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Formulation of the PDE Optimization Problem Problem Statement
Governing System: Heat Equation

Gradient Descent

» Consider heat conduction in a bar. How do we choose the heat flux ¢
applied at the left endpoint (x = a), so that the temperature at the
right endpoint (x = b) has a desired time-history &, = dp(t)?

ip

heat flux ¢
desired temp.
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Formulation of the PDE Optimization Problem Problem Statement
Governing System: Heat Equation

Gradient Descent

» Using the heat flux ¢ as the control variable, we formulate this
problem as minimization of a (reduced) least-squares cost functional

17 _
@) =5 [ [ols — m
» Since u = u(yp), we thus have the following optimization problem

U _Au=0, (t,x)€][0,T]xa,b]

du

x = plt te0, T
min J(p) subject to gX‘X=a (1), €[0,T]
’ ﬁ‘x:bzo’ te [07 T]

u(x,t =0) = up(x), x € [a,b]

where:

» a, b, T € R are given parameters

» ug is an appropriate initial condition
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Formulation of the PDE Optimization Problem Problem Statement
Governing System: Heat Equation

Gradient Descent

» We wish to find the optimal boundary data (heat flux) ¢ such that

¢ = argmin, J ()
where U is a suitable Hilbert space of functions ¢ : [0, T] = R
» The optimal control ¢ can be computed using a gradient descent
algorithm as @ = lim (", where
n—oo
o) = pn) _ 7(n) V¢J(@(”)), n=12...

> V.,J(p) is the gradient (sensitivity) of the cost functional with respect
to the control variable

» 7(" is step length along the descent direction at the n-th iteration

P> g is the initial guess for the heat flux
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients
Constraints and Projected Gradients

Gateaux Differential

> To determine the gradient V7 (), we must compute the Gateaux
(directional) differential of the cost functional

/ / . -790+€<P/_-7(P d /
J'(gi¢) = lim ( 6) ()ZdEJ(Wrap)

e=0
]
- / ()b — 6] o (x, t: 0, ) dt

0

where:

> u'(x,t;¢,¢") is the perturbation variable that satisfies the linearization
of the governing system

> /(t) is an arbitrary perturbation of the control variable (t)

» A (local) minimizer of the functional J(y) is characterized by the
condition
voeud  J(@¢)=0
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Gateaux Differential and Riesz Form

Sobolev Gradients

Gradients and Adjoint Calculus
Constraints and Projected Gradients

Perturbation System
» The perturbation system for uv/(x, t; ¢, ¢') is obtained by linearizing
the governing system system around the state u(yp)

P In the present problem the governing system is linear, hence the
perturbation system has
» an identical operator (equation),
» different data (boundary and initial conditions)

» In general, the governing and perturbations systems are defined in

terms of different operators (nonlinear vs. linear
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Gateaux Differential and Riesz Form

Gradients and Adjoint Calculus Sobolev Gradients
Constraints and Projected Gradients

» The following fundamental result from functional analysis will allow to
extract the gradient V,7(¢) from the Gateaux differential J'(i; ¢')

Theorem (Riesz Representation Theorem)

Let X be a Hilbert space. Then any bounded linear functional h(x)
defined on X (x € X) can be uniquely written as h(x) = (x, y)x for some
y € X (the element y is referred to as the “Riesz representer”).

» Since Vo € U the Gateaux differential
J(p;) : U —-R
is a bounded linear functional, we have the Riesz representation

T (¢i¢) =(V,T.¥),

The gradient V 7 is thus the Riesz representer!
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» However, the Gateaux differential

)
Teid) = /0 (@)l — @] /(. £: 0, &)

is not yet consistent with the Riesz representation, because the
perturbation variable ¢’ does not appear explicitly in it, but is hidden
in the boundary condition of the perturbation system

» To convert the Gateaux differential J'(y; ¢') we will use the adjoint
calculus

» let u* : [a,b] x [0, T] = R be the “adjoint state”
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Let the adjoint variable u* satisfy the following judiciously chosen
adjoint system

ou* * __
-G —Au =0
ou* _
Ox |x=a — 0
au*

I ey = U@ —0p =
uv(x,t=T)=0

> The “forcing term” in the boundary condition at x = b is related to
the Gateaux differential

> Note that this is a terminal-value problem, so we must solve this
system backwards in time!

