> Numerical Optimization of Partial Differential Equations Part II: optimization with PDE constraints

Pritpal 'Pip' Matharu and Bartosz Protas

Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada URL: http://www.math.mcmaster.ca/bprotas

Rencontres Normandes sur les aspects théoriques et numériques des EDP 5–9 November 2018, Rouen

Formulation of the PDE Optimization Problem

Problem Statement Governing System: Heat Equation Gradient Descent

Gradients and Adjoint Calculus

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Numerical Computations

Algorithm Discretization of the PDEs Validation of Gradients: κ -test

A good reference for standard approaches

P. Matharu & B. Protas

Numerical Optimization of PDEs

Formulation of the PDE Optimization Problem Gradients and Adjoint Calculus Numerical Computations Formulation of the PDE Optimization Problem Governing System: Heat Equation Gradient Descent

Consider heat conduction in a bar. How do we choose the heat flux φ applied at the left endpoint (x = a), so that the temperature at the right endpoint (x = b) has a desired time-history $\bar{u}_b = \bar{u}_b(t)$?

Using the heat flux φ as the control variable, we formulate this problem as minimization of a (reduced) least-squares cost functional

$$\mathcal{J}(\varphi) = \frac{1}{2} \int_0^T [u(\varphi)|_b - \bar{u}_b]^2 dt$$

Since $u = u(\varphi)$, we thus have the following optimization problem

$$\min_{\varphi} \mathcal{J}(\varphi) \quad \text{subject to} \quad \begin{cases} \frac{\partial u}{\partial t} - \Delta u = 0, \quad (t, x) \in [0, T] \times [a, b] \\ \frac{\partial u}{\partial x} \Big|_{x=a} = \varphi(t), \quad t \in [0, T] \\ \frac{\partial u}{\partial x} \Big|_{x=b} = 0, \quad t \in [0, T] \\ u(x, t = 0) = u_0(x), \quad x \in [a, b] \end{cases}$$

where:

▶ $a, b, T \in \mathbb{R}$ are given parameters

u₀ is an appropriate initial condition

 \blacktriangleright We wish to find the optimal boundary data (heat flux) \widetilde{arphi} such that

 $\widetilde{\varphi} = \operatorname{argmin}_{\varphi \in \mathcal{U}} \, \mathcal{J}(\varphi)$

where $\mathcal U$ is a suitable Hilbert space of functions $\varphi~:~[0,\,\mathcal T]\to\mathbb R$

▶ The optimal control $\tilde{\varphi}$ can be computed using a gradient descent algorithm as $\tilde{\varphi} = \lim_{n \to \infty} \varphi^{(n)}$, where

$$\begin{cases} \varphi^{(n+1)} &= \varphi^{(n)} - \tau^{(n)} \nabla_{\varphi} \mathcal{J}(\varphi^{(n)}), \qquad n = 1, 2, \dots \\ \varphi^{(1)} &= \varphi_0 \end{cases}$$

- ∇_φJ(φ) is the gradient (sensitivity) of the cost functional with respect to the control variable
- $\tau^{(n)}$ is step length along the descent direction at the *n*-th iteration
- φ_0 is the initial guess for the heat flux

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Gâteaux Differential

► To determine the gradient ∇_φJ(φ), we must compute the Gâteaux (directional) differential of the cost functional

$$\begin{aligned} \mathcal{J}'(\varphi;\varphi') &= \lim_{\epsilon \to 0} \frac{\mathcal{J}(\varphi + \epsilon \varphi') - \mathcal{J}(\varphi)}{\epsilon} = \frac{d}{d\epsilon} \mathcal{J}(\varphi + \epsilon \varphi') \Big|_{\epsilon=0} \\ &= \int_0^T [u(\varphi)|_b - \bar{u}_b] \, u'(\mathsf{x}, t; \varphi, \varphi') \, dt \end{aligned}$$

where:

