Numerical Optimization of Partial Differential Equations
 Part II: optimization with PDE constraints

Pritpal 'Pip' Matharu and Bartosz Protas

Department of Mathematics \& Statistics
McMaster University, Hamilton, Ontario, Canada
URL: http://www.math.mcmaster.ca/bprotas

Rencontres Normandes sur les aspects théoriques et numériques des EDP
5-9 November 2018, Rouen

Formulation of the PDE Optimization Problem
Problem Statement
Governing System: Heat Equation Gradient Descent

Gradients and Adjoint Calculus
Gâteaux Differential and Riesz Form
Sobolev Gradients
Constraints and Projected Gradients
Numerical Computations
Algorithm
Discretization of the PDEs
Validation of Gradients: κ-test

A good reference for standard approaches

Perspectives
 in Flow Control and Optimization

Max D. Gunzburger

P. Matharu \& B. Protas

- Consider heat conduction in a bar. How do we choose the heat flux φ applied at the left endpoint $(x=a)$, so that the temperature at the right endpoint $(x=b)$ has a desired time-history $\bar{u}_{b}=\bar{u}_{b}(t)$?

- Using the heat flux φ as the control variable, we formulate this problem as minimization of a (reduced) least-squares cost functional

$$
\mathcal{J}(\varphi)=\frac{1}{2} \int_{0}^{T}\left[\left.u(\varphi)\right|_{b}-\bar{u}_{b}\right]^{2} d t
$$

- Since $u=u(\varphi)$, we thus have the following optimization problem
$\min _{\varphi} \mathcal{J}(\varphi) \quad$ subject to

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\Delta u=0, \quad(t, x) \in[0, T] \times[a, b] \\
& \left.\frac{\partial u}{\partial x}\right|_{x=a}=\varphi(t), \quad t \in[0, T] \\
& \left.\frac{\partial u}{\partial x}\right|_{x=b}=0, \quad t \in[0, T] \\
& u(x, t=0)=u_{0}(x), \quad x \in[a, b]
\end{aligned}
$$

where:

- $a, b, T \in \mathbb{R}$ are given parameters
- u_{0} is an appropriate initial condition
- We wish to find the optimal boundary data (heat flux) $\widetilde{\varphi}$ such that

$$
\widetilde{\varphi}=\operatorname{argmin}_{\varphi \in \mathcal{U}} \mathcal{J}(\varphi)
$$

where \mathcal{U} is a suitable Hilbert space of functions $\varphi:[0, T] \rightarrow \mathbb{R}$

- The optimal control $\widetilde{\varphi}$ can be computed using a gradient descent algorithm as $\widetilde{\varphi}=\lim _{n \rightarrow \infty} \varphi^{(n)}$, where

$$
\begin{cases}\varphi^{(n+1)} & =\varphi^{(n)}-\tau^{(n)} \nabla_{\varphi} \mathcal{J}\left(\varphi^{(n)}\right), \quad n=1,2, \ldots \\ \varphi^{(1)} & =\varphi_{0}\end{cases}
$$

- $\nabla_{\varphi} \mathcal{J}(\varphi)$ is the gradient (sensitivity) of the cost functional with respect to the control variable
- $\tau^{(n)}$ is step length along the descent direction at the n-th iteration
- φ_{0} is the initial guess for the heat flux

Gâteaux Differential

- To determine the gradient $\nabla_{\varphi} \mathcal{J}(\varphi)$, we must compute the Gâteaux (directional) differential of the cost functional

$$
\begin{aligned}
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right) & =\lim _{\epsilon \rightarrow 0} \frac{\mathcal{J}\left(\varphi+\epsilon \varphi^{\prime}\right)-\mathcal{J}(\varphi)}{\epsilon}=\left.\frac{d}{d \epsilon} \mathcal{J}\left(\varphi+\epsilon \varphi^{\prime}\right)\right|_{\epsilon=0} \\
& =\int_{0}^{T}\left[\left.u(\varphi)\right|_{b}-\bar{u}_{b}\right] u^{\prime}\left(x, t ; \varphi, \varphi^{\prime}\right) d t
\end{aligned}
$$

where:

