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I Suppose f : RN → R, N ≥ 1, is a twice continuously differentiable
objective function

I Unconstrained Optimization Problems:

min
x∈RN

f (x)

(for maximization problems, we can consider min[−f (x)])

I A point x̃ is a global minimizer if f (x̃) ≤ f (x) for all x

I A point x̃ is a local minimizer if there exists a neighborhood N of x̃
such that f (x̃) ≤ f (x) for all x ∈ N

I A local minimizer is strict (or strong), if it is unique in N
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I Gradient of the objective function

∇f (x) :=

[
∂f

∂x1
, . . . ,

∂f

∂xN

]T

I Hessian of the objective function

[
∇2f (x)

]
i ,j

:=
∂2f

∂xj ∂xi
, i , j = 1, . . . ,N
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Theorem (First-Order Necessary Condition)

If x̃ is a local minimizer, then ∇f (x̃) = 0.

Theorem (Second-Order Sufficient Conditions)

Suppose that ∇f (x̃) = 0 and ∇2f (x̃) is positive-definite. Then x̃
is a strict local minimizers of f .

Unfortunately, analogous characterization of global minimizers
is not possible
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I How to find a local minimizer x̃?

I Consider the following initial-value problem in RN , known as the
gradient flow

(GF)


dx(τ)

dτ
= −∇f (x(τ)), τ > 0,

x(0) = x0,

where
I τ is a “pseudo-time” (a parametrization)

I x0 is a suitable initial guess

I Then, limτ→∞ x(τ) = x̃

In principle, the gradient flow may converge to a saddle point xs , where
∇f (xs) = 0 and the Hessian ∇2f (xs) is not positive-definite, but in actual
computations this is very unlikely.
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I Discretize the gradient flow (GF) with Euler’s explicit method

(SD)

{
x(n+1) = x(n) −∆τ∇f (x(n)), n = 1, 2, . . . ,

x(0) = x0,

where
I x(n) := x(n∆τ), such that limn→∞ x(n) = x̃

I ∆τ is a fixed step size (since Euler’s explicit scheme is only
conditionally stable, ∆τ must be sufficiently small)

I In principle, the gradient flow (GF) can be discretized with
higher-order schemes, including implicit approaches, but they are not
easy to apply to PDE optimization problems, hence will not be
considered here.
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Algorithm 1 Steepest Descent (SD)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: update x(n+1) = x(n) −∆τ∇f (x(n))
6: n← n + 1

7: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess
∆τ — fixed step size
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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Computational Tests

I Rosenbrock’s “banana” function

f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

I Global minimizer

x1 = x2 = 1, f (1, 1) = 0

I The function is known for its poor conditioning

I eigenvalues of the Hessian ∇2f at the minimum:

λ1 ≈ 0.4, λ2 ≈ 1001.6
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I Choice of the step size ∆τ : steepest descent is not meant to
approximate the gradient flow (GF) accurately, but to minimize f (x)
rapidly

I Sufficient decrease — Armijo’s condition

f (x(n) + τ p(n)) ≤ f (x(n))− C τ∇f (x(n))Tp(n)

where p(n) is a search direction and C ∈ (0, 1)

Figure credit: Nocedal & Wright (1999)

I Wolfe’s condition: sufficient decrease and curvature
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I Optimize the step size at every iteration by solving the line
minimization (line-search) problem

τn := argminτ>0 f (x(n) − τ∇f (x(n)))

I Brent’s method for line minimization: a combination of the
golden-section search with parabolic interpolation (derivative-free)

Figure credit: Numerical Recipes in C (1992)

I A robust implementation of Brent’s method available in Numerical
Recipes in C (1992), see also the function fminbnd in MATLAB
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Algorithm 2 Steepest Descent with Line Search (SDLS)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: determine optimal step size τn = argminτ>0 f (x(n) − τ∇f (x(n)))
6: update x(n+1) = x(n) − τn ∇f (x(n))
7: n← n + 1