- $u'(x, t; \varphi, \varphi')$ is the perturbation variable that satisfies the *linearization* of the governing system
- $\varphi'(t)$ is an arbitrary perturbation of the control variable $\varphi(t)$
- A (local) minimizer of the functional J(φ) is characterized by the condition

$$orall arphi' \in \mathcal{U} \qquad \mathcal{J}'(\widetilde{arphi};arphi') = 0$$

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Perturbation System

The perturbation system for u'(x, t; φ, φ') is obtained by linearizing the governing system system around the state u(φ)

$$\begin{aligned} \frac{\partial u'}{\partial t} - \Delta u' &= 0\\ \frac{\partial u'}{\partial x}\Big|_{x=a} &= \varphi'(t)\\ \frac{\partial u'}{\partial x}\Big|_{x=b} &= 0\\ u'(x, t=0) &= 0\end{aligned}$$

In the present problem the governing system is linear, hence the perturbation system has

- an identical operator (equation),
- different data (boundary and initial conditions)

In general, the governing and perturbations systems are defined in terms of different operators (nonlinear vs. linear)

P. Matharu & <u>B. Protas</u> Numerical Optimization of PDEs

The following fundamental result from functional analysis will allow to extract the gradient ∇_φ J(φ) from the Gâteaux differential J'(φ; φ')

Theorem (Riesz Representation Theorem)

Let \mathcal{X} be a Hilbert space. Then any bounded linear functional h(x) defined on \mathcal{X} ($x \in \mathcal{X}$) can be uniquely written as $h(x) = \langle x, y \rangle_{\mathcal{X}}$ for some $y \in \mathcal{X}$ (the element y is referred to as the "Riesz representer").

• Since $\forall \varphi \in \mathcal{U}$ the Gâteaux differential

$$\mathcal{J}'(\varphi;\cdot) : \mathcal{U} \to \mathbb{R}$$

is a bounded linear functional, we have the Riesz representation

$$\mathcal{J}'(\varphi;\varphi') = \left\langle \nabla_{\varphi} \mathcal{J}, \varphi' \right\rangle_{\mathcal{U}}$$

The gradient $abla_{\omega}\mathcal{J}$ is thus the Riesz representer!

However, the Gâteaux differential

$$\mathcal{J}'(arphi;arphi') = \int_0^T [u(arphi)|_b - ar{u}_b] \, u'(x,t;arphi,arphi') \, dt$$

is not yet consistent with the Riesz representation, because the perturbation variable φ' does not appear explicitly in it, but is hidden in the boundary condition of the perturbation system

To convert the Gâteaux differential J'(φ; φ') we will use the adjoint calculus

▶ let u^* : $[a, b] \times [0, T] \rightarrow \mathbb{R}$ be the "adjoint state"

Formulation of the PDE Optimization Problem Gradients and Adjoint Calculus Numerical Computations Gradients and Projected Gradients

Let the adjoint variable u* satisfy the following judiciously chosen adjoint system

$$\begin{aligned} -\frac{\partial u^*}{\partial t} - \Delta u^* &= 0\\ \frac{\partial u^*}{\partial x}\Big|_{x=a} &= 0\\ \frac{\partial u^*}{\partial x}\Big|_{x=b} &= u(\varphi)\Big|_b - \bar{u}_b \qquad \Leftarrow \\ u^*(x, t=T) &= 0 \end{aligned}$$

- The "forcing term" in the boundary condition at x = b is related to the Gâteaux differential
- Note that this is a *terminal-value* problem, so we must solve this system backwards in time!
 - however, the term with the time derivative has a negative sign, so the problem is well posed
- Now we will now demonstrate that the adjoint system defined in this particular way will allow us to determine the gradient ∇_φJ

Formulation of the PDE Optimization Problem Gradients and Adjoint Calculus Numerical Computations Gradients and Projected Gradients

Start by integrating the perturbation system against the adjoint field u* over space and time

