1. Exercise 4.5.8 on Page 247

Let us say the life of a tire in miles, say \mathbf{X}, is normally distributed with mean θ and standard deviation 5000. Past experience indicates that $\theta=30,000$. The manufacturer claims that the tires made by a new process have mean $\theta>30,000$. It is possible that $\theta=35,000$. Check his claim by testing $H_{0}: \theta=30,000$ against $H_{1}: \theta>30,000$. We observe n independent values of X , say x_{1}, \ldots, x_{n}, and we reject H_{0} (thus accept H_{1}) if and only if $\bar{x} \geq c$. Determine n and c so that the power function $\gamma(\theta)$ of the test has the values $\gamma(30,000)=0.01$ and $\gamma(35,000)=0.98$.

Answer:
Power function is $1-\beta$, where β is the type II error. So that we have

$$
\begin{align*}
1-\beta & =\operatorname{Pr}\left(\text { reject } \quad H_{0} \mid H_{1} \quad \text { is true }\right) \\
& =\gamma(\theta) \\
& =\operatorname{Pr}(\bar{x} \geq c \mid \theta>30,000) \tag{1}\\
& =\operatorname{Pr}\left(\left.Z \geq \frac{c-\theta}{5000 / \sqrt{n}} \right\rvert\, \theta>30,000\right)
\end{align*}
$$

Therefore, we have two equations, two unknown parameters:

$$
\begin{align*}
& \gamma(30000)=\operatorname{Pr}\left(\mathrm{Z} \geq \frac{c-30000}{5000 / \sqrt{n}}\right)=0.01 \\
& \gamma(35000)=\operatorname{Pr}\left(\mathrm{Z} \geq \frac{c-35000}{5000 / \sqrt{n}}\right)=0.98 \\
\Rightarrow \quad & \frac{c-30000}{5000 / \sqrt{n}}=2.326348 \tag{2}\\
& \frac{c-35000}{5000 / \sqrt{n}}=-2.053749 \\
\Rightarrow \quad & c=32655.59, \quad n=19.18525
\end{align*}
$$

2. Exercise 4.6 .7 on Page 253

Among the data collected for the World Health Organization air quality monitoring project is a measure of suspended particles in $\mu \mathrm{g} / \mathrm{m}^{3}$. Let X and Y equal the concentration of suspended particles in $\mu \mathrm{g} / \mathrm{m}^{3}$ in the city center (commercial district) for Melbourne and Houston, respectively. Using $\mathrm{n}=13$ observations of X and $m=16$ observations of Y, we test $H_{0}: \mu_{X}=\mu_{Y}$ against $H_{1}: \mu_{X}<\mu_{Y}$.
(a) Define the test statistic and critical region, assuming that the unknown variances are equal. Let $\alpha=0.05$.
(b) If $\bar{x}=72.9, s_{x}=25.6, \bar{y}=81.7$, and $s_{y}=28.3$, calculate the value of the test statistic and
state your conclusion.
Answer:
As we assume the unknown variance are equal, we have the pooled variance,

$$
T=\frac{\bar{X}-\bar{Y}-0}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}}
$$

where

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

As this is a one tail test, The Critical Region is given as :

$$
\left\{T<t_{n_{1}+n_{2}-2,0.05}\right\}=t_{13+16-2,0.05}=-1.703288
$$

Next, as the data given, we have

$$
T=\frac{72.9-81.7}{\sqrt{\frac{12 \times 25.6^{2}+15 \times 28.3^{2}}{13+16-2}} \sqrt{\frac{1}{13}+\frac{1}{16}}}=-0.8685893
$$

Therefore, we do not reject H_{0} and we state that we do not have sufficient evidence to support that μ_{x} is less than μ_{y}.

3. Exercise 4.7.2 on Page 260

Define the sets $A_{1}=\{x:-\infty<x \leq 0\}, A_{i}=\{x: i-2<x \leq i-1\}, i=2, \ldots, 7$, and $A_{8}=\{x: 6<x<\infty\}$. A certain hypothesis assigns probabilities $p_{i 0}$ to these sets A_{i} in accordance with

$$
p_{i 0}=\int_{A_{i}} \frac{1}{2 \sqrt{2 \pi}} \exp \left[-\frac{(x-3)^{2}}{8}\right] d x
$$

$, i=1,2, \ldots, 7,8$. This hypothesis (concerning the multinomial pdf with $k=8$) is to be tested, at the 5% level of significance, by a chi-square test. If the observed frequencies of the sets $A_{i}, i=1,2, \ldots, 8$, are, respectively, $60,96,140,210,172,160,88$, and 74 , would H_{0} be accepted at the (approximate) 5% level of significance?