- $u^{\prime}\left(x, t ; \varphi, \varphi^{\prime}\right)$ is the perturbation variable that satisfies the linearization of the governing system
- $\varphi^{\prime}(t)$ is an arbitrary perturbation of the control variable $\varphi(t)$
- A (local) minimizer of the functional $\mathcal{J}(\varphi)$ is characterized by the condition

$$
\forall \varphi^{\prime} \in \mathcal{U} \quad \mathcal{J}^{\prime}\left(\widetilde{\varphi} ; \varphi^{\prime}\right)=0
$$

Perturbation System

- The perturbation system for $u^{\prime}\left(x, t ; \varphi, \varphi^{\prime}\right)$ is obtained by linearizing the governing system system around the state $u(\varphi)$

$$
\left\{\begin{array}{l}
\frac{\partial u^{\prime}}{\partial t}-\Delta u^{\prime}=0 \\
\left.\frac{\partial u^{\prime}}{\partial x}\right|_{x=a}=\varphi^{\prime}(t) \\
\left.\frac{\partial u^{\prime}}{\partial x}\right|_{x=b}=0 \\
u^{\prime}(x, t=0)=0
\end{array}\right.
$$

- In the present problem the governing system is linear, hence the perturbation system has
- an identical operator (equation),
- different data (boundary and initial conditions)
- In general, the governing and perturbations systems are defined in terms of different operators (nonlinear vs. linear)
- The following fundamental result from functional analysis will allow to extract the gradient $\nabla_{\varphi} \mathcal{J}(\varphi)$ from the Gâteaux differential $\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)$

Theorem (Riesz Representation Theorem)

Let \mathcal{X} be a Hilbert space. Then any bounded linear functional $h(x)$ defined on $\mathcal{X}(x \in \mathcal{X})$ can be uniquely written as $h(x)=\langle x, y\rangle_{\mathcal{X}}$ for some $y \in \mathcal{X}$ (the element y is referred to as the "Riesz representer").

- Since $\forall \varphi \in \mathcal{U}$ the Gâteaux differential

$$
\mathcal{J}^{\prime}(\varphi ; \cdot): \mathcal{U} \rightarrow \mathbb{R}
$$

is a bounded linear functional, we have the Riesz representation

$$
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)=\left\langle\nabla_{\varphi} \mathcal{J}, \varphi^{\prime}\right\rangle_{\mathcal{U}}
$$

The gradient $\nabla_{\varphi} \mathcal{J}$ is thus the Riesz representer!

- However, the Gâteaux differential

$$
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)=\int_{0}^{T}\left[\left.u(\varphi)\right|_{b}-\bar{u}_{b}\right] u^{\prime}\left(x, t ; \varphi, \varphi^{\prime}\right) d t
$$

is not yet consistent with the Riesz representation, because the perturbation variable φ^{\prime} does not appear explicitly in it, but is hidden in the boundary condition of the perturbation system

- To convert the Gâteaux differential $\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)$ we will use the adjoint calculus
- let $u^{*}:[a, b] \times[0, T] \rightarrow \mathbb{R}$ be the "adjoint state"
- Let the adjoint variable u^{*} satisfy the following judiciously chosen adjoint system

$$
\left\{\begin{array}{l}
-\frac{\partial u^{*}}{\partial t}-\Delta u^{*}=0 \\
\left.\frac{\partial u^{*}}{\partial x}\right|_{x=a}=0 \\
\left.\frac{\partial u^{*}}{\partial x}\right|_{x=b}=\left.u(\varphi)\right|_{b}-\bar{u}_{b} \\
u^{*}(x, t=T)=0
\end{array}\right.
$$

- The "forcing term" in the boundary condition at $x=b$ is related to the Gâteaux differential
- Note that this is a terminal-value problem, so we must solve this system backwards in time!
- however, the term with the time derivative has a negative sign, so the problem is well posed
- Now we will now demonstrate that the adjoint system defined in this particular way will allow us to determine the gradient $\nabla_{\varphi} \mathcal{J}$
- Start by integrating the perturbation system against the adjoint field u^{*} over space and time
Then integrate by parts with respect to space (x) and time (t)

