Numerical Optimization of Partial Differential Equations
 Part I: basic optimization concepts in \mathbb{R}^{n}

Bartosz Protas

Department of Mathematics \& Statistics
McMaster University, Hamilton, Ontario, Canada
URL: http://www.math.mcmaster.ca/bprotas

Rencontres Normandes sur les aspects théoriques et numériques des EDP 5-9 November 2018, Rouen

Formulation

Unconstrained Optimization Problems
Optimality Conditions
Gradient Flows

Gradients Methods
Steepest Descent
Step Size Selection \& Line Search
Conjugate Gradients

Constraints

Lagrange Multipliers
Projected Gradients

A good reference for standard approaches

B. Protas

Numerical Optimization of PDEs

- Suppose $f: \mathbb{R}^{N} \rightarrow \mathbb{R}, N \geq 1$, is a twice continuously differentiable objective function
- Unconstrained Optimization Problems:

$$
\min _{\mathbf{x} \in \mathbb{R}^{N}} f(\mathbf{x})
$$

(for maximization problems, we can consider $\min [-f(\mathbf{x})]$)

- A point $\tilde{\mathbf{x}}$ is a global minimizer if $f(\tilde{\mathbf{x}}) \leq f(\mathbf{x})$ for all \mathbf{x}
- A point $\tilde{\mathbf{x}}$ is a local minimizer if there exists a neighborhood \mathcal{N} of $\tilde{\mathbf{x}}$ such that $f(\tilde{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$
- A local minimizer is strict (or strong), if it is unique in \mathcal{N}
- Gradient of the objective function

$$
\nabla f(\mathbf{x}):=\left[\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{N}}\right]^{T}
$$

- Hessian of the objective function

$$
\left[\nabla^{2} f(\mathbf{x})\right]_{i, j}:=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}, \quad i, j=1, \ldots, N
$$

Theorem (First-Order Necessary Condition)

 If $\tilde{\mathbf{x}}$ is a local minimizer, then $\nabla f(\tilde{\mathbf{x}})=\mathbf{0}$.
Theorem (Second-Order Sufficient Conditions)

Suppose that $\nabla f(\tilde{\mathbf{x}})=\mathbf{0}$ and $\nabla^{2} f(\tilde{\mathbf{x}})$ is positive-definite. Then $\tilde{\mathbf{x}}$ is a strict local minimizers of f.

Unfortunately, analogous characterization of global minimizers is not possible

- How to find a local minimizer $\tilde{\mathbf{x}}$?
- Consider the following initial-value problem in \mathbb{R}^{N}, known as the gradient flow

$$
(\mathrm{GF}) \quad\left\{\begin{aligned}
\frac{d \mathbf{x}(\tau)}{d \tau} & =-\nabla f(\mathbf{x}(\tau)), \quad \tau>0 \\
\mathbf{x}(0) & =\mathbf{x}_{0}
\end{aligned}\right.
$$

where

- τ is a "pseudo-time" (a parametrization)
- x_{0} is a suitable initial guess
- Then, $\lim _{\tau \rightarrow \infty} \mathbf{x}(\tau)=\tilde{\mathbf{x}}$

In principle, the gradient flow may converge to a saddle point \mathbf{x}_{s}, where $\boldsymbol{\nabla} f\left(\mathbf{x}_{s}\right)=\mathbf{0}$ and the Hessian $\nabla^{2} f\left(\mathbf{x}_{s}\right)$ is not positive-definite, but in actual computations this is very unlikely.

- Discretize the gradient flow (GF) with Euler's explicit method
(SD)

$$
\left\{\begin{aligned}
\mathbf{x}^{(n+1)} & =\mathbf{x}^{(n)}-\Delta \tau \nabla f\left(\mathbf{x}^{(n)}\right), \quad n=1,2, \ldots \\
\mathbf{x}^{(0)} & =\mathbf{x}_{0}
\end{aligned}\right.
$$

where

- $\mathbf{x}^{(n)}:=\mathbf{x}(n \Delta \tau)$, such that $\lim _{n \rightarrow \infty} \mathbf{x}^{(n)}=\tilde{\mathbf{x}}$
- $\Delta \tau$ is a fixed step size (since Euler's explicit scheme is only conditionally stable, $\Delta \tau$ must be sufficiently small)
- In principle, the gradient flow (GF) can be discretized with higher-order schemes, including implicit approaches, but they are not easy to apply to PDE optimization problems, hence will not be considered here.

