2}\right)$, and $P\left(C_{1} \cup C_{2}\right)$.
Answer:
This is called a Negative Binomial distribution. Define a random variable X as the number of toss before a head.

$$
P(X=k)=\left(\frac{1}{2}\right)^{k}\left(1-\frac{1}{2}\right) \quad x \in\{0,1,2, \ldots\}
$$

Therefore, the

$$
\begin{aligned}
P(\mathcal{C}) & =P(X=\{0,1,2, \ldots\})=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{1}\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}\left(1-\frac{1}{2}\right)+\ldots \\
& =\frac{1}{2} \times \frac{1}{1-\frac{1}{2}} \\
& =1
\end{aligned}
$$

Then,

$$
P\left(C_{1}\right)=P(X=\{0,1,2,3,4\})=\frac{1}{2}+\frac{1}{2}^{2}+\frac{1}{2}^{3}+\frac{1}{2}^{4}+\frac{1}{2}^{5}=\frac{1}{2} \times \frac{1-\frac{1}{2}^{5}}{1-\frac{1}{2}}=\frac{31}{32}
$$

And

$$
\begin{gathered}
P\left(C_{2}\right)=P(X=\{4,5\})=\frac{1}{2}^{5}+\frac{1}{2}^{6}=\frac{3}{64} \\
P\left(C_{1} \cap C_{2}\right)=P(X=\{4\})=\frac{1^{5}}{2}=\frac{1}{32} \quad P\left(C_{1} \cap C_{2}\right)=P(X=\{0,1,2,3,4,5\})=\frac{63}{64}
\end{gathered}
$$

3. Exercise 1.3.10 on Page 19

A bowl contains 16 chips, of which 6 are red, 7 are white, and 3 are blue. If four chips are taken at random and without replacement, find the probability that:
(a) each of the four chips is red.

Answer(a):

$$
P(\text { all red })=\frac{\binom{6}{4}}{\binom{16}{4}}=\frac{3}{364}=0.008241758
$$

(b) none of four chips is red.

Answer(b):

$$
P(\text { none red })=\frac{\binom{10}{4}}{\binom{16}{4}}=\frac{21}{182}=0.1153846
$$

(c) there is at least one chip of each color.

$$
P(\text { each color at least one })=\frac{\binom{6}{2}\binom{7}{1}\binom{3}{1}+\binom{6}{1}\binom{7}{2}\binom{3}{1}+\binom{6}{1}\binom{7}{1}\binom{3}{2}}{\binom{16}{4}}=\frac{819}{1820}=0.45
$$

4. Exercise 1.4.3 on Page 28

Suppose we are playing draw poker. We are dealt (from a well-shuffled deck) five cards, which contain four spades and another card of a different suit. We decide to discard the card of a different suit and draw one card from the remaining cards to complete a flush in spades (All five cards spade). Determine the probability of completing the flush.

Answer:

$$
\operatorname{Pr}(\text { Flush })=\frac{\binom{9}{1}}{\binom{47}{1}}=\frac{9}{47}
$$

5. Exercise 1.4.8 on Page 28

In a certain factory, machines I, II and III are all producing springs of the same length. Machines I, II and II produce $1 \%, 4 \%$ and 2% defective springs, respectively. Of the total production of springs in the factory, Machine I produces 30%, Machine II produces 25%, and Machine III produces 45%.
(a) If one spring is selected at random from the total springs produced in a given day, determine the probability that it is defective.

Answer(a):

$$
\operatorname{Pr}(\text { defective })=0.3 \times 0.01+0.25 \times 0.04+0.45 \times 0.02=0.022
$$

(b)Given that the selected spring is defective, find the conditional probability that it was produced by Machine II.
Answer(b):

$$
\operatorname{Pr}(\text { Machine II } \mid \text { Defective })=\frac{0.25 \times 0.04}{0.022}=0.4545
$$

6. Exercise 1.5.2 on Page 39

For each of the following, find the constant c so that $p(x)$ satisfies the condition of being a p.m.f. of one random variable X.
(a) $p(x)=c\left(\frac{2}{3}\right)^{x}, x=1,2,3, \ldots$, zero elsewhere.

Answer(a):

$$
\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty} c\left(\frac{2}{3}\right)^{x}=c \frac{2}{3} \frac{1}{1-\frac{2}{3}}=1 \quad \rightarrow \quad c=\frac{1}{2}
$$

(b) $p(x)=c x, x=1,2,3,4,5,6$, zero elsewhere.

Answer(b):

$$
\sum_{x=1}^{6} p(x)=\sum_{x=1}^{6} c x=21 c \quad \rightarrow \quad c=\frac{1}{21}
$$

7. Exercise 1.6.3 on Page 43

Cast a die a number of independent times until a six appears on the up side of the side.
(a) Find the p.m.f. $p(x)$ of X, the number of casts needed to obtain that first six.

Answer(a):
This is a geometric distribution with $p=\frac{5}{6}$

$$
p(x)=\left(\frac{5}{6}\right)^{x-1} \frac{1}{6}
$$

(b)Show that $\sum_{x=1}^{\infty} p(x)=1$.