8: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess
ετ — tolerance in line search
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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I Consider, for now, minimization of a quadratic form

f (x) =
1

2
xTAx− bTx,

where A ∈ RN×N is a symmetric, positive-definite matrix and b ∈ RN

I Then,
∇f (x) = Ax− b =: r

such that minimizing f (x) is equivalent to solving Ax = b

I A set of nonzero vectors [p0,p1, . . . ,pk ] is said to be conjugate with
respect to matrix A if

pTi Apj = 0, ∀i , j = 0, . . . , k , i 6= j

(conjugacy implies linear independence)
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I Conjugate Gradient (CG) method

x(n+1) = x(n) + τn p
(n), n = 1, 2, . . . ,

p(n) = −r(n) + β(n) pn−1, (r(n) = ∇f (x(n)) = Ax(n) − b),

β(n) =
(r(n))TAp(n−1)

(p(n−1))TAp(n−1)
, (“momentum”),

τn = − (r(n))Tp(n)

(p(n))TAp(n)
, (exact formula for optimal step size),

x0 = x0, p(0) = −r(0)

I The directions p(0),p(1), . . . ,p(n) generated by the CG method are
conjugate with respect to matrix A

I this gives rise to a number of interesting and useful properties

B. Protas Numerical Optimization of PDEs



Formulation
Gradients Methods

Constraints

Steepest Descent
Step Size Selection & Line Search
Conjugate Gradients

Theorem (properties of CG iterations)

The iterates generated by the CG method have the following properties

I

span
{
p(0),p(1), . . . ,p(n)

}
= span

{
r(0), r(1), . . . , r(n)

}
= span

{
r(0),Ar(0), . . . ,Anr(0)

}
I (the expanding subspace property)

(r(n))T r(k) = (r(n))Tp(k) = 0, ∀i = 0, . . . , n − 1

I x(n) is the minimizer of f (x) = 1
2x

TAx− bTx over the set{
x0 + span

{
p(0),p(1), . . . ,p(n)

}}
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I Thus, in the Conjugate Gradients method minimization of
f (x) = 1

2x
TAx− bTx is performed by solving (exactly) N = dim(x)

line-minimization problems along the conjugate directions{
p(0),p(1), . . . ,p(n)

}
I As a result, convergence to x̃ is achieved in at most N iterations

I What happens when f (x) is a general convex function?
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I The (linear) Conjugate Gradients method admits a generalization to
the nonlinear setting by:

I replacing the residual r(n) with the gradient ∇f (x(n))

I computing the step size via line search
τn = argminτ>0 f (x(n) − τ∇f (x(n)))

I using a more general expressions for the ”momentum” term β(n) (such
that the descent directions p(0),p(1), . . . ,p(n) will only be
approximately conjugate)
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I Nonlinear Conjugate Gradient (NCG) method

x(n+1) = x(n) + τn p
(n), n = 1, 2, . . . ,

p(n) = −∇f (x(n)) + β(n) pn−1,

β(n) =



(
∇f (x(n))

)T

∇f (x(n))

(∇f (x(n−1)))
T ∇f (x(n−1))

(Fletcher-Reeves),(
∇f (x(n))

)T (
∇f (x(n)) −∇f (x(n−1))

)
(∇f (x(n−1)))

T ∇f (x(n−1))
(Polak-Ribière),

τn = argminτ>0 f (x(n) − τ∇f (x(n))),

x0 = x0, p(0) = −∇f (x(0))

I For quadratic functions f (x), both the Fletcher-Reeves (FR) and the
Polak-Ribière (PR) variant coincide with the the linear CG

I In general, the descent directions p(0),p(1), . . . ,p(n) are now only
approximately conjugate
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Algorithm 3 Polak-Ribière version of Conjugate Gradient (CG-PR)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))

5: calculate βn =
(∇f (x(n)))T(∇f (x(n))−∇f (x(n−1)))

(∇f (x(n−1)))T∇f (x(n−1))

6: determine the descent direction p(n) = −∇f (x(n)) + β(n) pn−1
7: determine optimal step size τn = argminτ>0 f (x(n) + τ p(n))
8: update x(n+1) = x(n) + τn p(n)

9: n← n + 1

10: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess, ετ — tolerance in line search
εf — tolerance in the termination condition

