1. Exercise 2.4.1 on Page 108:

Let the random variables X and Y have the joint p.m.f.
(a) $p(x, y)=\frac{1}{3},(x, y)=(0,0),(1,1),(2,2)$, zero elsewhere.

Answer:

$$
\begin{gathered}
\mu_{1}=\mathbb{E}(X)=\sum_{x} x \frac{1}{3}=1 \\
\mu_{2}=\mathbb{E}(Y)=\sum_{y} y \frac{1}{3}=1 \\
\mathbb{E}(X Y)=\sum_{x}(x y) \frac{1}{3}=1 \frac{5}{3} \\
\sigma_{1}^{2}=\sigma_{2}^{2}=\mathbb{E}\left(X^{2}\right)-\mu_{1}^{2}=\sum_{x} x^{2} p(x)-1=\frac{2}{3} \\
\rho=\frac{\mathbb{E}\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]}{\sigma_{1} \sigma_{2}}=\frac{5 / 3-1^{2}}{2 / 3}=1
\end{gathered}
$$

(b) $p(x, y)=\frac{1}{3},(x, y)=(0,2),(1,1),(2,0)$, zero elsewhere.

Answer:

$$
\begin{gathered}
\mu_{1}=\mathbb{E}(X)=\sum_{x} x \frac{1}{3}=1 \\
\mu_{2}=\mathbb{E}(Y)=\sum_{y} y \frac{1}{3}=1 \\
\mathbb{E}(X Y)=\sum_{x}(x y) \frac{1}{3}=\frac{1}{3} \\
\sigma_{1}^{2}=\sigma_{2}^{2}=\mathbb{E}\left(X^{2}\right)-\mu_{1}^{2}=\sum_{x} x^{2} p(x)-1=\frac{2}{3} \\
\rho=\frac{\mathbb{E}\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]}{\sigma_{1} \sigma_{2}}=\frac{1 / 3-1^{2}}{2 / 3}=-1
\end{gathered}
$$

(c) $p(x, y)=\frac{1}{3},(x, y)=(0,0),(1,1),(2,0)$, zero elsewhere.

Answer:

$$
\begin{gathered}
\mu_{1}=\mathbb{E}(X)=\sum_{x} x \frac{1}{3}=1 \\
\mu_{2}=\mathbb{E}(Y)=\sum_{y} y \frac{1}{3}=1 / 3 \\
\mathbb{E}(X Y)=\sum_{x}(x y) \frac{1}{3}=\frac{1}{3}=\mu_{1} \mu_{2} \\
\rho=\frac{\mathbb{E}\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]}{\sigma_{1} \sigma_{2}}=0
\end{gathered}
$$

2. Exercise 2.4.4 on Page 109

Show that the variance of the conditional distribution of Y, Given $X=x$, in Exercise 2.4.3, is $\frac{(1-x)^{2}}{12}, 0<x<1$, and that the variance of the conditional distribution of X, given $Y=y$, is $\frac{y^{2}}{12}, 0<y<1$.
Answer:
For 2.4.3, we have

$$
f(x, y)=2, \quad 0<x<y, \quad 0<y<1
$$

Then

$$
\begin{gathered}
f(x)=\int_{x}^{1} f(x, y) d y=2(1-x) \\
f(y)=\int_{0}^{y} f(x, y) d x=2 y<x<1 \\
0<x<1
\end{gathered}
$$

Then,

$$
\begin{aligned}
f(y \mid x) & =\frac{f(x, y)}{f(x)}=\frac{1}{1-x} \quad x<y<1 \\
\mathbb{E}(y \mid x) & =\int_{x}^{1} y \frac{1}{1-x} d y=\frac{1+x}{2} \\
\mathbb{E}\left(y^{2} \mid x\right) & =\int_{x}^{1} y 2 \frac{1}{1-x} d y=\frac{1+x+x^{2}}{3} \\
\mathbb{V}(y \mid x) & =\frac{1+x+x^{2}}{3}-\left(\frac{1+x}{2}\right)^{2}=\frac{(1-x)^{2}}{12}
\end{aligned}
$$

Meanwhile,

$$
\begin{gathered}
f(x \mid y)=\frac{f(x, y)}{f(y)}=\frac{1}{y} \quad 0<x<y \\
\mathbb{E}(x \mid y)=\int_{0}^{y} x \frac{1}{y} d x=\frac{1}{2} y \\
\mathbb{E}\left(x^{2} \mid y\right)=\int_{0}^{y} x^{2} \frac{1}{y} d x=\frac{1}{3} y^{2} \\
\mathbb{V}(x \mid y)=\frac{1}{3} y^{2}-\frac{1}{4} y^{2}=\frac{y^{2}}{12}
\end{gathered}
$$

3. Exercise 2.4.7 on Page 109

If the correlation coefficient ρ of X and Y exists, show that $-1 \leq \rho \leq 1$. Hint consider the discriminant of the non-negative quadratic function:

$$
h(v)=\mathbb{E}\left\{\left[\left(X-\mu_{1}\right)+v\left(Y-\mu_{2}\right)\right]^{2}\right\}
$$

where v is real and is not a function of X nor of Y.
Answer:

$$
h(v)=\operatorname{Var}(X)+2 v \operatorname{Cov}(X, Y)+v^{2} \operatorname{Var}(Y) \geq 0
$$