$$
\begin{aligned}
0= & \int_{0}^{T} \int_{a}^{b}\left(\frac{\partial u^{\prime}}{\partial t}-\Delta u^{\prime}\right) u^{*} d x d t \\
= & \int_{0}^{T} \int_{a}^{b} \underbrace{\left(-\frac{\partial u^{*}}{\partial t}-\Delta u^{*}\right)}_{=0} u^{\prime} d x d t+\left.\int_{a}^{b}\left[u^{*} u^{\prime}\right]\right|_{t=0} ^{T} d x \\
& -\left.\int_{0}^{T}\left[u^{*} \frac{\partial u^{\prime}}{\partial x}\right]\right|_{x=a} ^{b} d t+\left.\int_{0}^{T}\left[\frac{\partial u^{*}}{\partial x} u^{\prime}\right]\right|_{x=a} ^{b} d t=0
\end{aligned}
$$

- We will now analyze the boundary terms resulting from the integration by parts

$$
\begin{aligned}
0= & \left.\int_{a}^{b}\left[u^{*} u^{\prime}\right]\right|_{t=0} ^{T} d x-\left.\int_{0}^{T}\left[u^{*} \frac{\partial u^{\prime}}{\partial x}\right]\right|_{x=a} ^{b}-\left.\left[\frac{\partial u^{*}}{\partial x} u^{\prime}\right]\right|_{x=a} ^{b} d t \\
0 & =\left.\int_{a}^{b} \underbrace{u^{*}}_{=0} u^{\prime}\right|_{t=T}-\left.u^{*} \underbrace{u^{\prime}}_{=0}\right|_{t=0} d x \\
& -\left.\int_{0}^{T} u^{*} \underbrace{\frac{\partial u^{\prime}}{\partial x}}_{=0}\right|_{x=b}-u^{*} \underbrace{\left.\frac{\partial u^{\prime}}{\partial x}\right|_{x=a} d t}_{=\varphi^{\prime}} \\
& +\left.\int_{0}^{T} \underbrace{\frac{\partial u^{*}}{\partial x}}_{=\left.u(\varphi)\right|_{b}-\bar{u}_{b}} u^{\prime}\right|_{x=b}-\left.\underbrace{\frac{\partial u^{*}}{\partial x}}_{=0} u^{\prime}\right|_{x=a} d t \\
\Longrightarrow & \underbrace{\left.\int_{0}^{T}\left[\left.u(\varphi)\right|_{b}-\bar{u}_{b}\right] u^{\prime}\right|_{x=b} d t}_{\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)}=\int_{0}^{T}-\left.u^{*}\right|_{x=a} \varphi^{\prime} d t
\end{aligned}
$$

- Thus, choosing $\mathcal{U}=L^{2}(0, T)$, we obtain an expression for the L^{2} gradient of the cost functional

$$
\begin{aligned}
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right) & =\int_{0}^{T}-\left.u^{*}\right|_{x=a} \varphi^{\prime} d t \\
& =\left\langle\nabla_{\varphi}^{L^{2}} \mathcal{J}, \varphi^{\prime}\right\rangle_{L^{2}}=\int_{0}^{T} \nabla_{\varphi}^{L^{2}} \mathcal{J} \varphi^{\prime} d t \\
& \Longrightarrow \nabla_{\varphi}^{L^{2}} \mathcal{J}=-\left.u^{*}\right|_{x=a} \text { on }[0, T]
\end{aligned}
$$

- Determination of the gradient $\nabla_{\varphi}^{L^{2}} \mathcal{J}$ requires:
- solution of the governing system forward in time
- solution of the adjoint system backwards in time
- When properly defined, the adjoint system conveys information about the sensitivity of the solutions of the governing system to perturbations of the data (here, the Neumann boundary condition)
- We will now consider an alternative formulation involving the Lagrange multiplier $\lambda:[a, b] \times[0, T]$ (instead of the reduced objective functional)

$$
\begin{aligned}
\mathcal{L}(\varphi, u, \lambda) & =\widetilde{J}(\varphi, u)-\left\langle\frac{\partial u}{\partial t}-\Delta u, \lambda\right\rangle_{L^{2}\left(0, T ; L^{2}(a, b)\right)} \\
& =\frac{1}{2} \int_{0}^{T}\left[\left.u(\varphi)\right|_{b}-\bar{u}_{b}\right]^{2} d t-\int_{0}^{T} \int_{a}^{b}\left(\frac{\partial u}{\partial t}-\Delta u\right) \lambda d x d t
\end{aligned}
$$