Algorithm 1 Steepest Descent (SD)

$$
\begin{aligned}
& \text { 1: } \mathbf{x}^{(0)} \leftarrow \mathbf{x}_{0} \text { (initial guess) } \\
& \text { 2: } n \leftarrow 0 \\
& \text { 3: repeat } \\
& \text { 4: } \quad \text { compute the gradient } \nabla f\left(\mathbf{x}^{(n)}\right) \\
& \text { 5: update } \mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}-\Delta \tau \nabla f\left(\mathbf{x}^{(n)}\right) \\
& \text { 6: } \quad n \leftarrow n+1 \\
& \text { 7: until } \frac{\left|f\left(\mathbf{x}^{(n)}\right)-f\left(\mathbf{x}^{(n-1)}\right)\right|}{\left|f\left(\mathbf{x}^{(n-1)}\right)\right|}<\varepsilon_{f}
\end{aligned}
$$

Input:

x_{0} - initial guess
$\Delta \tau$ - fixed step size
ε_{f} - tolerance in the termination condition

Output:

an approximation of the minimizer $\tilde{\mathbf{x}}$

Computational Tests

- Rosenbrock's "banana" function

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

- Global minimizer

$$
x_{1}=x_{2}=1, \quad f(1,1)=0
$$

- The function is known for its poor conditioning
- eigenvalues of the Hessian $\nabla^{2} f$ at the minimum:

$$
\lambda_{1} \approx 0.4, \quad \lambda_{2} \approx 1001.6
$$

- Choice of the step size $\Delta \tau$: steepest descent is not meant to approximate the gradient flow (GF) accurately, but to minimize $f(\mathbf{x})$ rapidly
- Sufficient decrease - Armijo's condition

$$
f\left(\mathbf{x}^{(n)}+\tau \mathbf{p}^{(n)}\right) \leq f\left(\mathbf{x}^{(n)}\right)-C \tau \nabla f\left(\mathbf{x}^{(n)}\right)^{T} \mathbf{p}^{(n)}
$$

where $\mathbf{p}^{(n)}$ is a search direction and $C \in(0,1)$

Figure credit: Nocedal \& Wright (1999)

- Wolfe's condition: sufficient decrease and curvature
B. Protas Numerical Optimization of PDEs
- Optimize the step size at every iteration by solving the line minimization (line-search) problem

$$
\tau_{n}:=\operatorname{argmin}_{\tau>0} f\left(\mathbf{x}^{(n)}-\tau \nabla f\left(\mathbf{x}^{(n)}\right)\right)
$$

- Brent's method for line minimization: a combination of the golden-section search with parabolic interpolation (derivative-free)

Figure credit: Numerical Recipes in C (1992)

- A robust implementation of Brent's method available in Numerical Recipes in C (1992), see also the function fminbnd in MATLAB

Algorithm 2 Steepest Descent with Line Search (SDLS)

1: $\mathbf{x}^{(0)} \leftarrow \mathbf{x}_{0}$ (initial guess)
2: $n \leftarrow 0$

repeat

4: \quad compute the gradient $\nabla f\left(\mathbf{x}^{(n)}\right)$
5: \quad determine optimal step size $\tau_{n}=\operatorname{argmin}_{\tau>0} f\left(\mathbf{x}^{(n)}-\tau \nabla f\left(\mathbf{x}^{(n)}\right)\right)$
6: update $\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}-\tau_{n} \boldsymbol{\nabla} f\left(\mathbf{x}^{(n)}\right)$
7: $\quad n \leftarrow n+1$
8: until $\frac{\left|f\left(\mathbf{x}^{(n)}\right)-f\left(\mathbf{x}^{(n-1)}\right)\right|}{\left|f\left(\mathbf{x}^{(n-1)}\right)\right|}<\varepsilon_{f}$