Then, the discriminant of this quadratic must satisfy $b^{2}-4 a c \leq 0$, which yields

$$
[2 \operatorname{Cov}(X, Y)]^{2}-4 \operatorname{Var}(X) \operatorname{Var}(Y) \leq 0
$$

Equivalently,

$$
\rho^{2}=\frac{\operatorname{Cov}(X, Y)^{2}}{\operatorname{Var}(X) \operatorname{Var}(Y)} \leq 1
$$

4. Exercise 2.4.10 on Page 109

Let X_{1} and X_{2} have the joint p.m.f described by the following table:

$\left(x_{1}, x_{2}\right)$	$(0,0)$	$(0,1)$	$(0,2)$	$(1,1)$	$(1,2)$	$(2,2)$
$p\left(x_{1}, x_{2}\right)$	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{1}{12}$

Find $p_{1}\left(x_{1}\right), p_{2}\left(x_{2}\right), \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$, and ρ.
Answer:
We have

x_{1}	0	1	2	Total
$p\left(x_{1}\right)$	$\frac{4}{12}$	$\frac{7}{12}$	$\frac{1}{12}$	1

x_{2}	0	1	2	Total
$p\left(x_{2}\right)$	$\frac{1}{12}$	$\frac{5}{12}$	$\frac{6}{12}$	1

Then, we have the

$$
\begin{aligned}
\mu_{1} & =\sum_{x_{1}} x_{1} p\left(x_{1}\right)=\frac{9}{12}=\frac{3}{4} \\
\mathbb{E}\left(x_{1}^{2}\right) & =\sum_{x_{1}} x_{1}^{2} p\left(x_{1}\right)=\frac{11}{12} \\
\mathbb{V}\left(x_{1}\right) & =\frac{11}{12}-\left(\frac{3}{4}\right)^{2}=0.3541667 \\
\mu_{2} & =\sum_{x_{2}} x_{2} p\left(x_{2}\right)=\frac{17}{12} \\
\mathbb{E}\left(x_{2}^{2}\right) & =\sum_{x_{2}} x_{2}^{2} p\left(x_{2}\right)=\frac{29}{12} \\
\mathbb{V}\left(x_{2}\right) & =\frac{29}{12}-\left(\frac{17}{12}\right)^{2}=0.4097222
\end{aligned}
$$

Then the ρ, we have

$$
\rho=\frac{E\left(x_{1} x_{2}\right)-E\left(x_{1}\right) E\left(x_{2}\right)}{S D\left(x_{1}\right) S D\left(x_{2}\right)}=\frac{(3+8+4) / 12-3 / 4 \times 17 / 12}{0.380933}=0.4922125
$$

5. Exercise 2.5.2 on Page 116

If the random variables X_{1} and X_{2} have the joint pdf $f\left(x_{1}, x_{2}\right)=2 e^{-x_{1}-x_{2}}, 0<x_{1}<x_{2}$, $0<x_{2}<\infty$, zero elsewhere, show that X_{1} and X_{2} are dependent.

Answer:

$$
\begin{gathered}
f\left(x_{1}\right)=\int_{x_{1}}^{\infty} 2 e^{-x_{1}-x_{2}} d x_{2}=2 e^{-2 x_{1}} \\
f\left(x_{2}\right)=\int_{0}^{x_{2}} 2 e^{-x_{1}-x_{2}} d x_{2}=2 e^{-x_{2}}-2 e^{-2 x_{2}}
\end{gathered}
$$

Therefore,

$$
f\left(x_{1}, x_{2}\right) \neq f\left(x_{1}\right) f\left(x_{2}\right)
$$

Hence, they are dependent.

6. Exercise 2.5.5 on Page 116

Find the probability of the union of the events $a<X_{1}<b,-\infty<X_{2}<\infty$, and $-\infty<X_{1}<$ $\infty, c<X_{2}<d$ if X_{1} and X_{2} are two independent variables with $P\left(a<X_{1}<b\right)=\frac{2}{3}$ and $P\left(c<X_{2}<d\right)=\frac{5}{8}$.
Answer:

$$
\frac{2}{3}+\frac{5}{8}-\frac{2}{3} \times \frac{5}{8}=\frac{7}{8}
$$

7. Exercise 2.5.13 on Page 117

For X_{1} and X_{2} in Example 2.5.6, show that the m.g.f of $Y=X_{1}+X_{2}$ is $\frac{e^{2 t}}{\left(2-e^{t}\right)^{2}}, t<\log (2)$, and then compute the mean and variance of Y.
Answer:
As X_{1} and X_{2} are independent random variable with m.g.f:

$$
\begin{aligned}
M_{X_{1}}(t)=M_{X_{2}}(t) & =\sum_{2}^{\infty} e^{t x}\left(\frac{1}{2}\right)^{x} \\
& =\sum_{1}^{\infty}\left(\frac{1}{2} e^{t}\right)^{x} \\
& =\left(\frac{e^{t}}{2}\right) \frac{1}{1-\frac{e^{t}}{2}} \\
& =\frac{e^{t}}{2-e^{t}}
\end{aligned}
$$

Then

$$
M_{Y}(t)=M_{X_{1}}(t) \times M_{X_{2}}(t)=\frac{e^{2 t}}{\left(2-e^{t}\right)^{2}}
$$

