
Weighted Least Squares

∗ The standard linear model assumes that Var(εi) = σ2 for

i = 1, . . . , n.

∗ As we have seen, however, there are instances where

Var(Y |X = xi) = Var(εi) =
σ2

wi
.

∗ Here w1, . . . , wn are known positive constants.

∗ Weighted least squares is an estimation technique which

weights the observations proportional to the reciprocal of

the error variance for that observation and so overcomes the

issue of non-constant variance.
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Weighted Least Squares in Simple Regression

∗ Suppose that we have the following model

Yi = β0 + β1Xi + εi i = 1, . . . , n

where εi ∼ N(0, σ2/wi) for known constants w1, . . . , wn.

∗ The weighted least squares estimates of β0 and β1 minimize

the quantity

Sw(β0, β1) =
n∑
i=1

wi(yi − β0 − β1xi)
2

∗ Note that in this weighted sum of squares, the weights are

inversely proportional to the corresponding variances; points

with low variance will be given higher weights and points with

higher variance are given lower weights.
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Weighted Least Squares in Simple Regression

∗ The weighted least squares estimates are then given as

β̂0 = yw − β̂1xw

β̂1 =

∑
wi(xi − xw)(yi − yw)∑

wi(xi − xw)2

where xw and yw are the weighted means

xw =

∑
wixi∑
wi

yw =

∑
wiyi∑
wi

.

∗ Some algebra shows that the weighted least squares esti-

mates are still unbiased.
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Weighted Least Squares in Simple Regression

∗ Furthermore we can find their variances

Var(β̂1) =
σ2∑

wi(xi − xw)2

Var(β̂0) =

 1∑
wi

+
x2
w∑

wi(xi − xw)2

σ2

∗ Since the estimates can be written in terms of normal random

variables, the sampling distributions are still normal.

∗ The weighted error mean square Sw(β̂0, β̂1)/(n−2) also gives

us an unbiased estimator of σ2 so we can derive t tests for

the parameters etc.
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General Weighted Least Squares Solution

∗ Let W be a diagonal matrix with diagonal elements equal to

w1, . . . , wn.

∗ The the Weighted Residual Sum of Squares is defined by

Sw(β) =
n∑
i=1

wi(yi − xtiβ)2 = (Y −Xβ)tW (Y −Xβ).

∗ Weighted least squares finds estimates of β by minimizing

the weighted sum of squares.

∗ The general solution to this is

β̂ = (XtWX)−1XtWY .
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Weighted Least Squares as a Transformation

∗ Recall from the previous chapter the model

yi = β0 + β1xi + εi

where Var(εi) = x2
i σ

2.

∗ We can transform this into a regular least squares problem

by taking

y′i =
yi
xi

x′i =
1

xi
ε′i =

εi
xi
.

∗ Then the model is

y′i = β1 + β0x
′
i + ε′i

where Var(ε′i) = σ2.
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Weighted Least Squares as a Transformation

∗ The residual sum of squares for the transformed model is

S1(β0, β1) =
n∑
i=1

(y′i − β1 − β0x
′
i)

2

=
n∑
i=1

(
yi
xi
− β1 − β0

1

xi

)2

=
n∑
i=1

(
1

x2
i

)
(yi − β0 − β1xi)

2

∗ This is the weighted residual sum of squares with wi = 1/x2
i .

∗ Hence the weighted least squares solution is the same as the

regular least squares solution of the transformed model.
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Weighted Least Squares as a Transformation

∗ In general suppose we have the linear model

Y = Xβ + ε

where Var(ε) = W−1σ2.

∗ Let W 1/2 be a diagonal matrix with diagonal entries equal

to
√
wi.

∗ Then we have Var(W 1/2ε) = σ2In.
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Weighted Least Squares as a Transformation

∗ Hence we consider the transformation

Y ′ = W 1/2Y X ′ = W 1/2X ε′ = W 1/2ε.

∗ This gives rise to the usual least squares model

Y ′ = X ′β + ε′

∗ Using the results from regular least squares we then get the

solution

β̂ =
((
X ′
)t
X ′
)−1 (

X ′
)t
Y ′ =

(
XtWX

)−1
XtWY .

∗ Hence this is the weighted least squares solution.
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Advantages of Weighted Least Squares

∗ In the transformed model, the interpretation of the coeffi-

cient estimates can be difficult. In weighted least squares

the interpretation remains the same as before.

∗ In the transformed model, there will often not be an inter-

cept which means that the F-tests and R-squared values are

quite different. In weighted least squares we generally in-

clude an intercept retaining the usual interpretation of these

quantities.