Answer:
As we notice that this is a normal distribution, we can

$$
\begin{gathered}
p_{10}=\operatorname{Pr}(\infty<X \leq 0)=\operatorname{Pr}\left(\infty<\mathrm{Z} \leq \frac{0-3}{2}\right)=\operatorname{Pr}(\infty<\mathrm{Z} \leq-1.5)=0.0668072 \\
p_{20}=\operatorname{Pr}(0<X \leq 1)=\operatorname{Pr}\left(\frac{0-3}{2}<\mathrm{Z} \leq \frac{1-3}{2}\right)=\operatorname{Pr}(-1.5<\mathrm{Z} \leq-1)=0.09184805 \\
p_{30}=\operatorname{Pr}(1<X \leq 2)=\operatorname{Pr}\left(\frac{1-3}{2}<\mathrm{Z} \leq \frac{2-3}{2}\right)=\operatorname{Pr}(-1<\mathrm{Z} \leq-0.5)=0.1498823 \\
p_{40}=\operatorname{Pr}(2<X \leq 3)=\operatorname{Pr}\left(\frac{2-3}{2}<\mathrm{Z} \leq \frac{3-3}{2}\right)=\operatorname{Pr}(-0.5<\mathrm{Z} \leq 0)=0.1914625 \\
\text { Stats3D03 }
\end{gathered}
$$

$$
\begin{aligned}
& p_{50}=\operatorname{Pr}(3<X \leq 4)=\operatorname{Pr}\left(\frac{3-3}{2}<Z \leq \frac{4-3}{2}\right)=\operatorname{Pr}(0<\mathrm{Z} \leq 0.5)=0.1914625 \\
& p_{60}=\operatorname{Pr}(4<X \leq 5)=\operatorname{Pr}\left(\frac{4-3}{2}<\mathrm{Z} \leq \frac{5-3}{2}\right)=\operatorname{Pr}(0.5<\mathrm{Z} \leq 1)=0.1498823 \\
& p_{70}=\operatorname{Pr}(5<X \leq 6)=\operatorname{Pr}\left(\frac{5-3}{2}<Z \leq \frac{6-3}{2}\right)=\operatorname{Pr}(1<\mathrm{Z} \leq 1.5)=0.09184805 \\
& p_{70}=\operatorname{Pr}(6<X \leq \infty)=\operatorname{Pr}\left(\frac{5-3}{2}<\mathrm{Z} \leq \frac{6-3}{2}\right)=\operatorname{Pr}(1<\mathrm{Z} \leq 1.5)=0.0668072
\end{aligned}
$$

Hence, the χ^{2} test:

$$
\sum_{i=1}^{8} \frac{\left(X_{i}-n p_{i 0}\right)^{2}}{n p_{i 0}}=6.919
$$

When $\alpha=0.05, d f=7, \chi^{2}(7,0.95)=14.06714$, we do not reject H_{0} and conclude that there is no evidence to say there are significant differences between the distributions.

4. Exercise 5.3.2 on Page 313

Let X denote the mean of a random sample of size 128 from a gamma distribution with $\alpha=2$ and $\beta=4$. Approximate $P(7<X<9)$.
Answer:

$$
\mathbb{E}(X)=\alpha \beta=8 \quad \mathbb{V}(X)=\alpha \beta^{2}=32
$$

Then, by CLT,

$$
\begin{equation*}
P(7<\bar{X}<9)=P\left(\frac{7-8}{1 / 2}<Z<\frac{9-8}{1 / 2}\right)=\Phi(2)-\Phi(-2)=0.9544997 \tag{3}
\end{equation*}
$$

