Weighted Least Squares

*k

The standard linear model assumes that Var(g;) = o2 for

1=1,...,n.

As we have seen, however, there are instances where

2

Var(Y|X:a:Z) = Val’(&‘i) = —.
W;

Here wq,...,wy are known positive constants.

Weighted least squares is an estimation technique which
weights the observations proportional to the reciprocal of
the error variance for that observation and so overcomes the
issue of non-constant variance.
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Weighted Least Squares in Simple Regression

* Suppose that we have the following model

Y;; — BO_I_/BlXi_I_gi i:]-)"‘an

where g; ~ N(0, 02/w;) for known constants w1, ..., wn.

* The weighted least squares estimates of 8y and 81 minimize
the quantity

n

Sw(Bo,81) = Y w;i(y; — Bo — Brzi)?

1=1

* Note that in this weighted sum of squares, the weights are
inversely proportional to the corresponding variances,; points
with low variance will be given higher weights and points with
higher variance are given lower weights.
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Weighted Least Squares in Simple Regression

* The weighted least squares estimates are then given as

-~ ~

BO = Yy — Blf’w
3, — S wi(x; — Tw) (Yi — Yuw)
! > w;(x; — Tw)?

where z,, and 7y, are the weighted means

2w 2wy
> W;

> W;

* Some algebra shows that the weighted least squares esti-
mates are still unbiased.
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Weighted Least Squares in Simple Regression

* Furthermore we can find their variances
2

N wi(x; — Tw)?

Var(B1) =
1 T2
> w; T N wi(w; — Tw)?

* Since the estimates can be written in terms of normal random
variables, the sampling distributions are still normal.

2

Var(Bo)

* The weighted error mean square Sy (8o, 51)/(n—2) also gives
us an unbiased estimator of o2 so we can derive t tests for
the parameters etc.
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General Weighted Least Squares Solution

* Let W be a diagonal matrix with diagonal elements equal to

Wlyeo.oyWn.

* The the Weighted Residual Sum of Squares is defined by

n
Sw(B) = Y wi(y; —=ip)® = (Y - XB)'W(Y — XB).
i=1
* Weighted least squares finds estimates of 3 by minimizing
the weighted sum of squares.

* The general solution to this is

8 = (XWX)"1xtwy.



Weighted Least Squares as a Transformation

* Recall from the previous chapter the model

yi = Bo+ Birx; + ¢

where Var(g;) = z?0?.

* We can transform this into a regular least squares problem
by taking

r _Yg / 1 r &4
Y, — — L, — — €, = —.

* Then the model is

yi = B1+Boi+e

where Var(el) = o2,
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Weighted Least Squares as a Transformation

* The residual sum of squares for the transformed model is

S1(Bo,81) = Y (yi— B1 — Boxh)?
i=1

. Zn: Vi g g 1\°

= — b1~ Po_

= "l (y; — Bo — B1z;)
i=1 \Zj

% This is the weighted residual sum of squares with w; = 1/z2.

* Hence the weighted least squares solution is the same as the
regular least squares solution of the transformed model.
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Weighted Least Squares as a Transformation

* In general suppose we have the linear model

Y = X(3+-¢

where Var(e) = W—152.

* Let W1/2 pe a diagonal matrix with diagonal entries equal

to A/ Wi .

* Then we have Var(W1l/2¢) = 52J,.
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Weighted Least Squares as a Transformation

* Hence we consider the transformation

Y = Wl2y X' = wl/2x ¢ = wl/2.

* This gives rise to the usual least squares model

Y/ — X/IB_I_el

* Using the results from regular least squares we then get the
solution

B = ((X’>tX’>_1 (x)'Y = (X'WX) X'Wy.

* Hence this is the weighted least squares solution.
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Advantages of Weighted Least Squares

* In the transformed model, the interpretation of the coeffi-
cient estimates can be difficult. In weighted least squares
the interpretation remains the same as before.

* In the transformed model, there will often not be an inter-
cept which means that the F-tests and R-squared values are
quite different. In weighted least squares we generally in-
clude an intercept retaining the usual interpretation of these
quantities.

