1. Exercise 3.1.2 on Page 146:

The mgf of a random variable X is $\left(\frac{2}{3}+\frac{1}{3} e^{t}\right)^{9}$. Show that

$$
P(\mu-2 \sigma<X<\mu+2 \sigma)=\sum_{x=1}^{5}\binom{9}{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{9-x} .
$$

Answer:
Since the $M(t)$ of X is $\left(\frac{2}{3}+\frac{1}{3} e^{t}\right)^{9}$, we have that X is a binomial distribution with $n=9$, $p=\frac{1}{3}, \mu=n p=3, \sigma^{2}=n p(1-p)=2$. Therefore, $\mu-2 \sigma=3-2 \sqrt{2}, \mu+2 \sigma=3+2 \sqrt{2}$. Thus

$$
P(\mu-2 \sigma<X<\mu+2 \sigma)=P(X=1,2,3,4,5)=\sum_{x=1}^{5}\binom{9}{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{9-x} .
$$

2. Exercise 3.1.16 on Page 148:

Show that the moment generating function of the negative binomial distribution is $M(t)=$ $p^{r}\left[1-(1-p) e^{t}\right]^{-r}$. Find the mean and the variance of this distribution.
Hint : In the summation representing $M(t)$, make use of the Maclaurin's series for ($1-$ $w)^{-r}$.

Answer:
Let Y has a negative binomial distribution, so we have that

$$
\begin{aligned}
P(Y & =y)=\binom{y+r-1}{r-1} p^{r}(1-p)^{y}, \quad y=0,1,2 \cdots \\
M(t) & =E e^{t Y} \\
& =\sum_{y=0}^{\infty}\binom{y+r-1}{r-1} e^{t y} p^{r}(1-p)^{y}, \quad y=0,1,2 \cdots \\
& =p^{r} \sum_{y=0}^{\infty}\binom{y+r-1}{y}\left[(1-p) e^{t}\right]^{y}, \quad y=0,1,2 \cdots \\
& =p^{r}\left[1-(1-p) e^{t}\right]^{-r}
\end{aligned}
$$

Because

$$
(1-w)^{-r}=\sum_{y=0}^{\infty}\binom{y+r-1}{y} w^{y}
$$

where $w=(1-p) e^{t}$.

$$
E(Y)=\frac{r(1-p)}{p}, \quad \operatorname{Var}(Y)=\frac{r(1-p)}{p^{2}}
$$

3. Exercise 3.2.1 on Page 154:

If the random variable X has a Poisson distribution such that $P(X=1)=P(X=2)$, find $P(X=4)$.

Answer:
Since $P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$, so

$$
\frac{e^{-\lambda} \lambda}{1!}=\frac{e^{-\lambda} \lambda^{2}}{2!}
$$

Then, we have that $\lambda=2$.
Thus,

$$
P(X=4)=\frac{2^{4} e^{-2}}{4!}=\frac{2}{3} e^{-2} .
$$

4. Exercise 3.2.13 on Page 155:

Let X and Y have the joint $\operatorname{pmf} p(x, y)=e^{-2} /[x!(y-x)!], y=0,1,2, \ldots, x=0,1, \ldots, y$, zero elsewhere.
(a) Find the mgf $M\left(t_{1}, t_{2}\right)$ of this joint distribution.
(b) Compute the means, the variances, and the correlation coefficient of X and Y.
(c) Determine the conditional mean $E(X \mid y)$.

Hint : Note that

$$
\sum_{x=0}^{y}\left[\exp \left(t_{1} x\right)\right] y!/[x!(y-x)!]=\left[1+\exp \left(t_{1}\right)\right]^{y} .
$$

Answer: for (a),

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =E e^{\left(t_{1} X+t_{2} Y\right)} \\
& =\sum_{y=0}^{\infty} \sum_{x=0}^{y} e^{\left(t_{1} x+t_{2} y\right)} \frac{e^{-2}}{x!(y-x)!} \\
& =\sum_{y=0}^{\infty} \frac{e^{t_{2} y} e^{-2}}{y!} \sum_{x=0}^{y} \frac{e^{t_{1} x} y!}{x!(y-x)!} \\
& =\sum_{y=0}^{\infty} \frac{e^{t_{2} y} e^{-2}}{y!}\left(1+e^{t_{1}}\right)^{y} \\
& =\sum_{y=0}^{\infty} \frac{\left[e^{t_{2}}\left(1+e^{t_{1}}\right)\right]^{y} e^{-2}}{y!} \\
& =e^{-2} \exp \left\{\left(1+e^{t_{1}}\right) e^{t_{2}}\right\} .
\end{aligned}
$$

For (b),
$E(X)=1, E(Y)=2, E\left(X^{2}\right)=2, E\left(Y^{2}\right)=6, \operatorname{Var}(X)=1, \operatorname{Var}(Y)=2, \rho=\frac{1}{\sqrt{2}}$.
For (c),

$$
\begin{gathered}
P(Y=y)=\sum_{x=0}^{y} \frac{e^{-2}}{x!(y-x)!}=\frac{e^{-2}}{y!} \sum_{x=0}^{y} \frac{y!}{x!(y-x)!}=\frac{2^{y} e^{-2}}{y!} \\
P(X \mid Y=y)=\frac{e^{-2} /[x!(y-x)!]}{\left(2^{y} e^{-2}\right) / y!}=\frac{y!}{x!(y-x)!} \cdot \frac{1}{2^{y}} \\
E(X \mid Y=y)=\sum_{x=0}^{y} x \cdot \frac{y!}{x!(y-x)!} \cdot \frac{1}{2^{y}}=\frac{y}{2^{y}}\left[\sum_{x=1}^{y} \cdot \frac{(y-1)!}{(x-1)!(y-x)!}\right]=\frac{y}{2} .
\end{gathered}
$$

5. Exercise 3.3.24 on Page 166:

Let X_{1}, X_{2} be two independent random variables having gamma distributions with parameters $\alpha_{1}=3, \beta_{1}=3$ and $\alpha_{2}=5, \beta_{2}=1$, respectively.
(a) Find the mgf of $Y=2 X_{1}+6 X_{2}$.
(b) What is the distribution of Y ?