∗ Weighted least squares gives us an easy way to remove one

observation from a model by setting its weight equal to 0.

∗ We can also downweight outlier or influential points to reduce

their impact on the overall model.
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The Weights

∗ To apply weighted least squares, we need to know the weights

w1, . . . , wn.

∗ There are some instances where this is true.

∗ We may have a probabilistic model for Var(Y | X = xi) in

which case we would use this model to find the wi.

∗ For example, with Poisson data we may use wi = 1/xi if we

expect an increasing relationship between Var(Y | X = x)

and x.
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The Weights

∗ Another common case is where each observation is not a

single measure but an average of ni actual measures and the

original measures each have variance σ2.

∗ In that case, standard results tell us that

Var (εi) = Var
(
Y i |X = xi

)
=

σ2

ni

∗ Thus we would use weighted least squares with weights wi = ni.

∗ This situation often occurs in cluster surveys.
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Unknown Weights

∗ In many real-life situations, the weights are not known apriori.

∗ In such cases we need to estimate the weights in order to

use weighted least squares.

∗ One way to do this is possible when there are multiple re-

peated observations at each value of the covariate vector.

∗ That is often possible in designed experiments in which a

number of replicates will be observed for each set value of

the covariate vector.

∗ We can then estimate the variance of Y for each fixed co-

variate vector and use this to estimate the weights.
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Pure Error

∗ Suppose that we have ni observations at x = xj, j = 1, . . . , k.

∗ Then a fitted model could be

yij = β0 + β1xj + εij i = 1, . . . , nj; j = 1, . . . , k.

∗ The (i, j)th residual can then be written as

eij = yij − ŷij = (yij − yj) + (yj − ŷij).

∗ The first term is referred to as the pure error.
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Pure Error

∗ Note that the pure error term does not depend on the mean

model at all.

∗ We can use the pure error mean squares to estimate the

variance at each value of x.

s2
j =

1

nj − 1

nj∑
i=1

(yij − yj)2 j = 1, . . . , k.

∗ Then we can use the weights wij = 1/s2
j (i = 1, . . . , nj) as

the weights in a weighted least squares regression model.
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Unknown Weights

∗ For observational studies, however, this is generally not pos-
sible since we will not have repeated measures at each value
of the covariate(s).

∗ This is particularly true when there are multiple covariates.

∗ Sometimes, however, we may be willing to assume that the
variance of the observations is the same within each level
of some categorical variable but possibly different between
levels.

∗ In that case we can estimate the weights assigned to obser-
vations with a given level by an estimate of the variance for
that level of the categorical variable.

∗ This leads to a two-stage method of estimation.
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Two-Stage Estimation

∗ In the two-stage estimation procedure we first fit a regular

least squares regression to the data.

∗ If there is some evidence of non-homogenous variance then

we examine plots of the residuals against a categorical vari-

able which we suspect is the culprit for this problem.

∗ Note that we do still need to have some apriori knowledge of

a categorical variable likely to affect variance.

∗ This categorical variable may, or may not, be included in the

mean model.
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Two-Stage Estimation

∗ Let Z be the categorical variable and assume that there are

nj observations with Z = j (j = 1, . . . , k).

∗ If the error variability does vary with the levels of this cate-

gorical variable then we can use

σ̂2
j =

1

nj − 1

∑
i:zi=j

r2
i

as an estimate of the variability when Z = j.

∗ Note Your book uses the raw residuals ei instead of the

studentized residuals ri but that does not work well.
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Two-Stage Estimation

∗ If we now assume that σ2
j = cjσ

2 we can estimate the cj by

ĉj =
σ̂2
j

σ̂2
=

1

nj − 1

∑
i:zi=j

r2
i

1

n

n∑
i=1

r2
i

∗ We could then use the reciprocals of these estimates as the

weights in a weighted least squares regression in the second

stage.

∗ Approximate inference about the parameters can then be

made using the results of the weighted least squares model.
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Problems with Two-Stage Estimation

∗ The method described above is not universally accepted and

a number of criticisms have been raised.

∗ One problem with this approach is that different datasets

would result in different estimated weights and this variability

is not properly taken into account in the inference.

∗ Indeed the authors acknowledge that the true sampling dis-

tributions are unlikely to be Student-t distributions and are

unknown so inference may be suspect.

∗ Another issue is that it is not clear how to proceed if no

categorical variable explaining the variance heterogeneity can

be found.
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