* Weighted least squares gives us an easy way to remove one
observation from a model by setting its weight equal to O.

* We can also downweight outlier or influential points to reduce
their impact on the overall model.
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T he Weights

X

To apply weighted least squares, we need to know the weights

Wlyeo.oyWn.
There are some instances where this is true.

We may have a probabilistic model for Var(Y | X = x;) in
which case we would use this model to find the w;.

For example, with Poisson data we may use w; = 1/x; if we
expect an increasing relationship between Var(Y | X = )
and zx.
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The Weights
* Another common case is where each observation is not a

single measure but an average of n; actual measures and the

original measures each have variance o2.

* In that case, standard results tell us that
Var (g;) = Var (72' | X :wi) -
n;

* Thus we would use weighted least squares with weights w;, = n;.

* T his situation often occurs in cluster surveys.
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Unknown Weights

*x

*

In many real-life situations, the weights are not known apriori.

In such cases we need to estimate the weights in order to
use weighted least squares.

One way to do this is possible when there are multiple re-
peated observations at each value of the covariate vector.

That is often possible in designed experiments in which a
number of replicates will be observed for each set value of
the covariate vector.

We can then estimate the variance of Y for each fixed co-
variate vector and use this to estimate the weights.
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Pure Error
* Suppose that we have n; observations at x =z, 7 =1,...,k.
* Then a fitted model could be

vi; = Bo+ Birj+ € i=1,...,n45 J=1,... k.
* The (i,7)™ residual can then be written as
eij = Yij —Uij = Wij — ;) + (¥ — ij)-

* The first term is referred to as the pure error.
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Pure Error

* Note that the pure error term does not depend on the mean
model at all.

* VWe can use the pure error mean squares to estimate the
variance at each value of =x.

1 U
2= 1 Sy-u)?  i=l..k
n;y— 1,5
* Then we can use the weights w;; = 1/5]2- (i=1,...,n) as

the weights in a weighted least squares regression model.
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Unknown Weights

*x

For observational studies, however, this is generally not pos-
Sible since we will not have repeated measures at each value
of the covariate(s).

This is particularly true when there are multiple covariates.

Sometimes, however, we may be willing to assume that the
variance of the observations is the same within each level
of some categorical variable but possibly different between
levels.

In that case we can estimate the weights assigned to obser-
vations with a given level by an estimate of the variance for
that level of the categorical variable.

This leads to a two-stage method of estimation.
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Two-Stage Estimation

* In the two-stage estimation procedure we first fit a regular
least squares regression to the data.

* If there is some evidence of non-homogenous variance then
we examine plots of the residuals against a categorical vari-
able which we suspect is the culprit for this problem.

* Note that we do still need to have some apriori knowledge of
a categorical variable likely to affect variance.

* This categorical variable may, or may not, be included in the
mean model.
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Two-Stage Estimation

* Let Z be the categorical variable and assume that there are
n; observations with Z =3 (j = 1,...,k).

* If the error variability does vary with the levels of this cate-
gorical variable then we can use

~2 1 2
o5 = g T3
J n; — 1. :

’L.ZZ'—

)

as an estimate of the variability when Z = 3.

* Note Your book uses the raw residuals e; instead of the
studentized residuals r; but that does not work well.
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Two-Stage Estimation

* If we now assume that aj2 = c,;o02 we can estimate the ¢; by

1 2
rs
52 n; —1. Z !

5. — i J 1.2;=

J 5.2 1 n 5

— D7

mn L

* We could then use the reciprocals of these estimates as the
weights in a weighted least squares regression in the second
stage.

* Approximate inference about the parameters can then be
made using the results of the weighted least squares model.
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Problems with Two-Stage Estimation

* The method described above is not universally accepted and
a number of criticisms have been raised.

* One problem with this approach is that different datasets
would result in different estimated weights and this variability
IS not properly taken into account in the inference.

* Indeed the authors acknowledge that the true sampling dis-
tributions are unlikely to be Student-t distributions and are
unknown so inference may be suspect.

* Another issue is that it is not clear how to proceed if no
categorical variable explaining the variance heterogeneity can
be found.
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