Correction to Example done today in class

Sorry I made an error starting the example in class today and that snowballed so here is the corrected example.

Setup: We want to generate $X \sim \operatorname{Gamma}(\alpha, \beta)(\alpha \geqslant 1)$ using accept-reject sampling from an exponential candidate density.

Let λ be the rate parameter of the candidate density. Then the ratio of densities is

$$
\begin{aligned}
\frac{f(x)}{g(x)} & =\frac{1}{\Gamma(\alpha) \beta^{\alpha} \lambda} x^{\alpha-1} \exp \left\{-\left(\frac{1}{\beta}-\lambda\right) x\right\} \\
& \propto x^{\alpha-1} \exp \left\{-\left(\frac{1}{\beta}-\lambda\right) x\right\}
\end{aligned}
$$

At this point let us note that the ratio is not always bounded. If $\lambda>1 / \beta$ then the exponent will be $e^{c x}$ for some positive c which will grow without bound. Also if $\lambda=1 / \beta$ then the exponent is 1 but $x^{\alpha-1}$ grows without bound so the ratio is still unbounded. Therefore we require $\lambda<1 / \beta$ for the algorithm to work.
Assuming that $\lambda<1 / \beta$, to maximize the ratio of densities we first take logs and find the value of x (call it x_{0}) that maximizes the log ratio.

$$
\begin{array}{rlrl}
& & \log \frac{f(x)}{g(x)} & =K+(\alpha-1) \log x-\left(\frac{1}{\beta}-\lambda\right) x \\
\Rightarrow & \frac{d}{d x} \log \frac{f(x)}{g(x)} & =\frac{\alpha-1}{x}-\frac{1}{\beta}-\lambda \\
\Rightarrow & & 0 & =\frac{\alpha-1}{x_{0}}-\left(\frac{1}{\beta}-\lambda\right) \\
\Rightarrow & & x_{0} & =\frac{\alpha-1}{\frac{1}{\beta}-\lambda}=\frac{(\alpha-1) \beta}{1-\lambda \beta}
\end{array}
$$

Now we can plug this into the ratio of densities to find the maximum as a function of λ

$$
\begin{aligned}
M(\lambda)=\frac{f\left(x_{0}\right)}{g\left(x_{0}\right)} & =\frac{1}{\Gamma(\alpha) \beta^{\alpha} \lambda} x_{0}^{\alpha-1} \exp \left\{-\left(\frac{1}{\beta}-\lambda\right) x_{0}\right\} \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha} \lambda}\left(\frac{(\alpha-1) \beta}{1-\lambda \beta}\right)^{\alpha-1} \mathrm{e}^{1-\alpha} \\
& =\frac{1}{\Gamma(\alpha) \lambda \beta}\left(\frac{\alpha-1}{1-\lambda \beta}\right)^{\alpha-1} \mathrm{e}^{1-\alpha} \\
& \propto \frac{1}{\lambda} \times \frac{1}{(1-\lambda \beta)^{\alpha-1}}=h(\lambda)
\end{aligned}
$$

Next we will find the value of λ (lets call it $\hat{\lambda}$) which minimizes the function $h(\lambda)$ and hence
minimizes $M(\lambda)$.

$$
\left.\begin{array}{rlrl}
& & \log h(\lambda) & =-\log \lambda-(\alpha-1) \log (1-\lambda \beta) \\
& \Rightarrow & \frac{d}{d \lambda} \log h(\lambda) & =-\frac{1}{\lambda}+\frac{(\alpha-1) \beta}{1-\lambda \beta} \\
& \Rightarrow & 0 & =-\frac{1}{\hat{\lambda}}+\frac{(\alpha-1) \beta}{1-\hat{\lambda} \beta} \\
& \Rightarrow & \frac{1}{\hat{\lambda}} & =\frac{(\alpha-1) \beta}{1-\hat{\lambda} \beta} \\
& \Rightarrow & 1-\hat{\lambda} \beta & =\hat{\lambda}(\alpha-1) \beta \\
& \Rightarrow & 1-\hat{\lambda} \beta & =\hat{\lambda} \alpha \beta-\hat{\lambda} \beta \\
& \Rightarrow & & \hat{\lambda}
\end{array}\right)=\frac{1}{\alpha \beta}
$$

We note that the mean of the target density is $\alpha \beta$ and so this optimal choice of λ says we should use the exponential with the same mean as the target in this example. The actual bound for this choice of λ is

$$
\begin{aligned}
M(\hat{\lambda}) & =\frac{1}{\Gamma(\alpha) \hat{\lambda} \beta}\left(\frac{\alpha-1}{1-\hat{\lambda} \beta}\right)^{\alpha-1} \mathrm{e}^{1-\alpha} \\
& =\frac{1}{\Gamma(\alpha) \frac{1}{\alpha}}\left(\frac{\alpha-1}{1-\frac{1}{\alpha}}\right)^{\alpha-1} \mathrm{e}^{1-\alpha} \\
& =\frac{\alpha}{\Gamma(\alpha)}\left(\frac{\alpha(\alpha-1)}{\alpha-1}\right)^{\alpha-1} \mathrm{e}^{1-\alpha} \\
& =\frac{\alpha^{\alpha}}{\Gamma(\alpha)} \mathrm{e}^{1-\alpha}
\end{aligned}
$$

Hence we can code this using the code in the file Jan31.R.

