1. Exercise 1.2.1 on Page 8:

Find the union $C_{1} \cup C_{2}$ and the intersection $C_{1} \cap C_{2}$ of the two sets C_{1} and C_{2}, where
(a) $C_{1}=\{0,1,2\}, C_{2}=\{2,3,4\}$

Answer(a):
$C_{1} \cup C_{2}=\{0,1,2,3,4\}, C_{1} \cap C_{2}=\{2\}$
(b) $C_{1}=\{x: 0<x<2\}, C_{2}=\{x: 1 \leq x<3\}$

Answer(b):
$C_{1} \cup C_{2}=\{x: 0<x<3\}, C_{1} \cap C_{2}=\{x: 1 \leq<2\}$
(c) $C_{1}=\{(x, y): 0<x<2,1<y<2\}, C_{2}=\{(x, y): 1<x<3,1<y<3\}$

Answer(c):
$C_{1} \cup C_{2}=\{(x, y): 0<x \leq 1,1<y<2\} \cup\{(x, y): 1<x<3,1<y<3\}$
$C_{1} \cap C_{2}=\{(x, y): 1<x<2,1<y<2\}$

2. Exercise 1.2.1 on Page 8:

By the use of Venn diagrams, in which the space \mathcal{C} is the set of points enclosed by a rectangle containing the circles C_{1}, C_{2} and C_{3}, compare the following sets. These laws are called the distributive laws.
(a) $C_{1} \cap\left(C_{2} \cup C_{3}\right)$ and $\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{3}\right)$

Answer(a):

$$
C_{1} \cap\left(C_{2} \cup C_{3}\right) \quad\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{3}\right)
$$

(b) $C_{1} \cup\left(C_{2} \cap C_{3}\right)$ and $\left(C_{1} \cup C_{2}\right) \cap\left(C_{1} \cup C_{3}\right)$

Formal Proof of Distributive Law:

Proof: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Let $x \in A \cup(B \cup C)$. If $x \in A \cup(B \cup C)$ then x is either in A or in (B and C).
$x \in A$ or $x \in(B$ and $C)$
$x \in A$ or $\{x \in B$ and $x \in C\}$
$\{x \in A$ or $x \in B\}$ and $\{x \in A$ or $x \in C\}$
$x \in(A$ or $B)$ and $x \in(A$ or $C)$
$x \in(A \cup B) \cup x \in(A \cup C)$
$x \in(A \cup B) \cup(A \cup C)$
$x \in A \cup(B \cup C)=>x \in(A \cup B) \cup(A \cup C)$
Thus $A \cup(B \cap C) \subset(A \cup B) \cap(A \cup C)$
Let $x \in(A \cup B) \cap(A \cup C)$. If $x \in(A \cup B) \cap(A \cup C)$ then x is in $(A$ or $B)$ and x is in $(A$ or $C)$.
$x \in(A$ or $B)$ and $x \in(A$ or $C)$
$\{x \in A$ or $x \in B\}$ and $\{x \in A$ or $x \in C\}$
$x \in A$ or $\{x \in B$ and $x \in C\}$
$x \in A$ or $\{x \in(B$ and $C)\}$
$x \in A \cup\{x \in(B \cap C)\}$
$x \in A \cup(B \cap C)$
$x \in(A \cup B) \cap(A \cup C)=>x \in A \cup(B \cap C)$
Therefore, $(A \cup B) \cap(A \cup C) \subset A \cup(B \cap C)$
In conclusion, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

3. Exercise 1.3.5 on Page 18:

Let the sample space be $\mathcal{C}=\{c: 0<c<\infty\}$. Let $\mathcal{C} \subset \mathcal{C}$ be defined by $C=\{c: 4<c<\infty\}$ and take $P(C)=\int_{C} e^{-x} d x$. Show that $P(\mathcal{C})=1$. Evaluate $P(C), P\left(C^{c}\right)$, and $P\left(C \cup C^{c}\right)$.
Answer:

$$
\begin{gathered}
P(\mathcal{C})=\int_{\mathcal{C}} e^{-x} d x=\int_{0}^{\infty} e^{-x} d x=-e^{-x} \mid\{x=\infty\}-\left(-e^{-x} \mid\{x=0\}\right)=0+1=1 \\
P(C)=\int_{C} e^{-x} d x=\int_{4}^{\infty} e^{-x} d x=-e^{-x} \mid\{x=\infty\}-\left(-e^{-x} \mid\{x=4\}\right)=0+e^{-4}=e^{-4} \\
P\left(C^{c}\right)=\int_{C^{c}} e^{-x} d x=\int_{0}^{4} e^{-x} d x=-e^{-x} \mid\{x=4\}-\left(-e^{-x} \mid\{x=0\}\right)=-e^{-4}+1=1-e^{-4} \\
P\left(C \cup C^{c}\right)=P(\mathcal{C})=1
\end{gathered}
$$

4. Exercise 1.3.14 on Page 19:

There are five red chips and three blue chips in a bowl. The red chips are numbered 1,2,3,4,5, respectively, and the blue chips are numbered $1,2,3$, respectively. If two chips are to be drawn at random and without replacement, find the probability that these chips have either the same number or the same colour.

