1. Exercise 3.1.1 on Page 146:

If the mgf of a random variable X is $\left(\frac{1}{3}+\frac{2}{3} e^{t}\right)^{5}$, find $P(X=2$ or 3$)$.

Answer:
Since the $M(t)$ of X is $\left(\frac{1}{3}+\frac{2}{3} e^{t}\right)^{5}, X$ has a binomial distribution with $n=5, p=\frac{2}{3}$.
The probability density function of the binomial distribution is

$$
p(x)=\left\{\begin{array}{l}
\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1,2, \ldots, n \\
0 \quad \text { elsewhere }
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
P(X=2 \text { or } X=3) & =P(X=2)+P(X=3) \\
& =\binom{5}{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3}+\binom{5}{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2} \\
& =\frac{40}{81}
\end{aligned}
$$

2. Exercise 3.1.27 on Page 149:

Consider a shipment of 1000 items into a factory. Suppose the factory can tolerate about 5\% defective items. Let X be the number of defective items in a sample without replacement of size $\mathrm{n}=10$. Suppose the factory returns the shipment if $X \geq 2$.
(a) Obtain the probability that the factory returns a shipment of items which has 5% defective items.
(b) Suppose the shipment has 10% defective items. Obtain the probability that the factory returns such a shipment.
(c) Obtain approximations to the probabilities in parts (a) and (b) using appropriate binomial distributions.

Note : If you do not have access to a computer package with a hypergeometric command, obtain the answer to (c) only. This is what would have been done in practice 20 years ago. If you have access to R , then the command $\operatorname{dhy} \operatorname{per}(x, D, N-D, n)$ returns the probability in expression (3.1.7)

Answer:
The expression (3.1.7) is

$$
p(x)=\frac{\binom{N-D}{n-x}\binom{D}{x}}{\binom{N}{n}}, \quad x=0,1, \ldots, n
$$

In the following, let X be the number of defective items.
(a) From the given information, we have that $N=1000, n=10, D=1000 \times 5 \%=50$

Since X has a hyper-geometric distribution, we have that

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-\frac{\binom{1000-50}{10-0}\binom{50}{0}}{\binom{1000}{10}}-\frac{\binom{1000-50}{10-1}\binom{50}{1}}{\binom{1000}{10}} \\
& =0.0853
\end{aligned}
$$

(b) Since $D=1000 \times 10 \%=100$, we have that

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-\frac{\binom{1000-100}{10-0}\binom{100}{0}}{\binom{1000}{10}}-\frac{\binom{1000-100}{10-1}\binom{100}{1}}{\binom{1000}{10}} \\
& =0.2637
\end{aligned}
$$

(c) From the given information, when $n=10, p=0.05$, using the binomial distributions, we have that

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-\binom{10}{0} 0.05^{0}(1-0.05)^{10-0}-\binom{10}{1} 0.05^{1}(1-0.05)^{10-1} \\
& =0.0861
\end{aligned}
$$

When $n=10, p=0.1$, using the binomial distributions, we have that

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-\binom{10}{0} 0.1^{0}(1-0.1)^{10-0}-\binom{10}{1} 0.1^{1}(1-0.1)^{10-1} \\
& =0.2639
\end{aligned}
$$

3. Exercise 3.2.3 on Page 154:

In a lengthy manuscript, it is discovered that only 13.5 percent of the pages contain no typing errors. If we assume that the number of errors per page is a random variable with a Poisson distribution, find the percentage of pages that have exactly one error.

Answer:
Since the Poisson distribution is $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x=0,1, \cdots$
we have

$$
P(X=0)=\frac{e^{-\lambda} \lambda^{0}}{0!}
$$

From the given information, $P(X=0)=13.5 \%$. Therefore, we can obtain $\lambda=2$.
Thus,

$$
P(X=1)=\frac{e^{-\lambda} \lambda^{1}}{1!}=\frac{2^{1} e^{-2}}{1!}=0.271
$$

4. Exercise 3.2.14 on Page 155:

Let X_{1} and X_{2} be two independent random variables. Suppose that X_{1} and $Y=X_{1}+X_{2}$ have Poisson distributions with means μ_{1} and $\mu>\mu_{1}$, respectively. Find the distribution of X_{2}

Answer:
The mgfs of X_{1} and Y that have Poisson distributions are given by, respectively

$$
M_{X_{1}}(t)=\exp \left\{\left(\mu_{1}\left(e^{t}-1\right)\right\}\right.
$$

and

$$
M_{Y}(t)=\exp \left\{\left(\mu\left(e^{t}-1\right)\right\}\right.
$$

Since X_{1} and X_{2} are independently random variables, we have

$$
M_{Y}(t)=M_{X_{1}}(t) M_{X_{2}}(t)
$$

and

$$
\exp \left\{\left(\mu\left(e^{t}-1\right)\right\}=\exp \left\{\left(\mu_{1}\left(e^{t}-1\right)\right\} M_{X_{2}}(t)\right.\right.
$$

Therefore,

$$
M_{X_{2}}(t)=\exp \left\{\left(\mu-\mu_{1}\right)\left(e^{t}-1\right)\right\}
$$

Thus, X_{2} has poisson distribution with mean $\left(\mu-\mu_{1}\right)$.