- Solution of the problem $\sup _{\lambda \in \mathcal{X}} \inf _{(x, \varphi) \in \mathcal{X} \times \mathcal{U}} \mathcal{L}(x, \varphi, \lambda)$ requires:

$$
\begin{aligned}
& \nabla_{\lambda} \mathcal{L}(\varphi, u, \lambda)=0 \Longrightarrow\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta u=0, \\
\left.\frac{\partial u}{\partial x}\right|_{x=a}=\varphi(t),\left.\quad \frac{\partial u}{\partial x}\right|_{x=b}=0, \\
u(x, t=0)=u_{0}(x)
\end{array}\right. \\
& \nabla_{u} \mathcal{L}(\varphi, u, \lambda)=0 \quad \Longrightarrow \quad\left\{\begin{array}{l}
-\frac{\partial \lambda}{\partial t}-\Delta \lambda=0 \\
\left.\frac{\partial \lambda}{\partial x}\right|_{x=a}=0,\left.\quad \frac{\partial \lambda}{\partial x}\right|_{x=b}=\left.u(\varphi)\right|_{b}-\bar{u}_{b} \\
\lambda(x, t=T)=0
\end{array}\right. \\
& \nabla_{\varphi} \mathcal{L}(\varphi, u, \lambda)=0 \quad \Longrightarrow \quad-\left.\lambda\right|_{x=a}=0
\end{aligned}
$$

Thus, the three conditions form a two-point boundary-value problem in time for u, λ and φ

- At the optimum, the adjoint variable u^{*} coincides with the Lagrange multiplier λ
- Away from the optimum the adjoint variable u^{*} can be interpreted in terms of the sensitivity of the solutions to the governing system with respect to perturbations of the data
- the operator defining the adjoint system is determined by the governing equation (it is the Hilbert space adjoint of its linearization)
- there is some freedom in choosing the data for the adjoint system (terminal \& boundary conditions, source term)
- The Riesz theorem guarantees that this freedom can always be exploited to obtain the required sensitivity
- The action of the Hessian of the objective functional $\mathcal{H} \mathcal{J}\left(\varphi ; \varphi^{\prime}\right)$ on some perturbation φ^{\prime} can be determined in a similar way
- the second-order adjoint is needed
- The L^{2} gradients $\nabla_{\varphi}^{L^{2}} \mathcal{J}$ may not by regular (smooth) enough (they are only square-integrable!)
- We should extract the gradient in the space of smoother functions: the Sobolev space $H^{1}(0, T)$ endowed with the inner product

$$
\begin{aligned}
\forall_{p_{1}, p_{2} \in H^{1}(0, T)} \quad\left\langle p_{1}, p_{2}\right\rangle_{H^{1}} & =\left\langle p_{1}, p_{2}\right\rangle_{L^{2}}+\ell^{2}\left\langle\frac{d p_{1}}{d t}, \frac{d p_{2}}{d t}\right\rangle_{L^{2}} \\
& =\int_{0}^{T} p_{1} p_{2} d t+\ell^{2} \int_{0}^{T} \frac{d p_{1}}{d t} \frac{d p_{2}}{d t} d t
\end{aligned}
$$

$-\ell \in \mathbb{R}$ is a "length-scale" parameter

- the H^{1} inner produce are equivalent for $0<\ell<\infty$
- More precisely, we will assume that $\nabla_{\varphi}^{H^{1}} \mathcal{J}, \varphi^{\prime} \in H_{0}^{1}(0, T)$ such that

$$
\nabla_{\varphi}^{H^{1}} \mathcal{J}(t)=\varphi^{\prime}(t)=0 \quad \text { at } t=0, T
$$

- Invoking again the Riesz representation theorem, we obtain an expression for the Gâteaux differential in terms of the H^{1} inner product

$$
\begin{aligned}
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right) & =\left\langle\nabla_{\varphi}^{L^{2}} \mathcal{J}, \varphi^{\prime}\right\rangle_{L^{2}} \\
& =\left\langle\nabla_{\varphi}^{H^{1}} \mathcal{J}, \varphi^{\prime}\right\rangle_{H^{1}} \\
& =\int_{0}^{T} \nabla_{\varphi}^{H^{1}} \mathcal{J} \varphi^{\prime} d t+\ell^{2} \int_{0}^{T} \frac{d\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\right)}{d t} \frac{d \varphi^{\prime}}{d t} d t
\end{aligned}
$$