Then integrate by parts with respect to space (x) and time (t)

$$0 = \int_{0}^{T} \int_{a}^{b} \left(\frac{\partial u'}{\partial t} - \Delta u' \right) u^{*} dx dt$$

=
$$\int_{0}^{T} \int_{a}^{b} \underbrace{\left(-\frac{\partial u^{*}}{\partial t} - \Delta u^{*} \right)}_{=0} u' dx dt + \int_{a}^{b} \begin{bmatrix} u^{*} u' \end{bmatrix} \Big|_{t=0}^{T} dx$$

$$- \int_{0}^{T} \begin{bmatrix} u^{*} \frac{\partial u'}{\partial x} \end{bmatrix} \Big|_{x=a}^{b} dt + \int_{0}^{T} \begin{bmatrix} \frac{\partial u^{*}}{\partial x} u' \end{bmatrix} \Big|_{x=a}^{b} dt = 0$$

We will now analyze the boundary terms resulting from the integration by parts

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

$$0 = \int_{a}^{b} \left[u^{*} u' \right] \Big|_{t=0}^{T} dx - \int_{0}^{T} \left[u^{*} \frac{\partial u'}{\partial x} \right] \Big|_{x=a}^{b} - \left[\frac{\partial u^{*}}{\partial x} u' \right] \Big|_{x=a}^{b} dt$$

$$0 = \int_{a}^{b} \underbrace{u^{*}}_{=0} u' \Big|_{t=T} - u^{*} \underbrace{u'}_{=0} \Big|_{t=0} dx$$

$$- \int_{0}^{T} u^{*} \underbrace{\frac{\partial u'}{\partial x}}_{=0} \Big|_{x=b} - u^{*} \underbrace{\frac{\partial u'}{\partial x}}_{=\varphi'} \Big|_{x=a} dt$$

$$+ \int_{0}^{T} \underbrace{\frac{\partial u^{*}}{\partial x}}_{=u(\varphi)|_{b} - \bar{u}_{b}} u' \Big|_{x=b} - \underbrace{\frac{\partial u^{*}}{\partial x}}_{=0} u' \Big|_{x=a} dt$$

$$\Longrightarrow \underbrace{\int_{0}^{T} \left[u(\varphi)|_{b} - \bar{u}_{b} \right] u' \Big|_{x=b} dt}_{\mathcal{J}'(\varphi;\varphi')} = \int_{0}^{T} - u^{*} \Big|_{x=a} \varphi' dt$$

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

▶ Thus, choosing $U = L^2(0, T)$, we obtain an expression for the L^2 gradient of the cost functional

$$\mathcal{J}'(\varphi;\varphi') = \int_0^T -u^* \Big|_{x=a} \varphi' \, dt$$
$$= \left\langle \nabla_{\varphi}^{L^2} \mathcal{J}, \varphi' \right\rangle_{L^2} = \int_0^T \nabla_{\varphi}^{L^2} \mathcal{J} \, \varphi' \, dt$$
$$\implies \left. \nabla_{\varphi}^{L^2} \mathcal{J} = -u^* \right|_{x=a} \quad \text{on } [0,T]$$

• Determination of the gradient $\nabla_{\varphi}^{L^2} \mathcal{J}$ requires:

- solution of the governing system forward in time
- solution of the adjoint system backwards in time
- When properly defined, the adjoint system conveys information about the *sensitivity* of the solutions of the governing system to perturbations of the data (here, the Neumann boundary condition)

We will now consider an alternative formulation involving the Lagrange multiplier λ : [a, b] × [0, T] (instead of the reduced objective functional)

$$\mathcal{L}(\varphi, u, \lambda) = \widetilde{J}(\varphi, u) - \left\langle \frac{\partial u}{\partial t} - \Delta u, \lambda \right\rangle_{L^2(0, T; L^2(a, b))}$$
$$= \frac{1}{2} \int_0^T [u(\varphi)|_b - \bar{u}_b]^2 dt - \int_0^T \int_a^b \left(\frac{\partial u}{\partial t} - \Delta u\right) \lambda \, dx \, dt$$