5. Exercise 3.3.6 on Pages 164

Let X_{1}, X_{2}, and X_{3} be iid random variables, each with pdf $f(x)=e^{-x}, 0<x<\infty$, zero elsewhere.
(a) Find the distribution of $Y=$ minimum $\left(X_{1}, X_{2}, X_{3}\right)$.

Hint : $P(Y \leq y)=1-P(Y>y)=1-P(X i>y, i=1,2,3)$.
(b) Find the distribution of $Y=\operatorname{maximum}\left(X_{1}, X_{2}, X_{3}\right)$.

Answer:
From the given information, we have that the cumulative density function is

$$
F(x)=1-e^{-x}
$$

(a)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =1-P(Y>y) \\
& =1-P\left(X_{1}>y, X_{2}>y, X_{3}>y\right) \\
& =1-\left[1-P\left(X_{1} \leq y\right)\right]\left[1-P\left(X_{2} \leq y\right)\right]\left[1-P\left(X_{3} \leq y\right)\right] \\
& =1-\left[1-\left(1-e^{-y}\right)\right]^{3} \\
& =1-e^{-3 y}
\end{aligned}
$$

Thus the distribution of Y is

$$
F_{Y}(y)= \begin{cases}1-e^{-3 y} & y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

(b)

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P\left(X_{1} \leq y\right) P\left(X_{2} \leq y\right) P\left(X_{3} \leq y\right) \\
& =\left(1-e^{-y}\right)\left(1-e^{-y}\right)\left(1-e^{-y}\right) \\
& =\left(1-e^{-y}\right)^{3}
\end{aligned}
$$

Thus the distribution of Y is

$$
F_{Y}(y)=\left\{\begin{array}{l}
\left(1-e^{-y}\right)^{3} \quad y>0 \\
0 \quad \text { elsewhere }
\end{array}\right.
$$

6. Exercise 3.4.15 on Page 176:

Let X be a random variable such that $E\left(X^{2 m}\right)=(2 m)!/\left(2^{m} m!\right), m=1,2,3, \ldots$ and $E\left(X^{2 m-1}\right)=$ $0, m=1,2,3, \ldots$. Find the $m g f$ and the $p d f$ of X.

Answer:
The moment generating function of X is

$$
\begin{aligned}
M_{X}(t) & =E e^{(t X)} \\
& =E\left[\sum_{n=0}^{\infty} \frac{(t X)^{n}}{n!}\right] \\
& =\sum_{n=0}^{\infty} \frac{E\left(X^{n}\right) t^{n}}{n!} \\
& =1+\sum_{m=1}^{\infty} \frac{E\left(X^{2 m}\right) t^{2 m}}{(2 m)!}\left(\text { Since } E X^{2 m-1}=0\right) \\
& =\sum_{m=0}^{\infty} \frac{\left(t^{2} / 2\right)^{m}}{m!} \\
& =e^{\frac{t^{2}}{2}}
\end{aligned}
$$

Thus, X follows $N(0,1)$, and the pdf is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right), \quad-\infty<x<\infty
$$

7. Exercise 3.6.12 on Page 196:

Show that

$$
Y=\frac{1}{1+\left(r_{1} / r_{2}\right) W}
$$

where W has an F-distribution with parameters r_{1} and r_{2}, has a beta distribution.

Answer:
Let U and V are independent chi-square random variables with r_{1} and r_{2} degrees of freedom, respectively, and let $W=r_{2} U /\left(r_{1} V\right)$. Then we can obtain that W has an F-distribution with two parameters r_{1} and r_{2}.

$$
\begin{aligned}
Y & =\frac{1}{1+\left(r_{1} / r_{2}\right) W} \\
& =\frac{1}{1+\left(r_{1} / r_{2}\right)\left(\frac{r_{2} U}{r_{1} V}\right)} \\
& =\frac{V}{U+V}
\end{aligned}
$$

Since U and V have chi-square distribution with r_{1} and r_{2} degrees of freedom, we obtain that $\frac{V}{U+V}$ has a beta distribution. Thus Y has a beta distribution.