» however, the term with the time derivative has a negative sign, so the
problem is well posed

» Now we will now demonstrate that the adjoint system defined in this
particular way will allow us to determine the gradient V7
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

> Start by integrating the perturbation system against the adjoint field
u* over space and time

Then integrate by parts with respect to space (x) and time (t)

o—/ / (Au)u*dxdt
/ / (——Au) u’dxdt+/ab[u*u’]\f_0dx

—/ u*a—u dt+/T @u' ’
0 ox x—a 0 Ox

» We will now analyze the boundary terms resulting from the
integration by parts

dt =0

X=a

P. Matharu & B. Protas Numerical Optimization of PDEs



Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients
Constraints and Projected Gradients

=0 —y!
T * *
+ / ou” v _ o u dt
0 Qi_(/ x=b ox x=a
=u()|p—0p =0
T T
— / [u(p)|p — Tp] U dt = / —u* o dt
0 x=b 0 x=a

T (")
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Thus, choosing U/ = L%(0, T) , we obtain an expression for the L2
gradient of the cost functional

TN T *
T(ei)= [ —u"|
0 X=a
_<VL2j /> _ TVL2J /dt
- %2} 7%0 L2_ 0 2] 90

on [0, T]

2
— VoJ=-u

» Determination of the gradient ng requires:
» solution of the governing system forward in time

> solution of the adjoint system backwards in time

» When properly defined, the adjoint system conveys information about
the sensitivity of the solutions of the governing system to
perturbations of the data (here, the Neumann boundary condition)
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

> We will now consider an alternative formulation involving the
Lagrange multiplier \ : [a, b] x [0, T] (instead of the reduced
objective functional)

‘C(S07U7A)_j/(907 ) @_AU)‘
ot 12(0,T;L2(a,b))

/[u )b — ) dt—/ / <—Au>)\dxdt
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

> Solution of the problem sup,cy inf(, o)exxu £(x, , A) requires:

g‘t’ Au=0,

Val(p,u,\) =0 = Sy L =e(t), G4, =0,
u(x,t =0) = up(x)
—2 _AN=0

VUE(QO, Uv)‘):O - % x:aZO’ % —=b — U(¢)|b—ﬁb
Ax,t=T)=0

VoL(p,u,A)=0 = —)\‘X:a =

» Thus, the three conditions form a two-point boundary-value problem
in time for u, A and ¢
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

P> At the optimum, the adjoint variable u* coincides with the Lagrange
multiplier A

» Away from the optimum the adjoint variable u* can be interpreted in
terms of the sensitivity of the solutions to the governing system with
respect to perturbations of the data

» the operator defining the adjoint system is determined by the
governing equation (it is the Hilbert space adjoint of its linearization)

» there is some freedom in choosing the data for the adjoint system
(terminal & boundary conditions, source term)

» The Riesz theorem guarantees that this freedom can always be
exploited to obtain the required sensitivity

» The action of the Hessian of the objective functional H.7(¢;¢’) on
some perturbation ¢’ can be determined in a similar way

» the second-order adjoint is needed
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» The L2 gradients ng may not by regular (smooth) enough (they
are only square-integrable!)

» We should extract the gradient in the space of smoother functions:
the Sobolev space H(0, T) endowed with the inner product

dp1 dp>
Vb1 p2€HL(0,T) <p1,pz>H1=<p1,pz>Lz+f2<dt dt>

;
dp1 dp2

= dt + (2 Rt

/0P1P2 + /0 dr ot

» /€ Risa “length-scale” parameter
» the H! inner produce are equivalent for 0 < ¢ < co

. . 1
> More precisely, we will assume that V!;’ J,¢' € H3(0, T) such that
1
VET(t)=¢(t)=0 att=0,T



Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

P Invoking again the Riesz representation theorem, we obtain an
expression for the Gateaux differential in terms of the H! inner
product

2
T'(pr¢') = <Vé J, <p’>L2
_ H! /
N <V‘P T >H1
T T d(lej) do'
_ H o 2 © ayp
—/O Vo, J¢ dt+¢ /0 ST dt

> We shall use integration by parts to transform the second term
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

T T4 H! /
<Vglj,w'> :/ VT dt+£2/ Ve J) d¢'
H1 0 0

dt  dt

T T 2(vH! d(vH T
:/ Vzljap’dtféz/ 7(Z;j)¢’dt+e2 7(V£‘7)¢’

0 0 t=0
e ——

=0

T J? H* T
:/ [Vg’ljﬁ(z‘;j) ga/dt:/ —u*| Y dt
0 0

> Since the last relation must hold for any ¢’ € H}(0, T) C L?(0, T),
we obtain

X=a

dt?
v 70) =V 7(T) =0

Id—€2d—2 vH' 7 = vt 0, T
Hg=vET on(0,T)

» The Sobolev gradient Vglj is obtained from the L2 gradient ng
by solving an elliptic boundary-value problem
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Consider the equation determining the Sobolev gradient Vglj in the
Fourier space (for k =1,2,...)

[1+£2k2] [@}k:[@]k — {@}k:1+22k2 {@L
F(K) F(k)
~—2
0 T k

L

» Extraction of gradients is Sobolev spaces is equivalent to low-pass
filtering in the frequency space

» 1/ is the cut-off frequency
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» How to choose an optimal value of £ to produce fastest convergence?
= open research problem!