Output:
an approximation of the minimizer x̃
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Convergence theory — quadratic case (I)

I Let f (x) = 1
2x

TAx− bTx, where the matrix A has eigenvalues
0 < λ1 ≤ · · · ≤ λN and ‖x‖A = xTAx

Theorem (Linear Convergence of Steepest Descent)

For the Steepest-Descent approach we have the following estimate

‖x(n+1) − x̃‖2A ≤
(
λN − λ1
λN + λ1

)2

‖x(n) − x̃‖2A

I The rate of convergence is controlled by the “spread” of the
eigenvalues of A
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Convergence theory — quadratic case (II)

Theorem (Convergence of Linear Conjugate Gradients)

For the linear Conjugate Gradients approach we have the following
estimate

‖x(n+1) − x̃‖2A ≤
(
λN−n − λ1
λN−n + λ1

)2

‖x0 − x̃‖2A

I The iterates take out one eigenvalue at a time

I clustering of eigenvalues matters

I In the nonlinear setting, it is advantageous to periodically reset βn to
zero (helpful in practice and simplifies some convergence proofs)
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I What about problems with equality constraints?
I suppose c : RN → RM , where 1 ≤ M < N

I then, we have an equality-constrained optimization problem

min
x∈RN

f (x)

subject to: c(x) = 0

I If the constraint equation can be “solved” and we can write
x = y + z, where y ∈ RN−M and z = g(y) ∈ RM , then the problem is
reduced to an unconstrained one with a reduced objective function

min
y∈RN−M

f (y + g(y))
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I Consider augmented objective function L : RN → R

L(x,λ) := f (x)− λTc(x),

where λ ∈ RM is the Lagrange multiplier

I Differentiating the augmented objective function with respect to x

∇xL(x,λ) := ∇f (x)− λT∇c(x)

Theorem (First-Order Necessary Condition)

If x̃ is a local minimizer of an equality-constrained optimization problem,
then there exists λ ∈ RM such that the following equations are satisfied

∇f (x̃)− λT∇c(x̃) = 0, c(x̃) = 0

For inequality-constrained problems, the first-order necessary conditions
become more complicated — the Karush-Kuhn-Tucker (KKT) conditions
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I How to compute equality-constrained minimizers with a gradient
method?

I At each x ∈ RN the linearized constraint function ∇c(x) ∈ RM×N

defines a (kernel) subspace with dimension rank[∇c(x)]

Sx := {x′ ∈ RN , ∇c(x)x′ = 0}

I this is the subspace tangent to the constraint manifold at x

I we need to project the gradient ∇f (x) onto Sx
I Assuming that rank[∇c(x)] = M, the projection operator

PSx : RN → Sx is given by

PSx := I−∇c(x)
[
(∇c(x))T∇c(x)

]−1
(∇c(x))T

I Replace ∇f (x) with PSx∇f (x) in the gradient method (SD or SDLS)

I nonlinear constraints satisfied with an error O((∆τ)2) or O(τ 2n )
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Algorithm 4 Projected Steepest Descent (PSD)

1: x(0) ← x0 (initial guess)
2: n← 0
3: repeat
4: compute the gradient ∇f (x(n))
5: compute linearization of the constraint ∇c(x(n))
6: determine the projector PS

x(n)

7: determine the projected gradient PS
x(n)

∇f (x(n))

8: update x(n+1) = x(n) −∆τ PS
x(n)

∇f (x(n))
9: n← n + 1

10: until |f (x
(n))−f (x(n−1))|
|f (x(n−1))| < εf

Input:
x0 — initial guess, ∆τ — fixed step size
εf — tolerance in the termination condition

Output: an approximation of the minimizer x̃
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Computational Tests
I Rosenbrock’s “banana” function

f (x1, x2) = 100(x2 − x21 )2 + (1− x1)2

I Global minimizer

x1 = x2 = 1, f (1, 1) = 0

I The function is known for its poor conditioning

I eigenvalues of the Hessian ∇2f at the minimum:

λ1 ≈ 0.4, λ2 ≈ 1001.6

I Constraint

c(x1, x2) = −0.05 x41 − x2 + 2.651605 = 0
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