Answer:

$$
\begin{gathered}
P(\text { Same Number })=\frac{\binom{3}{1}}{\binom{8}{2}}=\frac{3}{28} \\
P(\text { Same Colour })=\frac{\binom{5}{2}+\binom{3}{2}}{\binom{8}{2}}=\frac{10+3}{28}=\frac{13}{28}
\end{gathered}
$$

P (Same Number or Same Colour)
$=P($ Same Number $)+P($ Same Colour $)-P($ Same Number and Same Colour $)$

$$
=\frac{3}{28}+\frac{13}{28}-0=\frac{4}{7}
$$

5. Exercise 1.4.4 on Page 28 :

From a well-shuffled deck of ordinary playing cards, four cars are turned over one at a time without replacement. What is the probability that the spades and red cards alternate?

Answer:

Method 1:

Two ways of rows:

1. Spade, Red, Spade, Red

$$
\frac{13}{52} \times \frac{26}{51} \times \frac{12}{50} \times \frac{25}{49}=0.01560624
$$

2. Red, Spade, Red, Spade

Then,

$$
\frac{26}{52} \times \frac{13}{51} \times \frac{25}{50} \times \frac{12}{49}=0.01560624
$$

Thus, $0.01560624 \times 2=0.03121248$.

Method 2:

$$
\begin{gathered}
\text { Number }(\text { Two Spades and Two Reds alternate })=\binom{13}{2}\binom{26}{2} \times 4 \times 2 \\
N u m b e r(\text { Choose Four Card with Order }): P_{4}^{52} \\
P(\text { Two Spades and Two Reds alternate })=\frac{\binom{13}{2}\binom{26}{2} \times 4 \times 2}{P_{4}^{52}}=0.03121248
\end{gathered}
$$

6. Exercise 1.4.27 on Page 31:

Each bag in a large box contains 25 tulip bulbs. It is known that 60% of the bags contain bulbs for 5 red and 20 yellow tulips, while the remaining 40% of the bags contain bulbs for 15 red and 10 yellow tulips. A bag is selected at random and a bulb taken at random from this bag is planted.
(a) What is the probability that it will be a yellow tulip?

Answer (a):
Define event A as yellow tulip is selected.
Define event B as 60% bags selected.

$$
P(A)=P(A \mid B) \times P(B)+P\left(A \mid B^{c}\right) \times P\left(B^{c}\right)=0.6 \times \frac{20}{5+20}+0.4 \times \frac{10}{15+10}=\frac{16}{25}
$$

(Using law of total probability)
(b) Given that it is yellow, what is the conditional probability it comes from a bag that contained 5 red and 20 yellow bulbs?
Answer(b):

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{0.6 \times \frac{20}{5+20}}{\frac{16}{25}}=\frac{3}{4}
$$

(Using Bayes Theorem or Conditional Probability)

7. Exercise 1.5 .1 on Page 38 :

Let a card be selected from an ordinary deck of playing cards. The outcome c is one of these 52 cards. Let $X(c)=4$ if c is an ace, let $X(c)=3$ if c is a king, let $X(c)=2$ if c is a queen, let $X(c)=1$ if c is a jack and let $X(c)=0$ otherwise. Suppose that P assigns a probability of $\frac{1}{52}$ to each outcome c. Describe the induced probability $P_{x}(D)$ on the space $\mathcal{D}=\{0,1,2,3,4\}$ of random variable X.

Answer:

$$
P_{x}(D)= \begin{cases}\frac{40}{52}=\frac{9}{13} & \mathrm{X}=0 \\ \frac{1}{13} & \mathrm{X}=1 \\ \frac{1}{13} & \mathrm{X}=2 \\ \frac{1}{13} & \mathrm{X}=3 \\ \frac{1}{13} & \mathrm{X}=4\end{cases}
$$

8. Exercise 1.5.8 on Page 39:

Given the c.d.f

$$
F(x)= \begin{cases}0 & x<-1 \\ \frac{x+2}{4} & -1 \leq x<1 \\ 1 & 1 \leq x\end{cases}
$$

sketch the graph of $F(x)$ and then compute:
(a) $P\left(-\frac{1}{2}<X \leq \frac{1}{2}\right)$