8. Exercise 3.6.14 on Page 196:

Let X_{1}, X_{2}, and X_{3} be three independent chi-square variables with r_{1}, r_{2}, and r_{3} degrees of freedom, respectively.
(a) Show that $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{1}+X_{2}$ are independent and that Y_{2} is $\chi^{2}\left(r_{1}+r_{2}\right)$.
(b) Deduce that

$$
\frac{X_{1} / r_{1}}{X_{2} / r_{2}} \text { and } \frac{X_{3} / r_{3}}{\left(X_{1}+X_{2}\right) /\left(r_{1}+r_{2}\right)}
$$

are independent F-variables.

Answer:
(a)

Since $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{1}+X_{2}$, we can obtain that $X_{1}=Y_{1} Y_{2} /\left(1+Y_{1}\right)$ and $X_{2}=$ $Y_{2} /\left(1+Y_{1}\right)$. The determinant of Jacobian is

$$
\left|\begin{array}{ll}
\frac{y_{2}}{\left(y_{1}+1\right)^{2}} & \frac{y_{1}}{y_{1}+1} \\
\frac{-y_{2}}{\left(y_{1}+1\right)^{2}} & \frac{1}{y_{1}+1}
\end{array}\right|=\frac{y_{2}}{\left(y_{1}+1\right)^{2}}
$$

Therefore the joint pdf of X_{1} and X_{2} is

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2^{\frac{r_{1}+r_{2}}{2}} \Gamma\left(\frac{r_{1}}{2}\right) \Gamma\left(\frac{r_{2}}{2}\right)} x_{1}^{\frac{r_{1}}{2}-1} x_{2}^{\frac{r_{2}}{2}-1} e^{-\frac{x_{1}+x_{2}}{2}}
$$

The joint pdf of Y_{1} and Y_{2} is

$$
\begin{aligned}
f\left(y_{1}, y_{2}\right) & =\frac{1}{2^{\frac{r_{1}+r_{2}}{2}} \Gamma\left(\frac{r_{1}}{2}\right) \Gamma\left(\frac{r_{2}}{2}\right)}\left(\frac{y_{1} y_{2}}{y_{1}+1}\right)^{\frac{r_{1}}{2}-1}\left(\frac{y_{2}}{y_{1}+1}\right)^{\frac{r_{2}}{2}-1} e^{-\frac{y_{2}}{2}} \frac{y_{2}}{\left(y_{1}+1\right)^{2}} \\
& =\frac{1}{2^{\frac{r_{1}+r_{2}}{2}} \Gamma\left(\frac{r_{1}}{2}\right) \Gamma\left(\frac{r_{2}}{2}\right)} \cdot \frac{y_{1}^{\frac{r_{1}}{2}-1} y_{2}^{\frac{r_{1}+r_{2}}{2}-1}}{\left(y_{1}+1\right)^{\frac{r_{1}+r_{2}}{2}} \cdot e^{-\frac{y_{2}}{2}}}
\end{aligned}
$$

Thus the joint pdf can be decomposed into two factors, each of them relevant to Y_{1}, Y_{2} alone. Hence Y_{1}, Y_{2} are independent.
Since X_{1} and X_{2} follow independently chi-square distribution with r_{1}, r_{2}, we have that Y has a chi-square distribution with $r_{1}+r_{2}$.
(b)

Since X_{1}, X_{2}, and X_{3} are three independent chi-square variables with r_{1}, r_{2}, and r_{3} degrees of freedom, therefore

$$
\begin{gathered}
W=\frac{X_{1} / r_{1}}{X_{2} / r_{2}} \sim F\left(r_{1}, r_{2}\right) \\
Y_{2}=X_{1}+X_{2} \sim \chi^{2}\left(r_{1}+r_{2}\right)
\end{gathered}
$$

From the known information, the ratio of two chi-square variables with their respective degrees of freedom follows F-distribution.

Let

$$
\begin{aligned}
V & =\frac{X_{3} / r_{3}}{Y_{2} /\left(r_{1}+r_{2}\right)} \\
& =\frac{X_{3} / r_{3}}{\left(X_{1}+X_{2}\right) /\left(r_{1}+r_{2}\right)} \sim F\left(r_{3},\left(r_{1}+r_{2}\right)\right)
\end{aligned}
$$

X_{1}, X_{2}, and X_{3} are independent, X_{1} / X_{2}, and Y_{2} are independent. So W and V are independent. Thus

$$
\frac{X_{1} / r_{1}}{X_{2} / r_{2}} \text { and } \frac{X_{3} / r_{3}}{\left(X_{1}+X_{2}\right) /\left(r_{1}+r_{2}\right)}
$$

are independent F-variables.