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Solution of the problem $\sup_{\lambda \in \mathcal{X}} \inf_{(x,\varphi) \in \mathcal{X} \times \mathcal{U}} \mathcal{L}(x,\varphi,\lambda)$ requires:

$$\nabla_{\lambda} \mathcal{L}(\varphi, u, \lambda) = 0 \implies \begin{cases} \frac{\partial u}{\partial t} - \Delta u = 0, \\ \frac{\partial u}{\partial x}\Big|_{x=a} = \varphi(t), \quad \frac{\partial u}{\partial x}\Big|_{x=b} = 0, \\ u(x, t=0) = u_0(x) \end{cases}$$

$$\nabla_{u}\mathcal{L}(\varphi, u, \lambda) = 0 \implies \begin{cases} -\frac{\partial\lambda}{\partial t} - \Delta\lambda = 0\\ \frac{\partial\lambda}{\partial x}\Big|_{x=a} = 0, \quad \frac{\partial\lambda}{\partial x}\Big|_{x=b} = u(\varphi)|_{b} - \bar{u}_{b}\\ \lambda(x, t = T) = 0 \end{cases}$$

 $\nabla_{\varphi} \mathcal{L}(\varphi, u, \lambda) = 0 \implies -\lambda \Big|_{x=a} = 0$

Thus, the three conditions form a two-point boundary-value problem in time for u, λ and φ

- At the optimum, the adjoint variable u^{*} coincides with the Lagrange multiplier λ
- Away from the optimum the adjoint variable u* can be interpreted in terms of the sensitivity of the solutions to the governing system with respect to perturbations of the data
 - the operator defining the adjoint system is determined by the governing equation (it is the Hilbert space adjoint of its linearization)
 - there is some freedom in choosing the data for the adjoint system (terminal & boundary conditions, source term)
 - The Riesz theorem guarantees that this freedom can always be exploited to obtain the required sensitivity
- The action of the Hessian of the objective functional HJ(φ; φ') on some perturbation φ' can be determined in a similar way
 - the second-order adjoint is needed

The L² gradients ∇^{L²}_φ J may not by regular (smooth) enough (they are only square-integrable!)

We should extract the gradient in the space of smoother functions: the Sobolev space H¹(0, T) endowed with the inner product

$$\begin{aligned} \forall_{p_1,p_2 \in H^1(0,T)} \quad \langle p_1,p_2 \rangle_{H^1} &= \langle p_1,p_2 \rangle_{L^2} + \ell^2 \left\langle \frac{dp_1}{dt}, \frac{dp_2}{dt} \right\rangle_{L^2} \\ &= \int_0^T p_1 \, p_2 \, dt + \ell^2 \, \int_0^T \frac{dp_1}{dt} \, \frac{dp_2}{dt} \, dt \end{aligned}$$

- ▶ $\ell \in \mathbb{R}$ is a "length-scale" parameter
 - ▶ the H^1 inner produce are *equivalent* for $0 < \ell < \infty$

▶ More precisely, we will assume that $abla^{H^1}_{arphi}\mathcal{J}, arphi' \in H^1_0(0, T)$ such that

$$abla^{H^1}_{arphi}\mathcal{J}(t)=arphi'(t)=0 \quad ext{at } t=0, T$$

Invoking again the Riesz representation theorem, we obtain an expression for the Gâteaux differential in terms of the H¹ inner product

$$\begin{aligned} \mathcal{J}'(\varphi;\varphi') &= \left\langle \nabla_{\varphi}^{L^{2}}\mathcal{J},\varphi' \right\rangle_{L^{2}} \\ &= \left\langle \nabla_{\varphi}^{H^{1}}\mathcal{J},\varphi' \right\rangle_{H^{1}} \\ &= \int_{0}^{T} \nabla_{\varphi}^{H^{1}}\mathcal{J}\,\varphi'\,dt + \ell^{2}\,\int_{0}^{T}\frac{d(\nabla_{\varphi}^{H^{1}}\mathcal{J})}{dt}\,\frac{d\varphi'}{dt}\,dt \end{aligned}$$