Answer(a):

$$
P\left(-\frac{1}{2}<X \leq \frac{1}{2}\right)=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x=F\left(\frac{1}{2}\right)-F\left(-\frac{1}{2}\right)=\frac{1}{4}
$$

(b) $P(X=0)$

Answer (b):

$$
P(X=0)=0
$$

(c) $P(X=1)$

Answer (c):

$$
P(X=1)=\frac{1}{4}
$$

(d) $P(2<X \leq 3)$

$$
P(2<X \leq 3)=F(3)-F(2)=1-1=0
$$

9. Exercise 1.6 .7 on Page 43:

Let X have a p.m.f $p(x)=\frac{1}{3}, x=1,2,3$, zero elsewhere. Find the p.m.f. of $Y=2 X+1$.
Answer:

$$
X=\frac{1}{2} Y-\frac{1}{2}
$$

For the mappings,

$$
\mathcal{D}_{X}=\{x: x=1,2,3\} \quad \mathcal{D}_{Y}=\{y: y=3,5,7\}
$$

Then,

$$
P_{Y}(y)=P_{X}\left(\frac{1}{2} y-\frac{1}{2}\right)= \begin{cases}\frac{1}{3} & y=3 \\ \frac{1}{3} & y=5 \\ \frac{1}{3} & y=7\end{cases}
$$

10. Exercise 1.7.6 on Page 50:

For each of the following p.d.f. of X , find $P(|X|<1)$ and $P\left(X^{2}<9\right)$.
(a) $f(x)=x^{2} / 18,-3<x<3$, zero else where.

Answer (a):

$$
\begin{aligned}
P(|X|<1)= & P(-1<X<1)=\int_{-1}^{1} f(x) d x=\int_{-1}^{1}\left(x^{2} / 18\right) d x \\
= & x^{3} / 54\left|(x=1)-x^{3} / 54\right|(x=-1) \\
= & \frac{1}{27} \\
& P\left(X^{2}<9\right)=P(-3<X<3)=1
\end{aligned}
$$

(b) $f(x)=(x+2) / 18,-2<x<4$, zero elsewhere.

Answer (b):

$$
\begin{aligned}
P(|X|<1) & =P(-1<X<1)=\int_{-1}^{1} f(x) d x=\int_{-1}^{1}(x+2 / 18) d x \\
& =\left(\frac{1}{2} x^{2}+2 x\right) / 18\left|(x=1)-\left(\frac{1}{2} x^{2}+2 x\right) / 18\right|(x=-1) \\
& =\frac{2}{9}
\end{aligned}
$$

$$
\begin{aligned}
P\left(X^{2}<9\right) & =P(-3<X<3)=P(-2<X<3) \\
& =\left(\frac{1}{2} x^{2}+2 x\right) / 18\left|(x=3)-\left(\frac{1}{2} x^{2}+2 x\right) / 18\right|(x=-2) \\
& =\frac{25}{36}
\end{aligned}
$$

11. Exercise 1.8.8 on Page 57:

Let $f(x)=2 x, 0<x<1$, zero elsewhere, be the p.d.f. of X.
(a) Compute $\mathbb{E}(1 / X)$

Answer (a):

$$
\mathbb{E}(1 / X)=\int_{0}^{1} \frac{1}{x} f(x) d x=2
$$

(b) Find the c.d.f. and p.d.f. of $Y=1 / X$.

Answer (b):
Method 1:

$$
P_{Y}(y)=P(Y \leq y)=P\left(\frac{1}{X} \leq y\right)=P\left(X>\frac{1}{y}\right)=\int_{1}^{1 / y} 2 x d x=1-\frac{1}{y^{2}}
$$

Thus,

$$
f_{Y}(y)=\frac{2}{y^{3}} \quad y \in(0, \infty)
$$

Method 2:

Jacobian of the transformation is

$$
\begin{aligned}
& J=\frac{d \frac{1}{y}}{d y}=-\frac{1}{y^{2}} \\
f_{Y}(y)= & f_{X}(X=1 / y)(-d x / d y) \\
= & f_{X}(1 / y)|J| \\
= & \frac{2}{y^{3}} \quad y \in(0, \infty)
\end{aligned}
$$

(c) Compute $\mathbb{E}(Y)$ and compare this result with the answer obtained in part (a).

Answer (c):

$$
\mathbb{E}(y)=\int_{y=0}^{\infty} y \frac{2}{y^{3}} d y=-\frac{2}{y}\left|(y=\infty)+\frac{2}{y}\right|(y=1)=2
$$

The results are consistent.

