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GOAL (“KEY LEARNING OUTCOME”):

introduction to state-of-the-art computational approaches to solution of
PDE optimization problems, including actual computer implementation

KEY CHALLENGE:

dealing with the PDE constraint
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Formulation Euler-Lagrange Equations
Reduced Objective Functional
Gradient Flows

Applications of PDE Optimization

» Open-loop optimal control of distributed systems

» flow control problems in fluid mechanics (e.g., optimization of lift
and/or drag, mixing, etc.)

» structural optimization is solid mechanics

v

process optimization in chemical engineering

> portfolio optimization in investing

> State and parameter estimation for distributed systems

> inverse problems for PDEs (e.g., medical imaging)
» data assimilation in Numerical Weather Prediction (“4D VAR")
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Formulation Euler-Lagrange Equations
Reduced Objective Functional
Gradient Flows

General Framework

» Equation-constrained optimization problem

inf J(x,¢)
(*) (x.)
subject to:  S(x,) =0

where:
> x € X — the state variable (X is a suitable function space)
» ¢ € U — the control variable (I is a suitable function (Hilbert) space)
> j : X XU — R — the objective functional

> S X XU — X* — constraint (PDE with initial /boundary
conditions)
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Formulation Euler-Lagrange Equations

Reduced Objective Functional
Gradient Flows

» The constraint S(x, ¢) = 0 be handled by introducing the Lagrange
multiplier A € X, such that we can define the Lagrangian

K(X7§07)‘) = j(ngo) - <)‘75(X7 QO)>X><X*

» The constrained minimizers are then defined by the variational

problem

sup inf  L(x,0, A
Aex  (xp)eXxu (@)

» Stationary points (X, @, X) of the Lagrangian are solutions of the
Euler-Lagrange equations

VALK, 3,A) =0
VL(X, p, ) 0
V,L(X,3,A) =0
» The stationary points (X, @, X) are saddle points. The problem is
hard so solve and we will advocate for a different formulation.
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Formulation Euler-Lagrange Equations
Reduced Objective Functional

Gradient Flows

» If the constraint equation S(x, ¢) = 0 can be solved for x (cf. implicit
function theorem), then x = x() and one can define the reduced
objective functional

T () = T (x(¢), ¥)

» Constrained optimization problem (x) can then replaced with the
following equivalent unconstrained problem

min 7 ()

pel

» Inequality constraints are more difficult to handle, especially in the
context of PDE optimization, and will not be considered here
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Formulation Euler-Lagrange Equations
Reduced Objective Functional

Gradient Flows

» How to find a local minimizer 7

» Consider the following initial-value problem in the space U, known as
the gradient flow

dy() =
(GF) = —VI(p(7)), T >0,
¢(0) = o,

where
> 7 is a “pseudo-time” (a parametrization)

P> g is a suitable initial guess

» Then, lim; 0 p(7) =@
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Formulation Euler-Lagrange Equations
Reduced Objective Functional

Gradient Flows

» When the optimization is nonconvex, “solution” mean a local
minimizer
P one is often interested in branches of local maximizers obtained as
some parameter is varied

> In principle, the gradient flow may converge to a saddle point s,
where V.7 (¢s) = 0 and the Hessian V2.7 (ys) is not positive-definite,
but in actual computations this is very unlikely.
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Examples of PDE Optimization

Vorticity fields on the flow past an obstacle

Vorticity Field

X /D

B. Protas Numerical Optimization of PDEs



Examples of PDE Optimization

A Classical Flow Control Problem in Fluid Mechanics

» Flow Domain N » Assumptions:

» viscous, incompressible flow
» plane, infinite domain

| 4 =
v, Q Re = 150
/F
Y .
O ™ « » State variables:
o > velocity: v : Q — R?
o > pressure: p : Q - R

» Control variables:

» rate of rotation:
¢ :[0,T|=R
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Examples of PDE Optimization

Statement of the Problem (1)

> Find popr = argminge 20 1) J () » where

1 T
() = 2/ {[ power related to } n [ power needed to ]} dt
0

the drag force control the flow
1 /7 _ ‘ -
B 2/0 ]ér {[p(¢)n — pn - D(v(¢))] - [¢ (ez x r) + voc]} dodt
0

» Subject to:

ov

S+ (v-V)v—pAv+Vp 0] .

ot =
[ Vv 0 in Qx(0,7),
v=_0 att =0,
V = QoptT onl
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Examples of PDE Optimization

Optimization vs. Discretization

» Optimize-then-Discretize: optimality conditions and gradient
expressions derived at the continuous (PDE) level and only then
discretized <= will focus on this approach

» formulation independent of discretization

> allows one to exploit the analytic structure of the problem (e.g.,
regularity, etc.)

» works well with mesh refinement in the numerical solution of PDEs

» Discretize-then-Optimize: the PDE problem is discretized first and
then treated as optimization problem in finite dimension

» PDE discretization errors do not affect the optimization procedure
> can take advantage of Automatic Differentiation (AD) tools

» may be more suitable for very large problems
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Plan of Lectures

» Part |: basic optimization concepts in R”
> gradients and gradient flows
» fixed and optimal step sizes
» linear and nonlinear conjugate gradients

» constraints, projections and Lagrange multipliers

» Part |l: optimization with PDE constraints
» Riesz theorem and gradient extraction
» adjoint calculus

» preconditioning and Sobolev gradients

» Part Ill: applications
» flow control

» shape optimization

> All presentations available at
http://www.math.mcmaster.ca/bprotas/lecture notes.shtml
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