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Problem Statement
Governing System: Heat Equation
Gradient Descent

I Consider heat conduction in a bar. How do we choose the heat flux ϕ
applied at the left endpoint (x = a), so that the temperature at the
right endpoint (x = b) has a desired time-history ūb = ūb(t)?
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Problem Statement
Governing System: Heat Equation
Gradient Descent

I Using the heat flux ϕ as the control variable, we formulate this
problem as minimization of a (reduced) least-squares cost functional

J (ϕ) =
1

2

∫ T

0
[u(ϕ)|b − ūb]2 dt

I Since u = u(ϕ), we thus have the following optimization problem

min
ϕ
J (ϕ) subject to


∂u
∂t −∆u = 0, (t, x) ∈ [0,T ]× [a, b]
∂u
∂x

∣∣
x=a

= ϕ(t), t ∈ [0,T ]
∂u
∂x

∣∣
x=b

= 0, t ∈ [0,T ]

u(x , t = 0) = u0(x), x ∈ [a, b]

where:

I a, b,T ∈ R are given parameters

I u0 is an appropriate initial condition
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Problem Statement
Governing System: Heat Equation
Gradient Descent

I We wish to find the optimal boundary data (heat flux) ϕ̃ such that

ϕ̃ = argminϕ∈U J (ϕ)

where U is a suitable Hilbert space of functions ϕ : [0,T ]→ R

I The optimal control ϕ̃ can be computed using a gradient descent
algorithm as ϕ̃ = lim

n→∞
ϕ(n), where{

ϕ(n+1) = ϕ(n) − τ (n)∇ϕJ (ϕ(n)), n = 1, 2, . . .

ϕ(1) = ϕ0

I ∇ϕJ (ϕ) is the gradient (sensitivity) of the cost functional with respect
to the control variable

I τ (n) is step length along the descent direction at the n-th iteration

I ϕ0 is the initial guess for the heat flux
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Gâteaux Differential

I To determine the gradient ∇ϕJ (ϕ), we must compute the Gâteaux
(directional) differential of the cost functional

J ′(ϕ;ϕ′) = lim
ε→0

J (ϕ+ εϕ′)− J (ϕ)

ε
=

d

dε
J
(
ϕ+ εϕ′

) ∣∣∣
ε=0

=

∫ T

0
[u(ϕ)|b − ūb] u′(x , t;ϕ,ϕ′) dt

where:
I u′(x , t;ϕ,ϕ′) is the perturbation variable that satisfies the linearization

of the governing system

I ϕ′(t) is an arbitrary perturbation of the control variable ϕ(t)

I A (local) minimizer of the functional J (ϕ) is characterized by the
condition

∀ϕ′ ∈ U J ′(ϕ̃;ϕ′) = 0
P. Matharu & B. Protas Numerical Optimization of PDEs



Formulation of the PDE Optimization Problem
Gradients and Adjoint Calculus

Numerical Computations

Gâteaux Differential and Riesz Form
Sobolev Gradients
Constraints and Projected Gradients

Perturbation System

I The perturbation system for u′(x , t;ϕ,ϕ′) is obtained by linearizing
the governing system system around the state u(ϕ)

∂u′

∂t −∆u′ = 0
∂u′

∂x

∣∣
x=a

= ϕ′(t)
∂u′

∂x

∣∣
x=b

= 0

u′(x , t = 0) = 0

I In the present problem the governing system is linear, hence the
perturbation system has
I an identical operator (equation),

I different data (boundary and initial conditions)

I In general, the governing and perturbations systems are defined in
terms of different operators (nonlinear vs. linear)
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I The following fundamental result from functional analysis will allow to
extract the gradient ∇ϕJ (ϕ) from the Gâteaux differential J ′(ϕ;ϕ′)

Theorem (Riesz Representation Theorem)

Let X be a Hilbert space. Then any bounded linear functional h(x)
defined on X (x ∈ X ) can be uniquely written as h(x) = 〈x , y〉X for some
y ∈ X (the element y is referred to as the “Riesz representer”).