- We shall use integration by parts to transform the second term

$$
\begin{aligned}
\left\langle\nabla_{\varphi}^{H^{1}} \mathcal{J}, \varphi^{\prime}\right\rangle_{H^{1}} & =\int_{0}^{T} \nabla_{\varphi}^{H^{1}} \mathcal{J} \varphi^{\prime} d t+\ell^{2} \int_{0}^{T} \frac{d\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\right)}{d t} \frac{d \varphi^{\prime}}{d t} d t \\
& =\int_{0}^{T} \nabla_{\varphi}^{H^{1}} \mathcal{J} \varphi^{\prime} d t-\ell^{2} \int_{0}^{T} \frac{d^{2}\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\right)}{d t^{2}} \varphi^{\prime} d t+\left.\ell^{2} \underbrace{\left[\frac{d\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\right)}{d t} \varphi^{\prime}\right]}_{=0}\right|_{t=0} ^{T} \\
& =\int_{0}^{T}\left[\nabla_{\varphi}^{H^{1}} \mathcal{J}-\ell^{2} \frac{d^{2}\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\right)}{d t^{2}}\right] \varphi^{\prime} d t=\int_{0}^{T}-\left.u^{*}\right|_{x=a} \varphi^{\prime} d t
\end{aligned}
$$

- Since the last relation must hold for any $\varphi^{\prime} \in H_{0}^{1}(0, T) \subset L^{2}(0, T)$, we obtain

$$
\left\{\begin{array}{l}
{\left[\operatorname{ld}-\ell^{2} \frac{d^{2}}{d t^{2}}\right] \nabla_{\varphi}^{H^{1}} \mathcal{J}=\nabla_{\varphi}^{L^{2}} \mathcal{J} \quad \text { on }(0, T)} \\
\nabla_{\varphi}^{H^{1}} \mathcal{J}(0)=\nabla_{\varphi}^{H^{1}} \mathcal{J}(T)=0
\end{array}\right.
$$

- The Sobolev gradient $\nabla_{\varphi}^{H^{1}} \mathcal{J}$ is obtained from the L^{2} gradient $\nabla_{\varphi}^{L^{2}} \mathcal{J}$ by solving an elliptic boundary-value problem
- Consider the equation determining the Sobolev gradient $\nabla_{\varphi}^{H^{1}} \mathcal{J}$ in the Fourier space (for $k=1,2, \ldots$)

$$
\begin{aligned}
& {\left[1+\ell^{2} k^{2}\right]} \\
& \begin{aligned}
& {\left[\widehat{\nabla_{\varphi}^{H^{1} \mathcal{J}}}\right]_{k} }=\left[\widehat{\left.\nabla_{\varphi}^{L^{2} \mathcal{J}}\right]_{k}}\right. \\
& \mathcal{F}(k) \uparrow {\left[\widehat{\nabla_{\varphi}^{H^{1} \mathcal{J}}}\right]_{k}=\underbrace{\frac{1}{1+\ell^{2} k^{2}}}_{\mathcal{F}(k)}\left[\widehat{\nabla_{\varphi}^{L^{2} \mathcal{J}}}\right]_{k} } \\
& 0 \approx-2 \\
& \frac{1}{\ell}
\end{aligned}
\end{aligned}
$$

- Extraction of gradients is Sobolev spaces is equivalent to low-pass filtering in the frequency space
- $1 / \ell$ is the cut-off frequency
- How to choose an optimal value of ℓ to produce fastest convergence? \Longrightarrow open research problem!
- Some results:
A. Novruzi and B. Protas, "A gradient method in a Hilbert space with an optimized inner product: achieving a Newton-like convergence", (see arXiv:1803.02414), 2018.