We shall use integration by parts to transform the second term

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

$$\begin{split} \left\langle \nabla_{\varphi}^{H^{1}}\mathcal{J},\varphi'\right\rangle_{H^{1}} &= \int_{0}^{T} \nabla_{\varphi}^{H^{1}}\mathcal{J}\varphi'\,dt + \ell^{2} \int_{0}^{T} \frac{d(\nabla_{\varphi}^{H^{1}}\mathcal{J})}{dt} \frac{d\varphi'}{dt}\,dt \\ &= \int_{0}^{T} \nabla_{\varphi}^{H^{1}}\mathcal{J}\varphi'\,dt - \ell^{2} \int_{0}^{T} \frac{d^{2}(\nabla_{\varphi}^{H^{1}}\mathcal{J})}{dt^{2}}\varphi'\,dt + \ell^{2} \underbrace{\left[\frac{d(\nabla_{\varphi}^{H^{1}}\mathcal{J})}{dt}\varphi'\right]}_{=0} \right|_{t=0}^{T} \\ &= \int_{0}^{T} \left[\nabla_{\varphi}^{H^{1}}\mathcal{J} - \ell^{2} \frac{d^{2}(\nabla_{\varphi}^{H^{1}}\mathcal{J})}{dt^{2}} \right] \varphi'\,dt = \int_{0}^{T} -u^{*} \Big|_{x=a} \varphi'\,dt \end{split}$$

Since the last relation must hold for any $\varphi' \in H_0^1(0, T) \subset L^2(0, T)$, we obtain

$$\begin{cases} \left[\mathsf{Id} - \ell^2 \frac{d^2}{dt^2} \right] \nabla_{\varphi}^{H^1} \mathcal{J} = \nabla_{\varphi}^{L^2} \mathcal{J} \quad \text{on } (0, T) \\ \nabla_{\varphi}^{H^1} \mathcal{J}(0) = \nabla_{\varphi}^{H^1} \mathcal{J}(T) = 0 \end{cases}$$

► The Sobolev gradient ∇^{H¹}_φ J is obtained from the L² gradient ∇^{L²}_φ J by solving an *elliptic boundary-value problem*

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

► Consider the equation determining the Sobolev gradient ∇^{H¹}_φ J in the Fourier space (for k = 1, 2, ...)

- Extraction of gradients is Sobolev spaces is equivalent to *low-pass filtering* in the frequency space
 - $1/\ell$ is the cut-off frequency

► How to choose an optimal value of *l* to produce fastest convergence? ⇒ open research problem!

Some results:

A. Novruzi and B. Protas, "A gradient method in a Hilbert space with an optimized inner product: achieving a Newton-like convergence", (see arXiv:1803.02414), 2018.

Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Conjugate Gradients

When using the nonlinear conjugate gradients, we need to evaluate the "momentum" term (the Polak-Ribière version)

$$\beta = \frac{\left\langle \nabla_{\varphi}^{H^{1}} \mathcal{J}(\varphi^{(n)}), \left(\nabla_{\varphi}^{H^{1}} \mathcal{J}(\varphi^{(n)}) - \nabla_{\varphi}^{H^{1}} \mathcal{J}(\varphi^{(n-1)}) \right) \right\rangle_{\mathcal{U}}}{\left\langle \nabla_{\varphi}^{H^{1}} \mathcal{J}(\varphi^{(n-1)}), \nabla_{\varphi}^{H^{1}} \mathcal{J}(\varphi^{(n-1)}) \right\rangle_{\mathcal{U}}}$$