I Since ∀ϕ ∈ U the Gâteaux differential

J ′(ϕ; ·) : U → R

is a bounded linear functional, we have the Riesz representation

J ′(ϕ;ϕ′) =
〈
∇ϕJ , ϕ′

〉
U

The gradient ∇ϕJ is thus the Riesz representer!
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I However, the Gâteaux differential

J ′(ϕ;ϕ′) =

∫ T

0
[u(ϕ)|b − ūb] u′(x , t;ϕ,ϕ′) dt

is not yet consistent with the Riesz representation, because the
perturbation variable ϕ′ does not appear explicitly in it, but is hidden
in the boundary condition of the perturbation system

I To convert the Gâteaux differential J ′(ϕ;ϕ′) we will use the adjoint
calculus

I let u∗ : [a, b]× [0,T ]→ R be the “adjoint state”
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I Let the adjoint variable u∗ satisfy the following judiciously chosen
adjoint system 

−∂u∗

∂t −∆u∗ = 0
∂u∗

∂x

∣∣
x=a

= 0
∂u∗

∂x

∣∣
x=b

= u(ϕ)|b − ūb ⇐=

u∗(x , t = T ) = 0

I The “forcing term” in the boundary condition at x = b is related to
the Gâteaux differential

I Note that this is a terminal-value problem, so we must solve this
system backwards in time!
I however, the term with the time derivative has a negative sign, so the

problem is well posed

I Now we will now demonstrate that the adjoint system defined in this
particular way will allow us to determine the gradient ∇ϕJ
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I Start by integrating the perturbation system against the adjoint field
u∗ over space and time
Then integrate by parts with respect to space (x) and time (t)

0 =

∫ T

0

∫ b

a

(
∂u′

∂t
−∆u′

)
u∗ dx dt

=

∫ T

0

∫ b

a

(
−∂u

∗

∂t
−∆u∗

)
︸ ︷︷ ︸

=0

u′ dx dt +

∫ b

a

[
u∗ u′

] ∣∣T
t=0

dx

−
∫ T

0

[
u∗
∂u′

∂x

] ∣∣∣∣b
x=a

dt +

∫ T

0

[
∂u∗

∂x
u′
] ∣∣∣∣b

x=a

dt = 0

I We will now analyze the boundary terms resulting from the
integration by parts
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0 =

∫ b

a

[
u∗ u′

] ∣∣T
t=0

dx −
∫ T

0

[
u∗
∂u′

∂x

] ∣∣∣∣b
x=a

−
[
∂u∗

∂x
u′
] ∣∣∣∣b

x=a

dt

0 =

∫ b

a
u∗︸︷︷︸
=0

u′
∣∣
t=T
− u∗ u′︸︷︷︸

=0

∣∣
t=0

dx

−
∫ T

0
u∗

∂u′

∂x︸︷︷︸
=0

∣∣∣∣
x=b

− u∗
∂u′

∂x︸︷︷︸
=ϕ′

∣∣∣∣
x=a

dt

+

∫ T

0

∂u∗

∂x︸︷︷︸
=u(ϕ)|b−ūb

u′
∣∣∣∣
x=b

− ∂u∗

∂x︸︷︷︸
=0

u′
∣∣∣∣
x=a

dt

=⇒
∫ T

0
[u(ϕ)|b − ūb] u′

∣∣∣∣
x=b

dt︸ ︷︷ ︸
J ′(ϕ;ϕ′)

=

∫ T

0
−u∗

∣∣∣∣
x=a

ϕ′ dt
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I Thus, choosing U = L2(0,T ) , we obtain an expression for the L2

gradient of the cost functional

J ′(ϕ;ϕ′) =

∫ T

0
−u∗

∣∣∣
x=a

ϕ′ dt

=
〈
∇L2

ϕ J , ϕ′
〉
L2

=

∫ T

0
∇L2

ϕ J ϕ′ dt

=⇒ ∇L2

ϕ J = −u∗
∣∣∣
x=a

on [0,T ]