Answer(b):

$$
\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty}\left(\frac{5}{6}\right)^{x-1} \frac{1}{6}=\frac{1}{6} \frac{1}{1-\frac{5}{6}}=1
$$

(c) Determine $P(X=1,3,5,7, \ldots)$

Answer(c):

$$
p(X=1,3,5 \ldots)=\frac{1}{6} \frac{1}{1-\frac{25}{36}}=\frac{6}{11}
$$

(d)Find the c.d.f. $F(x)=P(X \leq x)$.

Answer(d):

$$
P(X \leq x)=1-\left(\frac{5}{6}\right)^{x}
$$

8. Exercise 1.7 .5 on Page 50

Let the probability set function of the random variable X be

$$
P_{X}(C)=\int_{C} e^{-x} d x, \text { where } \mathcal{C}=\{x: 0<x<\infty\}
$$

Let $C_{k}=\left\{x: 2-\frac{1}{k}<x \leq 3\right\}, k=1,2,3, \ldots$. Find the limits $\lim _{k \rightarrow \infty} C_{k}$ and $P_{X}\left(\lim _{k \rightarrow \infty} C_{k}\right)$.
Find $P_{X}\left(C_{k}\right)$ and show that $\lim _{k \rightarrow \infty} P_{X}\left(C_{k}\right)=P_{X}\left(\lim _{k \rightarrow \infty} C_{k}\right)$.
Answer:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} C_{k}=\lim _{k \rightarrow \infty}\left\{x: 2-\frac{1}{k}<x \leq 3\right\}=\left\{x: 2-\lim _{k \rightarrow \infty} \frac{1}{k}<x \leq 3\right\}=\{x: 2<x \leq 3\} \\
& P_{X}\left(\lim _{k \rightarrow \infty} C_{k}\right)=\int_{2}^{3} e^{-x} d x=-e^{-x} \mid(x=3)-\left(-e^{-x} \mid(x=2)\right)=e^{-2}-e^{-3} \\
& P_{X}\left(C_{k}\right)=\int_{C_{k}} e^{-x} d x=\int_{2-1 / k}^{3} e^{-x} d x \\
& \quad=\int_{2}^{3} e^{-x} d x=-e^{-x} \mid(x=3)-\left(-e^{-x} \mid(x=2-1 / k)\right)=e^{-2+1 / k}-e^{-3}
\end{aligned}
$$

Therefore, we can get and prove that

$$
\lim _{k \rightarrow \infty} P_{X}\left(C_{k}\right)=\lim _{k \rightarrow \infty}\left(\lim e^{-2+1 / k}-e^{-3}\right)=e^{-2}-e^{-3}=P_{X}\left(\lim _{k \rightarrow \infty} C_{k}\right)
$$

9. Exercise 1.8.2 on Page 56

Let X have the p.d.f. $f(x)=\frac{x+2}{18},-2<x<4$, zero elsewhere. Find $\mathbb{E}(X), \mathbb{E}\left[(X+2)^{3}\right]$, and $\mathbb{E}\left[6 X-2(X+2)^{3}\right]$.
Answer:

$$
\begin{aligned}
\mathbb{E}(X) & =\int_{-2}^{4} x f(x) d x=\int_{-2}^{4} \frac{x^{2}+2 x}{18} d x=\left.\frac{1}{18}\left(\frac{1}{3} x^{3}+x^{2}\right)\right|_{x=-2} ^{x=4}=2 \\
\mathbb{E}\left[(X+2)^{3}\right] & =\int_{-2}^{4}\left[(X+2)^{3}\right] f(x) d x=\int_{0}^{6} \frac{1}{18} y^{4} d y=\left.\frac{1}{90} y^{5}\right|_{0} ^{6}=86.4 \\
\mathbb{E}\left[6 X-2(X+2)^{3}\right] & =6 \mathbb{E}(X)-2 \mathbb{E}\left[(X+2)^{3}\right]=-160.8
\end{aligned}
$$

10. Exercise 1.8.11 on Page 57

Let X have the p.d.f. $f(x)=3 x^{2}, 0<x<1$, zero elsewhere.
(a) Compute $\mathbb{E}\left(X^{3}\right)$

Answer(a):

$$
\mathbb{E}\left(X^{3}\right)=\int_{0}^{1} 3 x^{5} d x=\left.\frac{1}{2} x^{6}\right|_{0} ^{1}=\frac{1}{2}
$$

(b) Show that $Y=X^{3}$ has a uniform $(0,1)$ distribution.

Answer(b):

$$
\begin{aligned}
& J=\frac{d x}{d y}=\frac{d y^{1 / 3}}{d y}=\frac{1}{3} y^{-2 / 3} \\
& \begin{aligned}
f_{Y}(y) & =f_{X}\left(X=y^{1 / 3}\right)|J| \\
& =3\left(y^{1 / 3}\right)^{2} \times \frac{1}{3} y^{-2 / 3} \\
& =1 \quad y \in(0,1)
\end{aligned}
\end{aligned}
$$

Therefore, it follows a uniform (0,1) distribution.
(c) Compute $\mathbb{E}(Y)$ and compare this result with the answer obtained in part (a).

Answer(c):

$$
\mathbb{E}(Y)=\int_{0}^{1} y d y=\left.\frac{1}{2} y^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

Therefore, the results are consistent.