Input:

x_{0} - initial guess
ε_{τ} - tolerance in line search
ε_{f} - tolerance in the termination condition

Output:

an approximation of the minimizer $\tilde{\mathbf{x}}$

- Consider, for now, minimization of a quadratic form

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}
$$

where $\mathbf{A} \in \mathbb{R}^{N \times N}$ is a symmetric, positive-definite matrix and $\mathbf{b} \in \mathbb{R}^{N}$

- Then,

$$
\nabla f(\mathbf{x})=\mathbf{A x}-\mathbf{b}=: \mathbf{r}
$$

such that minimizing $f(\mathbf{x})$ is equivalent to solving $\mathbf{A x}=\mathbf{b}$

- A set of nonzero vectors $\left[\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{k}\right]$ is said to be conjugate with respect to matrix \mathbf{A} if

$$
\mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}_{j}=0, \quad \forall i, j=0, \ldots, k, i \neq j
$$

(conjugacy implies linear independence)

- Conjugate Gradient (CG) method

$$
\begin{aligned}
\mathbf{x}^{(n+1)} & =\mathbf{x}^{(n)}+\tau_{n} \mathbf{p}^{(n)}, & & n=1,2, \ldots, \\
\mathbf{p}^{(n)} & =-\mathbf{r}^{(n)}+\beta^{(n)} \mathbf{p}_{n-1}, & & \left(\mathbf{r}^{(n)}=\nabla f\left(\mathbf{x}^{(n)}\right)=\mathbf{A} \mathbf{x}^{(n)}-\mathbf{b}\right), \\
\beta^{(n)} & =\frac{\left(\mathbf{r}^{(n)}\right)^{T} \mathbf{A} \mathbf{p}^{(n-1)}}{\left(\mathbf{p}^{(n-1)}\right)^{T} \mathbf{A} \mathbf{p}^{(n-1)}}, & & (\text { "momentum" }), \\
\tau_{n} & =-\frac{\left(\mathbf{r}^{(n)}\right)^{T} \mathbf{p}^{(n)}}{\left(\mathbf{p}^{(n)}\right)^{T} \mathbf{A} \mathbf{p}^{(n)}}, & & (\text { exact formula for optimal step size) }, \\
\mathbf{x}_{0} & =\mathbf{x}^{0}, \quad \mathbf{p}^{(0)}=-\mathbf{r}^{(0)} & &
\end{aligned}
$$

- The directions $\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}$ generated by the CG method are conjugate with respect to matrix A
- this gives rise to a number of interesting and useful properties

Theorem (properties of CG iterations)

The iterates generated by the CG method have the following properties

$$
\begin{aligned}
\operatorname{span}\left\{\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}\right\} & =\operatorname{span}\left\{\mathbf{r}^{(0)}, \mathbf{r}^{(1)}, \ldots, \mathbf{r}^{(n)}\right\} \\
& =\operatorname{span}\left\{\mathbf{r}^{(0)}, \mathbf{A} \mathbf{r}^{(0)}, \ldots, \mathbf{A}^{n} \mathbf{r}^{(0)}\right\}
\end{aligned}
$$

- (the expanding subspace property)

$$
\left(\mathbf{r}^{(n)}\right)^{T} \mathbf{r}^{(k)}=\left(\mathbf{r}^{(n)}\right)^{T} \mathbf{p}^{(k)}=0, \quad \forall i=0, \ldots, n-1
$$

- $\mathbf{x}^{(n)}$ is the minimizer of $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}$ over the set

$$
\left\{\mathbf{x}^{0}+\operatorname{span}\left\{\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}\right\}\right\}
$$