I Determination of the gradient ∇L2

ϕ J requires:
I solution of the governing system forward in time

I solution of the adjoint system backwards in time

I When properly defined, the adjoint system conveys information about
the sensitivity of the solutions of the governing system to
perturbations of the data (here, the Neumann boundary condition)
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I We will now consider an alternative formulation involving the
Lagrange multiplier λ : [a, b]× [0,T ] (instead of the reduced
objective functional)

L(ϕ, u, λ) = J̃(ϕ, u)−
〈
∂u

∂t
−∆u, λ

〉
L2(0,T ;L2(a,b))

=
1

2

∫ T

0
[u(ϕ)|b − ūb]2 dt −

∫ T

0

∫ b

a

(
∂u

∂t
−∆u

)
λ dx dt
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I Solution of the problem supλ∈X inf(x ,ϕ)∈X×U L(x , ϕ, λ) requires:

∇λL(ϕ, u, λ) = 0 =⇒


∂u
∂t −∆u = 0,
∂u
∂x

∣∣
x=a

= ϕ(t), ∂u
∂x

∣∣
x=b

= 0,

u(x , t = 0) = u0(x)

∇uL(ϕ, u, λ) = 0 =⇒


−∂λ
∂t −∆λ = 0

∂λ
∂x

∣∣
x=a

= 0, ∂λ
∂x

∣∣
x=b

= u(ϕ)|b − ūb

λ(x , t = T ) = 0

∇ϕL(ϕ, u, λ) = 0 =⇒ −λ
∣∣
x=a

= 0

I Thus, the three conditions form a two-point boundary-value problem
in time for u, λ and ϕ
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I At the optimum, the adjoint variable u∗ coincides with the Lagrange
multiplier λ

I Away from the optimum the adjoint variable u∗ can be interpreted in
terms of the sensitivity of the solutions to the governing system with
respect to perturbations of the data

I the operator defining the adjoint system is determined by the
governing equation (it is the Hilbert space adjoint of its linearization)

I there is some freedom in choosing the data for the adjoint system
(terminal & boundary conditions, source term)

I The Riesz theorem guarantees that this freedom can always be
exploited to obtain the required sensitivity

I The action of the Hessian of the objective functional HJ (ϕ;ϕ′) on
some perturbation ϕ′ can be determined in a similar way

I the second-order adjoint is needed
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I The L2 gradients ∇L2

ϕ J may not by regular (smooth) enough (they
are only square-integrable!)

I We should extract the gradient in the space of smoother functions:
the Sobolev space H1(0,T ) endowed with the inner product

∀p1,p2∈H1(0,T ) 〈p1, p2〉H1 = 〈p1, p2〉L2 + `2

〈
dp1

dt
,
dp2

dt

〉
L2

=

∫ T

0
p1 p2 dt + `2

∫ T

0

dp1

dt

dp2

dt
dt

I ` ∈ R is a “length-scale” parameter
I the H1 inner produce are equivalent for 0 < ` <∞

I More precisely, we will assume that ∇H1

ϕ J , ϕ′ ∈ H1
0 (0,T ) such that

∇H1

ϕ J (t) = ϕ′(t) = 0 at t = 0,T
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I Invoking again the Riesz representation theorem, we obtain an
expression for the Gâteaux differential in terms of the H1 inner
product

J ′(ϕ;ϕ′) =
〈
∇L2

ϕ J , ϕ′
〉
L2

=
〈
∇H1

ϕ J , ϕ′
〉
H1

=

∫ T

0
∇H1

ϕ J ϕ′ dt + `2

∫ T

0

d(∇H1

ϕ J )

dt

dϕ′

dt
dt

I We shall use integration by parts to transform the second term
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∇H1

