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Abstract
Partial correlation vines and the onion method are presented for generating random correlation matrices. As

a special case, a uniform distribution over the set of d× d positive definite correlation matrices obtains.
Byproducts are: (a) For a uniform distribution over the space of d × d correlation matrices, the marginal

distribution of each correlation is Beta(d/2, d/2) on (−1, 1). (b) An identity is obtained for the determinant of
a correlation matrix R via partial correlations in a vine. (c) A formula is obtained for the volume of the set of
d× d positive definite correlation matrices in

(
d
2

)
-dimensional space.
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Key results: R is a d× d correlation matrix
1. Several simple ways to generate a random R that is uniform over set of positive definite d× d correlation

matrices; more generally with density ∝ [det(R)]α−1.
2. Identity: (1− ρ2

12)(1− ρ2
23)(1− ρ2

13;2) for d = 3

det(R) =
d−1∏

i=1

(1− ρ2
i,i+1)×

d−1∏

k=2

d−k∏

j=1

(1− ρ2
j,j+k;j+1...j+k−1).

[partial correlations in the double product]
3. Volume of d× d correlation matrices in 2d(d−1)/2 dimensional space is:





π(d2−1)/4

∏(d−1)/2

m=1
Γ(2m)

2(d−1)2/4 Γd−1( d+1
2 ) , if d is odd;

πd(d−2)/4 2(3d2−4d)/4 Γd( d
2 )

∏(d−2)/2

m=1
Γ(2m)

Γd−1(d)
, if d is even.

Partial correlations
correlations ρi,i+1 for i = 1, . . . , d− 1

the partial correlations ρij;i+1,...j−1 for j − i ≥ 2
For example, ρ12, ρ23, ρ34, ρ13;2, ρ24;3, ρ14;23 for d = 4.

For multivariate normal random variables, partial correlations are conditional correlations. In general, they
are functions of a correlation matrix.

Advantage: the
(
d
2

)
parameters can independently take values in the interval (−1, 1); different vines can be

used.
Disadvantage: the reparametrization is non-unique, and depends on the order of indexing, e.g.: ρ12, ρ13, ρ23;1

or ρ12, ρ23, ρ13;2
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d = 5: 3 different vines + matrix for onion method are shown.
d-vine which is like Markovian dependence c-vine
regular partial correlation vine onion method

#distinct vines increases quickly as d increases,
partial correlations independently in (−1, 1).




1 ρ12 ρ13;2 ρ14;23 ρ15;234

ρ12 1 ρ23 ρ24;3 ρ25;34

ρ31 ρ32 1 ρ34 ρ35;4

ρ41 ρ42 ρ43 1 ρ45

ρ51 ρ52 ρ53 ρ54 1







1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23;1 ρ24;1 ρ25;1

ρ31 ρ32 1 ρ34;12 ρ35;12

ρ41 ρ42 ρ43 1 ρ45;123

ρ51 ρ52 ρ53 ρ54 1







1 ρ12 ρ13;2 ρ14;2 ρ15;24

ρ12 1 ρ23 ρ24 ρ25;4

ρ31 ρ32 1 ρ34;12 ρ35;124

ρ41 ρ42 ρ43 1 ρ45

ρ51 ρ52 ρ53 ρ54 1







1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23 ρ24 ρ25

ρ31 ρ32 1 ρ34 ρ35

ρ41 ρ42 ρ43 1 ρ45

ρ51 ρ52 ρ53 ρ54 1




D-vine for d = 5: specify densities separately for each partial correlation; then density of the correlation
matrix R is

fR(r) = fρ12(r12)fρ23(r23)fρ34(r34)fρ45(r45)
× fρ13;2(r13;2)fρ24;3(r24;3)fρ35;4(r35;4)
× fρ14;23(r14;23)fρ25;34(r25;34)fρ15;234(r15;234)
× Jacobian

Under appropriate choices, this leads to a uniform density.

References for vines
D. Kurowicka, R. Cooke, Uncertainty Analysis with High Dimensional Dependence Modelling, Wiley, 2006.