Since $H_0^1(0, T) \subset L^2(0, T)$, we have a choice between using

• the L^2 inner product $\langle \cdot, \cdot \rangle_{L^2}$, or

• the Sobolev
$$H^1$$
 inner product $\langle \cdot, \cdot \rangle_{H^1}$

Formulation of the PDE Optimization Problem Gradients and Adjoint Calculus Numerical Computations Gâteaux Differential and Riesz Form Sobolev Gradients Constraints and Projected Gradients

Suppose we wish to impose the a linear constraint on the control variable, e.g., fix its mean value

$$\int_0^T \varphi \, dt = m, \qquad m \in \mathbb{R}$$

▶ If we impose this condition on the initial guess, i.e., $\int_0^1 \varphi_0 dt = m$, then we need to ensure that the gradients have zero mean

$$\int_0^T \nabla_\varphi \mathcal{J} \, dt = 0$$

This property defines a linear subspace

$$\mathcal{S}=\left\{f\in L^2(0,T)\ :\ \int_0^T f(t)\,dt=0
ight\}$$

Since the gradient need not satisfy the constraint, it must be projected on the subspace defined by this constraint

▶ The projection operator $P_S: L^2 \to S$

$$P_{\mathcal{S}} \nabla_{\varphi} \mathcal{J} = \nabla_{\varphi}^{H^1} \mathcal{J} - \alpha, \quad \text{where} \quad \alpha = \int_0^T \nabla_{\varphi} \mathcal{J} \, dt$$

(the projection is realized by subtracting the mean)

► The Sobolev gradient then must be found in S ∩ H¹₀(0, T) using the Riesz theorem with the representer in S

$$\begin{aligned} \mathcal{J}'(\varphi;\varphi') &= \left\langle \mathcal{P}_{\mathcal{S}} \nabla_{\varphi}^{\mathcal{H}^{1}} \mathcal{J}, \varphi' \right\rangle_{\mathcal{H}^{1}} = \left\langle \nabla_{\varphi}^{\mathcal{H}^{1}} \mathcal{J} - \alpha, \varphi' \right\rangle_{\mathcal{H}^{1}} \\ &= \left\langle \nabla_{\varphi}^{\mathcal{L}^{2}} \mathcal{J}, \varphi' \right\rangle_{\mathcal{L}^{2}} \end{aligned}$$

Proceeding as before, we obtain the *projected Sobolev gradient* $P_{S} \nabla_{\varphi}^{H^{1}} \mathcal{J}$ as solution of an elliptic boundary-value problem with a global constraint

$$\begin{cases} \left[\mathsf{Id} - \ell^2 \frac{d^2}{dt^2} \right] \nabla_{\varphi}^{H^1} \mathcal{J} - \alpha = \nabla_{\varphi}^{L^2} \mathcal{J} \quad \text{on } (0, T) \\ \nabla_{\varphi}^{H^1} \mathcal{J}(0) = \nabla_{\varphi}^{H^1} \mathcal{J}(T) = 0 \\ \int_0^T \nabla_{\varphi}^{H^1} \mathcal{J} \, dt = 0 \end{cases}$$

The parameter α acts like a "Lagrange multiplier" necessary to accommodate an additional constraint

Algorithm 1 Projected Steepest Descent Line-Search (PSDLS) for PDEs

- 1: $\varphi^{(0)} \leftarrow \varphi_0$ (initial guess)
- 2: $n \leftarrow 0$
- 3: repeat
- 4: solve the governing system with data $\varphi^{(n)}$ forward in time
- 5: solve the corresponding adjoint problem backwards in time
- 6: determine the L^2 gradient $\nabla_{\varphi}^{L^2} \mathcal{J}$
- 7: determine the projector $P_{\mathcal{S}_{(\alpha)}^{(n)}}$
- 8: determine the projected Sobolev gradient gradient $P_{S_{(\alpha)}} \nabla_{\varphi}^{H^1} \mathcal{J}$
- 9: determine optimal step size $\tau_n = \operatorname{argmin}_{\tau>0} \mathcal{J}(\varphi^{(n)} \tau P_{\mathcal{S}_{\varphi^{(n)}}} \nabla_{\varphi}^{H^1} \mathcal{J})$

