1. Exercise 4.5.4 on Page 246

Let X have a binomial distribution with the number of trials $n=10$ and with p either $1 / 4$ or $1 / 2$. The simple hypothesis $H_{0}: p=1 / 2$ is rejected, and the alternative simple hypothesis $H_{1}: p=1 / 4$ is accepted, if the observed value of X_{1}, a random sample of size 1 , is less than or equal to 3 . Find the significance level and the power of the test.

Answer:

$$
\begin{gather*}
\alpha=\operatorname{Pr}\left(X_{1} \leq 3 \mid H_{0}\right)=\sum_{i=1}^{3}\binom{10}{i}(1 / 2)^{i}(1 / 2)^{10-i}=0.17 \tag{1}\\
1-\beta=\operatorname{Pr}\left(X_{1} \leq 3 \mid H_{1}\right)=\sum_{i=1}^{3}\binom{10}{i}(1 / 4)^{i}(3 / 4)^{10-i}=0.7758751 \tag{2}\\
\alpha=0.17 \quad 1-\beta=0.78 \tag{3}
\end{gather*}
$$

2. Exercise 4.6.6 on Page 253

Each of 51 golfers hit three golf balls of brand X and three golf balls of brand Y in a random order. Let X_{i} and Y_{i} equal the averages of the distances traveled by the brand X and brand Y golf balls hit by the i-th golfer, $i=1,2, \ldots, 51$. Let $W_{i}=X_{i}-Y_{i}, i=1,2, \ldots, 51$. Test $H_{0}: \mu_{W}=0$ against $H_{1}: \mu_{W}>0$, where μ_{W} is the mean of the differences. If $w=2.07$ and $s_{W}^{2}=84.63$, would H_{0} be accepted or rejected at an $\alpha=0.05$ significance level? What is the p-value of this test?
Answer:

$$
\begin{gather*}
t=\frac{2.07-0}{\sqrt{84.63 / 51}}=1.606916 \sim t(50) \tag{4}\\
\text { p-value }=1-0.9428148=0.05718519>0.05
\end{gather*}
$$

Also

$$
t^{*}(50,0.95)=1.675905>t
$$

Therefore, we do not reject H_{0}.

3. Exercise 4.7.3 on Page 260

A die was cast $n=120$ independent times and the following data resulted:

Spots Up	1	2	3	4	5	6
Frequency	b	20	20	20	20	$40-b$

If we use a chi-square test, for what values of b would the hypothesis that the die is unbiased be rejected at the 0.025 significance level?
Answer:
Using χ^{2} test, we have

$$
\begin{equation*}
\sum_{i=1}^{6} \frac{\left(X_{i}-n p_{i}\right)^{2}}{n p_{i}}=\frac{(b-20)^{2}}{20}+\frac{(40-b-20)^{2}}{20}>\chi^{2}(5,0.975)=12.8325 \tag{5}
\end{equation*}
$$

Therefore,

$$
b<8.7 \text { or } b>31.3
$$

4. Exercise 5.3.1 on Page 313

Let X denote the mean of a random sample of size 100 from a distribution that is $\chi^{2}(50)$. Compute an approximate value of $P(49<X<51)$.
Answer:
For $\chi^{2}(50)$,

$$
\begin{equation*}
\mathbb{E}(X)=50 \quad \mathbb{V}(X)=100 \tag{6}
\end{equation*}
$$

Hence, by CLT,

$$
\begin{align*}
\operatorname{Pr}(49<\bar{X}<51) & =\operatorname{Pr}\left(\sqrt{n} \frac{49-\mu}{\sigma}<Z<\sqrt{n} \frac{51-\mu}{\sigma}\right) \\
& =\Phi(1)-\Phi(-1) \tag{7}\\
& =0.6827
\end{align*}
$$

5. Exercise 6.1.1 on Page 326

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\Gamma(\alpha=3, \beta=\theta)$ distribution, $0<\theta<\infty$. Determine the mle of θ.
Answer:
For the MLE of Gamma distribution,

$$
\begin{align*}
L\left(\beta ; \alpha, x_{i}\right) & =\prod_{i=1}^{n} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \alpha_{i}^{\alpha-1} e^{-x_{i} / \beta} \\
\ell\left(\beta ; \alpha, x_{i}\right) & =-n \log (\Gamma(\alpha))-n \alpha \log (\beta)+(\alpha-1) \sum_{i=1}^{n} \log \left(x_{i}\right)-\sum_{i=1}^{n} x_{i} / \beta \tag{8}\\
\frac{\partial \ell\left(\beta ; \alpha, x_{i}\right)}{\partial \beta} & =\frac{\sum_{i=1}^{n} x_{i}}{\beta^{2}}-\frac{n \alpha}{\beta}=0 \\
\Rightarrow \quad \hat{\beta} & =\frac{\sum_{i=1}^{n} x_{i}}{n \alpha}=\frac{\sum_{i=1}^{n} x_{i}}{3 n}
\end{align*}
$$

6. Exercise 6.2.7 on Page 340

Let X have a gamma distribution with $\alpha=4$ and $\beta=\theta>0$.
(a) Find the Fisher information $I(\theta)$.
(b) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ.
(c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta}-\theta)$?

Answer:
From Question 5, we have

$$
\begin{array}{ll}
& \log f(x ; \beta)=-\log (\Gamma(\alpha))-\alpha \log (\beta)+(\alpha-1) \log (x)-x / \beta \\
& \frac{\partial \log f(x ; \beta)}{\partial \beta}=-\frac{\alpha}{\beta}+\frac{x}{\beta^{2}} \\
& \frac{\partial^{2} \log f(x ; \beta)}{\partial \beta^{2}}=\frac{\alpha}{\beta^{2}}-2 \frac{x}{\beta^{3}} \tag{9}\\
& I(\beta)=-\mathbb{E}\left(\frac{\partial^{2} \log f(x ; \beta)}{\partial \beta^{2}}\right)=-\frac{\alpha}{\beta^{2}}+2 \frac{\mathbb{E}(X)}{\beta^{3}}=\frac{\alpha}{\beta^{2}} \\
\text { where } \quad \mathbb{E}(X)=\alpha \beta
\end{array}
$$

(b)As from question 5

$$
\begin{equation*}
\operatorname{Var}(\hat{\beta})=\frac{\operatorname{Var}(X)}{n \alpha^{2}}=\frac{\alpha \beta^{2}}{n \alpha^{2}}=\frac{\beta^{2}}{n \alpha}=\frac{1}{n I(\beta)} \tag{10}
\end{equation*}
$$

Therefore, mle is an efficient estimator.
(c)As

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N\left(0, \frac{1}{I(\theta)}\right)
$$

then,

$$
\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N\left(0, \theta^{2} / \alpha\right)
$$