Vines are a graphical method for modeling multivariate dependencies
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Random correlation matrices [Joe, 2006, JMVA]
Partial correlation approach: distributions separately for ρi,i+1 for i = 1, . . . , d − 1, and ρij;i+1,...j−1 for

j − i ≥ 2.
This leads to a joint distribution of {ρij : 1 ≤ i < j ≤ d}.
More generally, choose distributions separately for partial correlation in a regular vine.

Previous papers : combination of random eigenvalues and random (orthogonal) matrices, or a random T
matrix leading to T ′T , but cannot do distribution theory?

Motivations:

• generation of ellipsoidal clusters to study clustering methods

• efficiency of estimating eq’n methods for multiv probit model

• assess probability that a correlation matrix is a rank correlation matrix.

• prior for correlation matrix in Bayesian statistics?

Main result
With appropriate choices of beta distributions for ρi,i+1 for i = 1, . . . , d − 1, and ρij;i+1,...j−1 for j − i ≥ 2,

can get a joint density for {ρij : 1 ≤ i < j ≤ d} that is ∝ |R|α−1, where α > 0.
More generally, same for partial correlations on a regular vine.

In this case, the joint density is invariant to the order of indexing of variables for the partial correlations
(and to the vine), and each ρij marginally has a Beta(α− 1 + d/2, α− 1 + d/2) distribution on (−1, 1).

Special case with α = 1: uniform density over the set of positive definite correlation matrices.

Anderson (1958, p. 80): partial corr ρj,j+k;j+1,...,j+k−1 (2 ≤ k ≤ d− 1) is

ρj,j+k − r′1(j, k)(R2(j, k))−1r3(j, k)
[
1− r′1(j, k)(R2(j, k))−1r1(j, k)

]1/2[
1− r′3(j, k)(R2(j, k))−1r3(j, k)

]1/2

where

R[j : j + k] =




1 r′1(j, k) ρj,j+k

r1(j, k) R2(j, k) r3(j, k)
ρj+k,j r′3(j, k) 1


 ,

with r′1(j, k) = (ρj,j+1, . . . , ρj,j+k−1), r′3(j, k) = (ρj+k,j+1, . . . , ρj+k,j+k−1), and R2(j, k) consisting of the middle
k − 1 rows / columns. Hence

ρj,j+k = r′1(j, k)(R2(j, k))−1r3(j, k) + ρj,j+k;j+1,...,j+k−1Djk,
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where
D2

jk =
[
1− r′1(j, k)(R2(j, k))−1r1(j, k)

][
1− r′3(j, k)(R2(j, k))−1r3(j, k)

]
.

d = 3 [ρ for rv, r for dummy variable of function]
Consider (ρ12, ρ23, ρ13·2)→ (ρ12, ρ23, ρ13). Since

ρ13·2 =
ρ13 − ρ12ρ23√

(1− ρ2
12)(1− ρ2

23)
,

the Jacobian of the transformation is:

∂r13·2/∂r13 = [(1− r2
12)(1− r2

23)]
−1/2.

Note that

1− r2
13·2 =

1− r2
12 − r2

23 − r2
13 + 2r12r23r13

(1− r2
12)(1− r2

23)
=

det(R)
(1− r2

12)(1− r2
23)

det(R(r12, r23, r23)) = 1− r2
12 − r2

23 − r2
13 + 2r12r23r13

= (1− r2
12)(1− r2

23)(1− r2
13·2) (D1)

Beta(α, α) density on (−1, 1): 1
2 [B(α, α)]−1(1− u2)α−1

or U = 2V − 1, V ∼ Beta(α, α) on (0, 1).
ρ12, ρ23 ∼ Beta(α1, α1),

ρ13·2 ∼ Beta(α2, α2) independently.

fρ12,ρ23,ρ13(r12, r23, r13) ∝ (1− r2
13·2)

α2−1[(1− r2
12)(1− r2

23)]
α1−3/2

If α1 = α2 + 1
2 , then the density is

∝ [det(R)]α2−1 (D2)

This is symmetric in r12, r13, r23, which means the same joint density obtains from ρ12, ρ13 ∼ Beta(α1, α1), ρ23·1 ∼
Beta(α2, α2) etc.