Conjugate Gradients

- When using the nonlinear conjugate gradients, we need to evaluate the "momentum" term (the Polak-Ribière version)

$$
\beta=\frac{\left\langle\nabla_{\varphi}^{H^{1}} \mathcal{J}\left(\varphi^{(n)}\right),\left(\nabla_{\varphi}^{H^{1}} \mathcal{J}\left(\varphi^{(n)}\right)-\nabla_{\varphi}^{H^{1}} \mathcal{J}\left(\varphi^{(n-1)}\right)\right)\right\rangle_{\mathcal{U}}}{\left\langle\nabla_{\varphi}^{H^{1}} \mathcal{J}\left(\varphi^{(n-1)}\right), \nabla_{\varphi}^{H^{1}} \mathcal{J}\left(\varphi^{(n-1)}\right)\right\rangle_{\mathcal{U}}}
$$

- Since $H_{0}^{1}(0, T) \subset L^{2}(0, T)$, we have a choice between using
- the L^{2} inner product $\langle\cdot, \cdot\rangle_{L^{2}}$, or
- the Sobolev H^{1} inner product $\langle\cdot, \cdot\rangle_{H^{1}}$
- Suppose we wish to impose the a linear constraint on the control variable, e.g., fix its mean value

$$
\int_{0}^{T} \varphi d t=m, \quad m \in \mathbb{R}
$$

- If we impose this condition on the initial guess, i.e., $\int_{0}^{T} \varphi_{0} d t=m$, then we need to ensure that the gradients have zero mean

$$
\int_{0}^{T} \nabla_{\varphi} \mathcal{J} d t=0
$$

- This property defines a linear subspace

$$
\mathcal{S}=\left\{f \in L^{2}(0, T): \int_{0}^{T} f(t) d t=0\right\}
$$

- Since the gradient need not satisfy the constraint, it must be projected on the subspace defined by this constraint
- The projection operator $P_{\mathcal{S}}: L^{2} \rightarrow \mathcal{S}$

$$
P_{\mathcal{S}} \nabla_{\varphi} \mathcal{J}=\nabla_{\varphi}^{\mathrm{H}^{1}} \mathcal{J}-\alpha, \quad \text { where } \alpha=\int_{0}^{T} \nabla_{\varphi} \mathcal{J} d t
$$

(the projection is realized by subtracting the mean)

- The Sobolev gradient then must be found in $\mathcal{S} \cap H_{0}^{1}(0, T)$ using the Riesz theorem with the representer in \mathcal{S}

$$
\begin{aligned}
\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right) & =\left\langle P_{\mathcal{S}} \nabla_{\varphi}^{H^{1}} \mathcal{J}, \varphi^{\prime}\right\rangle_{H^{1}}=\left\langle\nabla_{\varphi}^{H^{1}} \mathcal{J}-\alpha, \varphi^{\prime}\right\rangle_{H^{1}} \\
& =\left\langle\nabla_{\varphi}^{L^{2}} \mathcal{J}, \varphi^{\prime}\right\rangle_{L^{2}}
\end{aligned}
$$

- Proceeding as before, we obtain the projected Sobolev gradient $P_{\mathcal{S}} \nabla_{\varphi}^{H^{1}} \mathcal{J}$ as solution of an elliptic boundary-value problem with a global constraint

$$
\left\{\begin{array}{l}
{\left[\operatorname{ld}-\ell^{2} \frac{d^{2}}{d t^{2}}\right] \nabla_{\varphi}^{H^{1}} \mathcal{J}-\alpha=\nabla_{\varphi}^{L^{2}} \mathcal{J} \quad \text { on }(0, T)} \\
\nabla_{\varphi}^{H^{1}} \mathcal{J}(0)=\nabla_{\varphi}^{H^{1}} \mathcal{J}(T)=0 \\
\int_{0}^{T} \nabla_{\varphi}^{H^{1}} \mathcal{J} d t=0
\end{array}\right.
$$

- The parameter α acts like a "Lagrange multiplier" necessary to accommodate an additional constraint