- Thus, in the Conjugate Gradients method minimization of $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}$ is performed by solving (exactly) $N=\operatorname{dim}(\mathbf{x})$ line-minimization problems along the conjugate directions $\left\{\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}\right\}$
- As a result, convergence to $\tilde{\mathbf{x}}$ is achieved in at most N iterations
- What happens when $f(\mathbf{x})$ is a general convex function?
- The (linear) Conjugate Gradients method admits a generalization to the nonlinear setting by:
- replacing the residual $\mathbf{r}^{(n)}$ with the gradient $\nabla f\left(\mathbf{x}^{(n)}\right)$
- computing the step size via line search $\tau_{n}=\operatorname{argmin}_{\tau>0} f\left(\mathbf{x}^{(n)}-\tau \nabla f\left(\mathbf{x}^{(n)}\right)\right)$
- using a more general expressions for the "momentum" term $\beta^{(n)}$ (such that the descent directions $\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}$ will only be approximately conjugate)
- Nonlinear Conjugate Gradient (NCG) method

$$
\begin{aligned}
\mathbf{x}^{(n+1)} & =\mathbf{x}^{(n)}+\tau_{n} \mathbf{p}^{(n)}, \quad n=1,2, \ldots, \\
\mathbf{p}^{(n)} & =-\nabla f\left(\mathbf{x}^{(n)}\right)+\beta^{(n)} \mathbf{p}_{n-1}, \\
\beta^{(n)} & = \begin{cases}\frac{\left(\nabla f\left(\mathbf{x}^{(n)}\right)\right)^{T} \nabla f\left(\mathbf{x}^{(n)}\right)}{\left(\nabla f\left(\mathbf{x}^{(n-1)}\right)\right)^{T} \nabla f\left(\mathbf{x}^{(n-1)}\right)} & \text { (Fletcher-Reeves), } \\
\frac{\left(\nabla f\left(\mathbf{x}^{(n)}\right)\right)^{T}\left(\nabla f\left(\mathbf{x}^{(n)}\right)-\nabla f\left(\mathbf{x}^{(n-1)}\right)\right)}{\left(\nabla f\left(\mathbf{x}^{(n-1)}\right)\right)^{T} \nabla f\left(\mathbf{x}^{(n-1)}\right)} & \text { (Polak-Ribière), } \\
\tau_{n} & =\operatorname{argmin}_{\tau>0} f\left(\mathbf{x}^{(n)}-\tau \nabla f\left(\mathbf{x}^{(n)}\right)\right), \\
\mathbf{x}_{0} & =\mathbf{x}^{0}, \quad \mathbf{p}^{(0)}=-\nabla f\left(\mathbf{x}^{(0)}\right)\end{cases}
\end{aligned}
$$

- For quadratic functions $f(\mathbf{x})$, both the Fletcher-Reeves (FR) and the Polak-Ribière (PR) variant coincide with the the linear CG
- In general, the descent directions $\mathbf{p}^{(0)}, \mathbf{p}^{(1)}, \ldots, \mathbf{p}^{(n)}$ are now only approximately conjugate

Algorithm 3 Polak-Ribière version of Conjugate Gradient (CG-PR)

1: $\mathbf{x}^{(0)} \leftarrow \mathbf{x}_{0}$ (initial guess)
2: $n \leftarrow 0$
3: repeat
4: \quad compute the gradient $\boldsymbol{\nabla} f\left(\mathbf{x}^{(n)}\right)$
5: calculate $\beta_{n}=\frac{\left(\nabla f\left(x^{(n)}\right)\right)^{T}\left(\nabla f\left(x^{(n)}\right)-\nabla f\left(x^{(n-1)}\right)\right)}{\left(\nabla f\left(x^{(n-1)}\right)\right)^{T} \nabla f\left(x^{(n-1)}\right)}$
6: \quad determine the descent direction $\mathbf{p}^{(n)}=-\nabla f\left(\mathbf{x}^{(n)}\right)+\beta^{(n)} \mathbf{p}_{n-1}$
7: \quad determine optimal step size $\tau_{n}=\operatorname{argmin}_{\tau>0} f\left(\mathbf{x}^{(n)}+\tau \mathbf{p}^{(n)}\right)$
8: \quad update $\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}+\tau_{n} \mathbf{p}^{(n)}$
9: $\quad n \leftarrow n+1$
10: until $\frac{\left|f\left(\mathbf{x}^{(n)}\right)-f\left(x^{(n-1)}\right)\right|}{\left|f\left(\mathbf{x}^{(n-1)}\right)\right|}<\varepsilon_{f}$