» Some results:

A. Novruzi and B. Protas, “A gradient method in a Hilbert space
with an optimized inner product: achieving a Newton-like
convergence”, (see arXiv:1803.02414), 2018.
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients
Constraints and Projected Gradients

Conjugate Gradients

» When using the nonlinear conjugate gradients, we need to evaluate
the “momentum” term (the Polak-Ribiére version)

(VEI(e™), (VT (™) - TH T (o)) )
(VET (o), VI T (o))

u

8=

u

» Since H}(0, T) C L2(0, T), we have a choice between using
» the L? inner product (-, )2, or

> the Sobolev H! inner product (-, )
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Suppose we wish to impose the a linear constraint on the control
variable, e.g., fix its mean value

T
/ pdt =m, meR
0

> If we impose this condition on the initial guess, i.e., fOT wo dt = m,
then we need to ensure that the gradients have zero mean

-
/ V,Jdt=0
0
» This property defines a linear subspace
-
S = {f € 1%(0,7) : / f(t)dt = o}
0
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Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Since the gradient need not satisfy the constraint, it must be
projected on the subspace defined by this constraint

» The projection operator Ps : [?> — S
. T
PsV ,J = V;’ J —a, where « —/ V,J dt
0
(the projection is realized by subtracting the mean)

» The Sobolev gradient then must be found in S N H3(0, T) using the
Riesz theorem with the representer in S

j’(gp; gp’) = <P3V;’1._7,90/>H1 = <Vglj - 04780/>H1
- <vé’2‘7’ SO,>L2

P. Matharu & B. Protas Numerical Optimization of PDEs



Gateaux Differential and Riesz Form
Gradients and Adjoint Calculus Sobolev Gradients

Constraints and Projected Gradients

» Proceeding as before, we obtain the projected Sobolev gradient
ngglj as solution of an elliptic boundary-value problem with a
global constraint

dt?
vH 7(0) =V 7(T) =0

2
[Id —¢? d} VT —a=VET on(0,T)

T 1
/ VI Tdt=0
\ /0

> The parameter « acts like a “Lagrange multiplier” necessary to
accommodate an additional constraint
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Algorithm
Discretization of the PDEs

Numerical Computations Validation of Gradients: x-test

Algorithm 1 Projected Steepest Descent Line-Search (PSDLS) for PDEs
1: ©® « g (initial guess)

2: n+0
3: repeat
4: solve the governing system with data (") forward in time
5: solve the corresponding adjoint problem backwards in time
6: determine the L2 gradient ijj
T: determine the projector Pgs )
=]
8: determine the projected Sobolev gradient gradient Pg ) Vglj
®
9: determine optimal step size 7, = argmin_o J(p(" — 7 Psw(n) V{;’lj)
10: update (™) = (M — 7 Pg " VI (")
©
11: n<n -(i-)l )
. o 17 =T (el D))
12: until TGy < er
Input:
o — initial guess, e; — tolerance in line search
¢f — tolerance in the termination condition
Output: an approximation of the minimizer ¢
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Algorithm

Discretization of the PDEs
Numerical Computations Validation of Gradients: ~-test

P> For the purpose of numerical solution, the heat equation is discretized
» using second-order central /forward finite differences in space

» using second-order Crank-Nicolson scheme in time

> At each time step we need to solve the following linear system

. | o0

; 3 U1, nt1 3”1,1n - “2,n+”3,n+2AX(¢1n+¢n+1)
—in14+hn —1h 0 U ni1 shuin+ (1 —hup+ 5hu3,
0 —Ihi+h—-in - 0 U3, ni1 shuyp+ (1 —h)usp+ 3hus,
0 0 0 —lhi4+hn—1n UM—1,n+1 Lhup_on+ @ = Ruy_1,n+ 3hupm,,
0 0 0o -3 4 - UM, nt1 U, — UM—1,n + UM—2.n
where

> {xy =a,xx=a+ Ax,...,xy = b}
> {t1:0 tQZAt7...,tN:T}

> UJn—U(><J7fn)

| 4 h_

2

> The same approach is also used to solve the adjoint problem
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Algorithm
Discretization of the PDEs

Numerical Computations Validation of Gradients: ~-test

» How can we validate the derivation and computation of gradients
V,J?

» Compare the Gateaux differential J'(y; ¢')
> approximated using finite differences, and
» evaluated using the Riesz representation and the gradient V(PJ

>
_ I+ ) = T ()]
H(E) - <Vg(7, <"9,>L2 ) v@a ¥

» Properties of the quantity x(e):
> for intermediate €, x(€) ~ 1 (in fact, k() — 1 as Ax, At — 0)
> |x(€)] = oo as € — 0, due to round-off errors

> |k(€)| = oo as € — oo, due to truncation errors in the finite-difference
approximation of J'(y; ¢')
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