10: update
$$arphi^{(n+1)} = arphi^{(n)} - au_n \, P_{\mathcal{S}_{arphi^{(n)}}} \, oldsymbol{
abla} \mathcal{J}(arphi^{(n)})$$

- 11: $n \leftarrow n+1$
- 12: until $\frac{|\mathcal{J}(\varphi^{(n)}) \mathcal{J}(\varphi^{(n-1)})|}{|\mathcal{J}(\varphi^{(n-1)})|} < \varepsilon_f$

Input:

 φ_0 — initial guess, ε_{τ} — tolerance in line search ε_f — tolerance in the termination condition

Output: an approximation of the minimizer $\widetilde{\varphi}$

- For the purpose of numerical solution, the heat equation is discretized
 using second-order central/forward finite differences in space
 - using second-order Crank-Nicolson scheme in time
- At each time step we need to solve the following linear system

$$\begin{bmatrix} -3 & 4 & -1 & \cdots & 0 \\ -\frac{1}{2}h & 1+h & -\frac{1}{2}h & \cdots & 0 \\ 0 & -\frac{1}{2}h & 1+h & -\frac{1}{2}h & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -\frac{1}{2}h & 1+h & -\frac{1}{2}h \end{bmatrix} \begin{bmatrix} u_{1,n+1} \\ u_{2,n+1} \\ \vdots \\ u_{M-1,n+1} \\ u_{M,n+1} \end{bmatrix} = \begin{bmatrix} 3u_{1,n} - u_{2,n} + u_{3,n} + 2\Delta x(\phi_n + \phi_{n+1}) \\ \frac{1}{2}h u_{1,n} + (1-h)u_{2,n} + \frac{1}{2}h u_{3,n} \\ \frac{1}{2}h u_{2,n} + (1-h)u_{3,n} + \frac{1}{2}h u_{4,n} \\ \vdots \\ \frac{1}{2}h u_{M-2,n} + (1-h)u_{M-1,n} + \frac{1}{2}h u_{M,n} \end{bmatrix}$$

where

► {
$$x_1 = a, x_2 = a + \Delta x, ..., x_M = b$$
}
► { $t_1 = 0, t_2 = \Delta t, ..., t_N = T$ }
► $u_{j,n} = u(x_j, t_n)$
► $h = \frac{\Delta t}{\Delta x^2}$

The same approach is also used to solve the adjoint problem

- How can we validate the derivation and computation of gradients $\nabla_{\varphi}\mathcal{J}?$
- Compare the Gâteaux differential $\mathcal{J}'(\varphi; \varphi')$
 - approximated using finite differences, and
 - \blacktriangleright evaluated using the Riesz representation and the gradient $abla_{arphi}\mathcal{J}$

$$\kappa(\epsilon) = rac{\epsilon^{-1} \left[\mathcal{J}(\varphi + \epsilon \varphi') - \mathcal{J}(\varphi)
ight]}{\left\langle
abla _{arphi}^{L^2} \mathcal{J}, \varphi'
ight
angle_{L^2}}, \quad orall arphi, arphi'$$

• Properties of the quantity $\kappa(\epsilon)$:

- ▶ for intermediate ϵ , $\kappa(\epsilon) \approx 1$ (in fact, $\kappa(\epsilon) \rightarrow 1$ as $\Delta x, \Delta t \rightarrow 0$)
- ▶ $|\kappa(\epsilon)| \to \infty$ as $\epsilon \to 0$, due to round-off errors
- $\label{eq:constraint} \mid \kappa(\epsilon) \mid \to \infty \text{ as } \epsilon \to \infty \text{, due to truncation errors in the finite-difference} \\ \text{approximation of } \mathcal{J}'(\varphi;\varphi')$