Input:

\mathbf{x}_{0} - initial guess, $\quad \varepsilon_{\tau}$ - tolerance in line search
ε_{f} - tolerance in the termination condition

Output:

an approximation of the minimizer $\tilde{\mathbf{x}}$

Convergence theory - quadratic case (I)

- Let $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}$, where the matrix \mathbf{A} has eigenvalues $0<\lambda_{1} \leq \cdots \leq \lambda_{N}$ and $\|\mathbf{x}\|_{\mathbf{A}}=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$

Theorem (Linear Convergence of Steepest Descent)

For the Steepest-Descent approach we have the following estimate

$$
\left\|\mathbf{x}^{(n+1)}-\tilde{\mathbf{x}}\right\|_{\mathbf{A}}^{2} \leq\left(\frac{\lambda_{N}-\lambda_{1}}{\lambda_{N}+\lambda_{1}}\right)^{2}\left\|\mathbf{x}^{(n)}-\tilde{\mathbf{x}}\right\|_{\mathbf{A}}^{2}
$$

- The rate of convergence is controlled by the "spread" of the eigenvalues of \mathbf{A}

Convergence theory - quadratic case (II)

Theorem (Convergence of Linear Conjugate Gradients)

For the linear Conjugate Gradients approach we have the following estimate

$$
\left\|\mathbf{x}^{(n+1)}-\tilde{\mathbf{x}}\right\|_{\mathbf{A}}^{2} \leq\left(\frac{\lambda_{N-n}-\lambda_{1}}{\lambda_{N-n}+\lambda_{1}}\right)^{2}\left\|\mathbf{x}_{0}-\tilde{\mathbf{x}}\right\|_{\mathbf{A}}^{2}
$$

- The iterates take out one eigenvalue at a time
- clustering of eigenvalues matters
- In the nonlinear setting, it is advantageous to periodically reset β_{n} to zero (helpful in practice and simplifies some convergence proofs)
- What about problems with equality constraints?
- suppose $\mathbf{c}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$, where $1 \leq M<N$
- then, we have an equality-constrained optimization problem

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{N}} f(\mathbf{x}) \\
& \text { subject to: } \mathbf{c}(\mathbf{x})=\mathbf{0}
\end{aligned}
$$

- If the constraint equation can be "solved" and we can write $\mathbf{x}=\mathbf{y}+\mathbf{z}$, where $\mathbf{y} \in \mathbb{R}^{N-M}$ and $\mathbf{z}=\mathbf{g}(\mathbf{y}) \in \mathbb{R}^{M}$, then the problem is reduced to an unconstrained one with a reduced objective function

$$
\min _{\mathbf{y} \in \mathbb{R}^{N-M}} f(\mathbf{y}+\mathbf{g}(\mathbf{y}))
$$

- Consider augmented objective function $\mathbf{L}: \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
\mathbf{L}(\mathbf{x}, \boldsymbol{\lambda}):=f(\mathbf{x})-\boldsymbol{\lambda}^{\top} \mathbf{c}(\mathbf{x})
$$

where $\boldsymbol{\lambda} \in \mathbb{R}^{M}$ is the Lagrange multiplier

- Differentiating the augmented objective function with respect to \mathbf{x}

$$
\nabla_{\mathrm{x}} \mathrm{~L}(\mathrm{x}, \lambda):=\nabla f(\mathrm{x})-\lambda^{T} \nabla \mathrm{c}(\mathrm{x})
$$

Theorem (First-Order Necessary Condition)

If $\tilde{\mathbf{x}}$ is a local minimizer of an equality-constrained optimization problem, then there exists $\boldsymbol{\lambda} \in \mathbb{R}^{M}$ such that the following equations are satisfied

$$
\nabla f(\tilde{\mathbf{x}})-\lambda^{T} \nabla \mathbf{c}(\tilde{\mathbf{x}})=\mathbf{0}, \quad \mathbf{c}(\tilde{\mathbf{x}})=\mathbf{0}
$$

For inequality-constrained problems, the first-order necessary conditions become more complicated - the Karush-Kuhn-Tucker (KKT) conditions