ϕ J , ϕ′
〉
H1

=

∫ T

0

∇H1

ϕ J ϕ′ dt + `2

∫ T

0

d(∇H1

ϕ J )
dt

dϕ′

dt
dt

=

∫ T

0

∇H1

ϕ J ϕ′ dt − `2

∫ T

0

d2(∇H1

ϕ J )
dt2

ϕ′ dt + `2

[
d(∇H1

ϕ J )
dt

ϕ′
]

︸ ︷︷ ︸
=0

∣∣∣∣T
t=0

=

∫ T

0

[
∇H1

ϕ J − `2 d2(∇H1

ϕ J )
dt2

]
ϕ′ dt =

∫ T

0

−u∗
∣∣∣∣
x=a

ϕ′ dt

I Since the last relation must hold for any ϕ′ ∈ H1
0 (0,T ) ⊂ L2(0,T ),

we obtain 
[

Id−`2 d2

dt2

]
∇H1

ϕ J = ∇L2

ϕ J on (0,T )

∇H1

ϕ J (0) = ∇H1

ϕ J (T ) = 0

I The Sobolev gradient ∇H1

ϕ J is obtained from the L2 gradient ∇L2

ϕ J
by solving an elliptic boundary-value problem
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I Consider the equation determining the Sobolev gradient ∇H1

ϕ J in the
Fourier space (for k = 1, 2, . . . )

[
1 + `2 k2

] [
∇̂H1

ϕ J
]
k

=
[
∇̂L2

ϕ J
]
k

=⇒
[
∇̂H1

ϕ J
]
k

=
1

1 + `2 k2︸ ︷︷ ︸
F(k)

[
∇̂L2

ϕ J
]
k

F(k)

0 k

≈ −2

1
`

I Extraction of gradients is Sobolev spaces is equivalent to low-pass
filtering in the frequency space
I 1/` is the cut-off frequency
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I How to choose an optimal value of ` to produce fastest convergence?
=⇒ open research problem!

I Some results:

A. Novruzi and B. Protas, “A gradient method in a Hilbert space
with an optimized inner product: achieving a Newton-like
convergence”, (see arXiv:1803.02414), 2018.
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Conjugate Gradients

I When using the nonlinear conjugate gradients, we need to evaluate
the “momentum” term (the Polak-Ribière version)

β =

〈
∇H1

ϕ J (ϕ(n)),
(
∇H1

ϕ J (ϕ(n))−∇H1

ϕ J (ϕ(n−1))
)〉
U〈

∇H1

ϕ J (ϕ(n−1)),∇H1

ϕ J (ϕ(n−1))
〉
U

I Since H1
0 (0,T ) ⊂ L2(0,T ), we have a choice between using

I the L2 inner product 〈·, ·〉L2 , or

I the Sobolev H1 inner product 〈·, ·〉H1
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I Suppose we wish to impose the a linear constraint on the control
variable, e.g., fix its mean value∫ T

0
ϕ dt = m, m ∈ R

I If we impose this condition on the initial guess, i.e.,
∫ T

0 ϕ0 dt = m,
then we need to ensure that the gradients have zero mean∫ T

0
∇ϕJ dt = 0

I This property defines a linear subspace

S =

{
f ∈ L2(0,T ) :

∫ T

0
f (t) dt = 0

}
P. Matharu & B. Protas Numerical Optimization of PDEs
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I Since the gradient need not satisfy the constraint, it must be
projected on the subspace defined by this constraint

I The projection operator PS : L2 → S

PS∇ϕJ = ∇H1

ϕ J − α, where α =

∫ T

0
∇ϕJ dt

(the projection is realized by subtracting the mean)

I The Sobolev gradient then must be found in S ∩ H1
0 (0,T ) using the

Riesz theorem with the representer in S

J ′(ϕ;ϕ′) =
〈
PS∇H1

ϕ J , ϕ′
〉
H1

=
〈
∇H1

ϕ J − α,ϕ′
〉
H1

=
〈
∇L2

ϕ J , ϕ′
〉
L2
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I Proceeding as before, we obtain the projected Sobolev gradient
PS∇H1