5. Exercise 6.1.2 on Page 326

Let $X_{1}, X_{2}, \ldots, X_{n}$ represent a random sample from each of the distributions having the following pdfs:
(a) $f(x ; \theta)=\theta x^{\theta-1}, 0<x<1,0<\theta<\infty$, zero elsewhere.
(b) $f(x ; \theta)=e^{-(x-\theta)}, \theta \leq x<\infty,-\infty<\theta<\infty$, zero elsewhere. Note this is a nonregular case. In each case find the mle $\hat{\theta}$ of θ.
Answer:
(a)

$$
\begin{gather*}
L\left(\theta ; x_{i}\right)=\prod_{i=1}^{n} \theta x_{i}^{\theta-1} \\
\ell\left(\theta ; x_{i}\right)=n \log (\theta)+(\theta-1) \sum_{i=1}^{n} \log \left(x_{i}\right) \\
\Rightarrow \quad \frac{\partial \ell\left(\theta ; x_{i}\right)}{\partial \theta}=\frac{n}{\theta}+\sum_{i=1}^{n} \log \left(x_{i}\right)=0 \tag{4}\\
\hat{\theta}=-\frac{n}{\sum_{i=1}^{n} \log \left(x_{i}\right)}
\end{gather*}
$$

(b)

$$
\begin{gather*}
L\left(\theta ; x_{i}\right)=\prod_{i=1}^{n} e^{-\left(x_{i}-\theta\right)}=e^{-\left(\sum_{i=1}^{n} x_{i}-n \theta\right)} \\
\ell\left(\theta ; x_{i}\right)=-\left(\sum_{i=1}^{n} x_{i}-n \theta\right) \tag{5}\\
\Rightarrow \quad \frac{\partial \ell\left(\theta ; x_{i}\right)}{\partial \theta}=n>0
\end{gather*}
$$

Therefore, as $\theta \leq x_{i}, i=1,2, \ldots, n$. Then

$$
\begin{gathered}
-\infty<\theta<\min \left(X_{i}\right) \\
\hat{\theta}=\min \left(X_{i}\right)
\end{gathered}
$$

6. Exercise 6.2.8 on Page 340

Let X be $N(0, \theta), 0<\theta<\infty$.
(a) Find the Fisher information $I(\theta)$.
(b) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ.
(c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta}-\theta)$?

Answer:
(a)

$$
\begin{align*}
& \log f(x ; \theta)=-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log (\theta)-\frac{x^{2}}{2 \theta} \\
& \frac{\partial \log f(x ; \theta)}{\partial \theta}=-\frac{1}{2 \theta}+\frac{x^{2}}{2 \theta^{2}} \\
& \frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}}=\frac{1}{2 \theta^{2}}-\frac{x^{2}}{\theta^{3}} \\
& I(\theta)=-\mathbb{E}\left(\frac{\partial^{2} \log f(x ; \theta)}{\partial \theta^{2}}\right)=\frac{\mathbb{E}\left(X^{2}\right)}{\theta^{3}}-\frac{1}{2 \theta^{2}}=\frac{1}{2 \theta^{2}} \tag{6}
\end{align*}
$$

where $\quad \mathbb{E}\left(X^{2}\right)=0^{2}+\theta=\theta$
or

$$
I(\theta)=\mathbb{E}\left[\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}\right]
$$

(b)As for the mle we have

$$
\begin{align*}
L\left(\theta ; x_{i}\right) & =\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \tag{7}\\
& =(2 \pi \theta)^{-n / 2} e^{-\sum_{i=1}^{n} x_{i}^{2} / 2 \theta} \\
\frac{\partial \log (L(\theta))}{\partial \theta} & =-\frac{n}{2 \theta}+\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \theta^{2}}=0 \tag{8}\\
\hat{\theta} & =\frac{\sum_{i=1}^{n} x_{i}^{2}}{n} \tag{9}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Var}(\hat{\theta}) & =\operatorname{Var}\left(\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}\right) \\
& =\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} x_{i}^{2}\right) \\
& =\frac{1}{n} \operatorname{Var}\left(X^{2}\right) \tag{10}\\
& =\frac{1}{n}\left(E\left(X^{4}\right)-\left(E\left(X^{2}\right)\right)^{2}\right) \\
& =\frac{2 \theta^{2}}{n}
\end{align*}
$$

where

$$
\begin{equation*}
E\left(X^{4}\right)=3 \theta^{2} \quad \text { You may use the MGF to derive } \tag{11}
\end{equation*}
$$

which attains the Rao-Cramér bounds, thus, mle is an efficient estimator.
(c)As

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N\left(0, \frac{1}{I(\theta)}\right)
$$

then,

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N\left(0,2 \theta^{2}\right)
$$