α2 = 1, α1 = 3/2 ⇒ Uniform over set of correlation matrices.

d > 3 : computer proof before math proof
Based on the results for the d = 3 case, conjectured an extension of (D1) as an identity for det(R), and

conjectured the Beta distributions on ρij;i+1,...,j−1 needed to get joint density of (ρij) to be ∝ [det(R)]α−1.
The identity was verified numerically and the univariate margins of the random correlation matrix were also

checked numerically before proving the results for general d.

Results for d > 3.
Thm 1:

det(R) =
d−1∏

i=1

(1− ρ2
i,i+1)×

d−1∏

k=2

d−k∏

j=1

(1− ρ2
j,j+k;j+1...j+k−1).

Thm 4: The determinant |Jd| of the Jacobian for the transform of (ρ12, ρ23, ρ13, ρ34, ρ24, ρ14, ρ45, . . . , ρ1d) to
(ρ12, ρ23, ρ13;2, ρ34, ρ24;3, ρ14;23, ρ45, . . . , ρ1d;2...d−1) is:

[d−1∏

i=1

(1− ρ2
i,i+1)

d−2 ×
d−2∏

k=2

d−k∏

i=1

(1− ρ2
i,i+k;i+1...i+k−1)

d−1−k
]−1/2

.
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Thm 5: If αk = αd−1 + 1
2 (d − 1 − k), k = 1, . . . , d − 1, and ρi,i+k;i+1...i+k−1 is Beta(αk, αk) on (−1, 1) for

1 ≤ i < i + k ≤ d, then the joint density becomes

c−1
d

[
det

{
(rij)1≤i,j≤d

}]αd−1−1
,

where the normalizing constant cd is

2
∑d−1

k=1
(2αd−1−2+d−k)(d−k) ×

d−1∏

k=1

[
B

(
αd−1 + 1

2 (d− 1− k), αd−1 + 1
2 (d− 1− k)

)]d−k
.

If αd−1 = 1 and αk = 1
2 (d + 1− k) for k = 1, . . . , d− 2, leading to uniform joint density for {ρij , i < j}, then the

normalizing constant is

cd = 2
∑d−1

k=1
(d−k)2 ×

d−1∏

k=1

[
B

(
1
2 (d− k + 1), 1

2 (d− k + 1)
)]d−k

= 2
∑d−1

k=1
k2 ×

d−1∏

k=1

[
B

(
1
2 (k + 1), 1

2 (k + 1)
)]k

,

and the recursion is
cd = cd−1 × 2(d−1)2 × [

B(1
2d, 1

2d)
]d−1

.

Byproduct: normalizing constant is the volume of the set of d-dim positive definite correlation matrices in(
d
2

)
-dim space

d cd cd/2d(d−1)/2

2 2
3 4.934802 = π2 · (1/2) 0.617
4 11.69731 = π2 · (32/27) 0.183
5 22.53256 = π6 · (3/128) 0.022
6 31.11388 = π6 · (8192/253125) 0.00095
7 27.85823 = π12 · (n7/d7) 0.000013
8 14.87740 = π12 · (n8/d8) 5.5× 10−8

9 4.411544 = π20 · (n9/d9) 6.4× 10−11

10 0.682269 = π20 · (n10/d10) 1.9× 10−14

cd/2d(d−1)/2 decreases quickly as d increases.

Random correlation matrix based on vines [Lewandowski, Kurowicka and Joe, 2007]
Extensions of Theorems 1,4,5 in Joe (2006, JMVA).
V = (e) is a partial correlation vine;

for example, V = (12, 13, 14, 23; 1, 24; 1, 34; 12) with
depth=(order−1)=(#conditioned variables): (0, 0, 0, 1, 1, 2).
For a vine based on d variables, there are d− 1 edges with depth ke = 0, d− 2 edges with depth ke = 1, . . ., and
1 edge with depth ke = d− 2.

Let R be a (random) correlation matrix based on distributions for {ρe : e ∈ V }.