Answer:

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \cdot x^{\alpha-1} e^{-x / \beta}, \quad 0<x<\infty .
$$

For (a), since

$$
\begin{aligned}
E e^{2 t X} & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{2 t x} \frac{1}{\beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} d x \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-y} \frac{1}{\beta^{\alpha}}\left(\frac{\beta y}{1-2 t \beta}\right)^{\alpha-1} e^{-x / \beta}\left(\frac{\beta}{1-2 t \beta}\right) d y, \quad\left(\operatorname{Let} y=\frac{x(1-2 t \beta)}{\beta}\right) \\
& =\frac{1}{(1-2 t \beta)^{\alpha}} \int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y \\
& =\frac{1}{(1-2 t \beta)^{\alpha}}
\end{aligned}
$$

Similarly, we obtain that

$$
E e^{6 t X}=\frac{1}{(1-6 t \beta)^{\alpha}}
$$

So we have that

$$
M(t)=E e^{t\left(2 X_{1}+6 X_{2}\right)}=E e^{2 t X_{1}} \cdot E e^{6 t X_{2}}=(1-6 t)^{-8}, \quad(t<1 / 6) .
$$

For (b), by the mgf of Y in (a), we have that Y has a Gamma distribution and $\alpha=8, \beta=6$.

6. Exercise 3.4.28 on Page 178:

Let X_{1} and X_{2} be independent with normal distributions $N(6,1)$ and $N(7,1)$, respectively. Find $P\left(X_{1}>X_{2}\right)$.
Hint : Write $P\left(X_{1}>X_{2}\right)=P\left(X_{1}-X_{2}>0\right)$ and determine the distribution of $X_{1}-X_{2}$.

Answer: Let $Y=X_{1}-X_{2}$, since X_{1} and X_{2} are independent with normal distributions, we have that

$$
M_{X_{1}}(t)=E e^{t X_{1}}=e^{\left(6 t+\frac{1}{2} t^{2}\right)}, \quad M_{\left(-X_{2}\right)}(t)=E e^{t X_{2}}=e^{\left(-7 t+\frac{1}{2} t^{2}\right)}
$$

and

$$
M_{Y}(t)=E e^{t Y}=E e^{t X_{1}} E e^{-t X_{2}}=e^{\left(-t+t^{2}\right)}
$$

Therefore, we obtain that Y has a normal distribution $N(-1,2)$. Thus,

$$
P\left(X_{1}-X_{2}>0\right)=P(Y>0)=1-\Phi(1 / \sqrt{2}) .
$$

7. Exercise 3.6.10 on Page 196:

Let $T=W / \sqrt{V / r}$, where the independent variables W and V are, respectively, normal with mean zero and variance 1 and chi-square with r degrees of freedom. Show that T^{2} has an F-distribution with parameters $r_{1}=1$ and $r_{2}=r$.
Hint : What is the distribution of the numerator of T^{2} ?

Answer:
Since $T=W / \sqrt{V / r}$, we have that $T^{2}=W^{2} /(V / r)=\left(W^{2} / 1\right) /(V / r)$. Moreover, W is $N(0,1)$, then we have that W^{2} is chi-square with 1 degrees of freedom. The variables W and V are independent, so W^{2} and V are independent. Thus, T^{2} is F-distribution with 1 and r degrees of freedom.

8. Exercise 3.6 .13 on Page 196:

Let X_{1}, X_{2} be iid with common distribution having the pdf $f(x)=e^{-x}, 0<x<\infty$, zero elsewhere. Show that $Z=X_{1} / X_{2}$ has an F-distribution.

Answer:

This question I explained wrongly in the class, as you can not multiply the m.g.f. directly
as X_{1} and X_{1} itself are dependent.
Therefore, we need to use the Jacobian:

$$
\left|\frac{d x}{d y}\right|=\frac{1}{2}
$$

Then, the p.d.f. is

$$
g(y)=f\left(\frac{1}{2} y\right) \times \frac{1}{2}=\frac{1}{2} e^{-\frac{y}{2}}
$$

Then correspondingly we can have the m.g.f.

$$
M_{Y_{i}}(t)=(1-2 t)^{-2}, \quad(t<1 / 2)
$$

Or otherwise you do not use the m.g.f, just directly observe the p.d.f and recognise that Y_{i} is chi-square with 2 degrees of freedom. Moreover, X_{1} and X_{2} are iid, so we have that

$$
Z=\frac{X_{1}}{X_{2}}=\frac{2 X_{1} / 2}{2 X_{2} / 2}=\frac{Y_{1}}{Y_{2}}
$$

Thus Z has an F-distribution.