Algorithm 1 Projected Steepest Descent Line-Search (PSDLS) for PDEs

1: $\varphi^{(0)} \leftarrow \varphi_{0}$ (initial guess)
2: $n \leftarrow 0$
3: repeat
4: solve the governing system with data $\varphi^{(n)}$ forward in time
5: solve the corresponding adjoint problem backwards in time
6: \quad determine the L^{2} gradient $\nabla_{\varphi}^{L^{2}} \mathcal{J}$
7: determine the projector $P_{\mathcal{S}_{\varphi^{(n)}}}$
8: determine the projected Sobolev gradient gradient $P_{\mathcal{S}_{\varphi}(n)} \nabla_{\varphi}^{H^{1}} \mathcal{J}$
9: \quad determine optimal step size $\tau_{n}=\operatorname{argmin}_{\tau>0} \mathcal{J}\left(\varphi^{(n)}-\tau P_{\mathcal{S}_{\varphi}(n)} \nabla_{\varphi}^{H^{1}} \mathcal{J}\right)$
10: \quad update $\varphi^{(n+1)}=\varphi^{(n)}-\tau_{n} P_{\mathcal{S}_{\varphi^{(n)}}} \nabla \mathcal{J}\left(\varphi^{(n)}\right)$
11: $\quad n \leftarrow n+1$
12: until $\frac{\left|\mathcal{J}\left(\varphi^{(n)}\right)-\mathcal{J}\left(\varphi^{(n-1)}\right)\right|}{\left|\mathcal{J}\left(\varphi^{(n-1)}\right)\right|}<\varepsilon_{f}$

Input:

φ_{0} - initial guess, $\quad \varepsilon_{\tau}$ - tolerance in line search
ε_{f} - tolerance in the termination condition
Output: an approximation of the minimizer $\widetilde{\varphi}$

- For the purpose of numerical solution, the heat equation is discretized
- using second-order central/forward finite differences in space
- using second-order Crank-Nicolson scheme in time
- At each time step we need to solve the following linear system

$$
\left[\begin{array}{cccccc}
-3 & 4 & -1 & & \cdots & 0 \\
-\frac{1}{2} h & 1+h & -\frac{1}{2} h & & \cdots & 0 \\
0 & -\frac{1}{2} h & 1+h & -\frac{1}{2} h & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & -\frac{1}{2} h & 1+h & -\frac{1}{2} h \\
0 & 0 & 0 & -3 & 4 & -1
\end{array}\right]\left[\begin{array}{c}
u_{1, n+1} \\
u_{2, n+1} \\
u_{3, n+1} \\
\vdots \\
u_{M-1, n+1} \\
u_{M, n+1}
\end{array}\right]=\left[\begin{array}{c}
3 u_{1, n}-u_{2, n}+u_{3, n}+2 \Delta x\left(\phi_{n}+\phi_{n+1}\right) \\
\frac{1}{2} h u_{1, n}+(1-h) u_{2, n}+\frac{1}{2} h u_{3, n} \\
\frac{1}{2} h u_{2, n}+(1-h) u_{3, n}+\frac{1}{2} h u_{4, n} \\
\vdots \\
\frac{1}{2} h u_{M-2, n}+(1-h) u_{M-1, n}+\frac{1}{2} h u_{M, n} \\
3 u_{M, n}-u_{M-1, n}+u_{M-2, n}
\end{array}\right]
$$

where

- $\left\{x_{1}=a, x_{2}=a+\Delta x, \ldots, x_{M}=b\right\}$
- $\left\{t_{1}=0, t_{2}=\Delta t, \ldots, t_{N}=T\right\}$
- $u_{j, n}=u\left(x_{j}, t_{n}\right)$
- $h=\frac{\Delta t}{\Delta x^{2}}$
- The same approach is also used to solve the adjoint problem
- How can we validate the derivation and computation of gradients $\nabla_{\varphi} \mathcal{J}$?
- Compare the Gâteaux differential $\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)$
- approximated using finite differences, and
- evaluated using the Riesz representation and the gradient $\nabla_{\varphi} \mathcal{J}$
- Properties of the quantity $\kappa(\epsilon)$:
- for intermediate $\epsilon, \kappa(\epsilon) \approx 1$ (in fact, $\kappa(\epsilon) \rightarrow 1$ as $\Delta x, \Delta t \rightarrow 0$)
- $|\kappa(\epsilon)| \rightarrow \infty$ as $\epsilon \rightarrow 0$, due to round-off errors
- $|\kappa(\epsilon)| \rightarrow \infty$ as $\epsilon \rightarrow \infty$, due to truncation errors in the finite-difference approximation of $\mathcal{J}^{\prime}\left(\varphi ; \varphi^{\prime}\right)$