- How to compute equality-constrained minimizers with a gradient method?
- At each $\mathbf{x} \in \mathbb{R}^{N}$ the linearized constraint function $\nabla \mathbf{c}(\mathbf{x}) \in \mathbb{R}^{M \times N}$ defines a (kernel) subspace with dimension $\operatorname{rank}[\nabla \mathbf{c}(\mathbf{x})]$

$$
\mathcal{S}_{\mathbf{x}}:=\left\{\mathbf{x}^{\prime} \in \mathcal{R}^{N}, \quad \nabla \mathbf{c}(\mathbf{x}) \mathbf{x}^{\prime}=\mathbf{0}\right\}
$$

- this is the subspace tangent to the constraint manifold at \mathbf{x}
- we need to project the gradient $\nabla f(\mathbf{x})$ onto $\mathcal{S}_{\mathbf{x}}$
- Assuming that rank $[\nabla \mathbf{c}(\mathbf{x})]=M$, the projection operator $\mathbf{P}_{\mathcal{S}_{\mathrm{x}}}: \mathbb{R}^{N} \rightarrow \mathcal{S}_{\mathrm{x}}$ is given by

$$
\mathbf{P}_{\mathcal{S}_{\mathbf{x}}}:=\mathbf{I}-\nabla \mathbf{c}(\mathbf{x})\left[(\nabla \mathbf{c}(\mathbf{x}))^{T} \nabla \mathbf{c}(\mathbf{x})\right]^{-1}(\nabla \mathbf{c}(\mathbf{x}))^{T}
$$

- Replace $\boldsymbol{\nabla} f(\mathbf{x})$ with $\mathbf{P}_{\mathcal{S}_{\mathbf{x}}} \boldsymbol{\nabla} f(\mathbf{x})$ in the gradient method (SD or SDLS)
- nonlinear constraints satisfied with an error $\mathcal{O}\left((\Delta \tau)^{2}\right)$ or $\mathcal{O}\left(\tau_{n}^{2}\right)$

Algorithm 4 Projected Steepest Descent (PSD)

1: $\mathbf{x}^{(0)} \leftarrow \mathbf{x}_{0}$ (initial guess)
2: $n \leftarrow 0$

3: repeat

4: compute the gradient $\nabla f\left(\mathbf{x}^{(n)}\right)$
5: compute linearization of the constraint $\nabla \mathbf{c}\left(\mathbf{x}^{(n)}\right)$
6: \quad determine the projector $\mathbf{P}_{\mathcal{X}^{(n)}}$
7: \quad determine the projected gradient $\mathbf{P}_{\mathcal{X}_{\mathbf{x}^{(n)}}} \boldsymbol{\nabla} f\left(\mathbf{x}^{(n)}\right)$
8: \quad update $\mathbf{x}^{(n+1)}=\mathbf{x}^{(n)}-\Delta \tau \mathbf{P}_{\mathcal{S}_{\mathbf{x}}(n)} \boldsymbol{\nabla} f\left(\mathbf{x}^{(n)}\right)$
9: $\quad n \leftarrow n+1$
10: until $\frac{\left|f\left(\mathbf{x}^{(n)}\right)-f\left(\mathbf{x}^{(n-1)}\right)\right|}{\left|f\left(\mathbf{x}^{(n-1)}\right)\right|}<\varepsilon_{f}$
Input:
\mathbf{x}_{0} - initial guess, $\quad \Delta \tau$ - fixed step size
ε_{f} - tolerance in the termination condition
Output: an approximation of the minimizer $\tilde{\mathbf{x}}$

Computational Tests

- Rosenbrock's "banana" function

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

- Global minimizer

$$
x_{1}=x_{2}=1, \quad f(1,1)=0
$$

- The function is known for its poor conditioning
- eigenvalues of the Hessian $\nabla^{2} f$ at the minimum:

$$
\lambda_{1} \approx 0.4, \quad \lambda_{2} \approx 1001.6
$$

- Constraint

$$
c\left(x_{1}, x_{2}\right)=-0.05 x_{1}^{4}-x_{2}+2.651605=0
$$