T1: det(R) =
∏

e∈V (1− ρ2
e) [Kurowicka and Cooke, 2006, LAA] (product over edges of the vine)
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T4: Jacobian of transform from correlations {ρij} to partial correlations {ρe} is

{∏

e∈V

(1− ρ2
e)

d−2−ke

}−1/2

T5. Let ρe ∼ Beta(αke+1, αke+1) on (−1, 1) independently, where αke+1 = αd−1 + 1
2 (d − 2 − ke). Get

uniform over space of correlation matrices if αd−1 = 1, and then marginal distribution for each correlation is
Beta(d/2, d/2).

The C-vine algorithm for generating correlation matrices with density ∝ [det(r)]η−1, η > 1.

1. Initialization β = η + (d− 1)/2.

2. Loop for k = 1, . . . , d− 1.

a) β ← β − 1
2 ;

b) Loop for i = k + 1, . . . , d;

i) generate partial corr pk,i;1,...,k−1 ∼ Beta(β, β) on (−1, 1);
ii) use recursive formula on pk,i;1,...,k−1 to get rk,i = ri,k [no matrix inversions];

3. Return r, a d× d correlation matrix.

Onion method for random correlation matrices
[Ghosh & Henderson, 2003; extended LKJ 2007]

Result 1. Consider the spherical density c(1−w′w)β−1 for w ∈ <m, w′w ≤ 1, where c = Γ(β+m/2)π−m/2/Γ(m/2).
If W has this density, then W = V U where V ∼ Beta(m/2, β) and U is uniform on the surface of the m-
dimensional hypersphere. If Q = AW, where A is an m×m non-singular matrix, then the density of Q is

c[det(AA′)]−1/2(1− q′[AA′]−1q)β−1, q 3 q′[A′A]−1q ≤ 1.

Result 2. Partition rm+1 =
(

rm q
q′ 1

)
where rm is an m × m correlation matrix and q is a m-vector of

correlations such that rm+1 is an (m + 1)× (m + 1) correlation matrix. Then

det(rm+1) = det(rm) · (1− q′r−1
m q

)
.

We use upper case letter of rm,q, rm+1 to denote random vectors and matrices. Let β, βm > 0. If Rm has
density ∝ [det(rm)]βm−1 and
Q given Rm = rm has density ∝ [det(rm)]−1/2(1− q′r−1

m q)β−1,
then the density of Rm+1 is ∝ [det(rm)]βm−3/2(1− q′r−1

m q)β−1.
If βm = β + 1

2 , then the density of Rm+1 is ∝ [det(rm+1)]β−1.

Algorithm for the extended onion method to get random correlation matrices in dimension d with density
∝ [det(r)]η−1, η > 0.

1. Initialization. β = η + (d− 2)/2, r12 ← 2u− 1, where u ∼ Beta(β, β), r←
(

1 r12

r12 1

)

2. Loop for m = 2, . . . , d− 1.

6



(a) β ← β − 1
2 ;

(b) generate y ∼ Beta(m/2, β), generate u = (u1, . . . , um)′ uniform on the surface of m-dimensional
hypersphere;

(c) w← y1/2u, obtain Cholesky decomp AA′ = r, set q← Aw;

(d) r←
(

r q
q′ 1

)
.

3. Return r, a d× d correlation matrix.

Why is this called the onion method ???

By the symmetry, each ρjk = Rjk in the correlation matrix has a marginal Beta(η + [d− 2]/2, η + [d− 2]/2)
density on (−1, 1). For the special case of η = 1 leading to uniform over the space of correlation matrices, the
marginal density of each Rjk is Beta(d/2, d/2) on (−1, 1).

Computational time:
In C, onion method with incremental Cholesky is fastest, and C-vine is faster than onion method without incre-
mental Cholesky.
In Matlab, C-vine (which avoids matrix inversions) is fastest.
D-vine is slower because of matrix inversions.

Other comments:
If partial correlations in a particular vine are needed, then use the appropriate vine.
Choosing the vine and the densities for the partial corr in this vine, one could get random correlation matrices
that have larger correlations at a few particular pairs.
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