ϕ J as solution of an elliptic boundary-value problem with a
global constraint

[
Id−`2 d2

dt2

]
∇H1

ϕ J − α = ∇L2

ϕ J on (0,T )

∇H1

ϕ J (0) = ∇H1

ϕ J (T ) = 0∫ T

0
∇H1

ϕ J dt = 0

I The parameter α acts like a “Lagrange multiplier” necessary to
accommodate an additional constraint
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Algorithm 1 Projected Steepest Descent Line-Search (PSDLS) for PDEs

1: ϕ(0) ← ϕ0 (initial guess)
2: n← 0
3: repeat
4: solve the governing system with data ϕ(n) forward in time
5: solve the corresponding adjoint problem backwards in time

6: determine the L2 gradient ∇L2

ϕ J
7: determine the projector PS

ϕ(n)

8: determine the projected Sobolev gradient gradient PS
ϕ(n)
∇H1

ϕ J

9: determine optimal step size τn = argminτ>0 J (ϕ(n) − τ PS
ϕ(n)
∇H1

ϕ J )

10: update ϕ(n+1) = ϕ(n) − τn PS
ϕ(n)

∇J (ϕ(n))

11: n← n + 1

12: until |J (ϕ(n))−J (ϕ(n−1))|
|J (ϕ(n−1))|

< εf

Input:
ϕ0 — initial guess, ετ — tolerance in line search
εf — tolerance in the termination condition

Output: an approximation of the minimizer ϕ̃
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I For the purpose of numerical solution, the heat equation is discretized
I using second-order central/forward finite differences in space

I using second-order Crank-Nicolson scheme in time

I At each time step we need to solve the following linear system
−3 4 −1 · · · 0

− 1
2
h 1 + h − 1

2
h · · · 0

0 − 1
2
h 1 + h − 1

2
h · · · 0

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

0 0 0 − 1
2
h 1 + h − 1

2
h

0 0 0 −3 4 −1




u1,n+1
u2,n+1
u3,n+1

.

.

.
uM−1,n+1
uM,n+1

 =


3 u1,n − u2,n + u3,n + 2∆x(φn + φn+1)

1
2
h u1,n + (1− h)u2,n + 1

2
h u3,n

1
2
h u2,n + (1− h)u3,n + 1

2
h u4,n

.

.

.
1
2
h uM−2,n + (1− h)uM−1,n + 1

2
h uM,n

3 uM,n − uM−1,n + uM−2,n


where
I {x1 = a, x2 = a + ∆x , . . . , xM = b}
I {t1 = 0, t2 = ∆t, . . . , tN = T}
I uj,n = u(xj , tn)
I h = ∆t

∆x2

I The same approach is also used to solve the adjoint problem
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Formulation of the PDE Optimization Problem
Gradients and Adjoint Calculus

Numerical Computations

Algorithm
Discretization of the PDEs
Validation of Gradients: κ-test

I How can we validate the derivation and computation of gradients
∇ϕJ ?

I Compare the Gâteaux differential J ′(ϕ;ϕ′)
I approximated using finite differences, and

I evaluated using the Riesz representation and the gradient ∇ϕJ
I

κ(ε) =
ε−1 [J (ϕ+ εϕ′)− J (ϕ)]〈

∇L2

ϕ J , ϕ′
〉
L2

, ∀ϕ,ϕ′

I Properties of the quantity κ(ε):
I for intermediate ε, κ(ε) ≈ 1 (in fact, κ(ε)→ 1 as ∆x ,∆t → 0)

I |κ(ε)| → ∞ as ε→ 0, due to round-off errors

I |κ(ε)| → ∞ as ε→∞, due to truncation errors in the finite-difference
approximation of J ′(ϕ;ϕ′)
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