Generating Random Variates

X

*

Much of this course will deal with the idea of simulation.

This requires the ability to generate observations from a spe-
cific distribution.

Sometimes we can generate random numbers by conducting
a random experiment (e.g. rolling a die, tossing a coin etc.)

This is usually quite time-consuming and available only for a
very small number of distributions.

Some physical phenomena are inherently random so observ-
ing them can produce random variates. See, for example
http://www.random.org which uses random atmospheric noise.

An issue with these methods, however, is that the sequence
IS generally not reproducible.

2-1

http://www.random.org

Computer Generation of Random Variates

* Our aim is to use a computer to produce a sequence of
independent random numbers.

* Such sequences should be of arbitrary length and be repro-
ducible.

* We must also be able to specify the exact distribution from
which the random variates are generated.

* In fact we only need to be able to generate random observa-
tions from a Uniform(0, 1) distribution.

* Clever use of these random uniforms can produce sequences
from any arbitrary distribution.

2-2

Pseudo-random Numbers

*x

Computers are deterministic machines so can never produce
random numbers!

Instead we will try to generate pseudo-random numbers.

Pseudo-random numbers are generated from an initial state
and a deterministic function.

Even though they come from a deterministic sequence, the
resulting observations should behave like a sample of random
Unif(0, 1) observations.

There are a number of tests that can be applied to the output
of a random generator to ensure this is the case.

2-3

Uniform Pseudo-random Generators

* Most uniform random generators actually generate integers

in the range O, ..., M — 1 where M is a very large number (e.g.
232)_

* Dividing these numbers by M gives values in [0,1).

* Eventually the state of the random number generator will
return to the initial (or some other) state at which point the
sequence of numbers will repeat.

Definition 1

T he period of a sequence of numbers is defined to be the smallest
integer T such that x;, 7 = x; for every i > Iy > 1. The value T
is called the initial sequence length.

2-4

Linear Congruential Generators

Definition 2
A linear congruential generator on {0,1,...,M — 1} is a sequence
of integers defined by

;41 = (axy+b) mod M

* Any such generator can have period of at most M although
it could be smaller.

* Choosing a and b appropriately can get the period very close
to M.

* All such generators always generate pairs (x¢, x44-1) which lie
on parallel lines although good choices of a and b can ensure
that the number of lines is very large.

2-5

Shift Generators

* In a computer all integers are stored in a binary representa-

tion. That is by the ordered k-tuple (eg,eq,...,ex_1) Where
k-1
L = Z 62'22.
i=0

* Theoretically, for a random number on O, ...,2’“— 1, the com-
ponents of this k-tuple are independent.

* This is the basis behind shift generators.

Definition 3

For a given k x kK matrix I’ whose entries are all either O or 1, the
associated shift register generator is

xy41 = Taxy mod 2

where x; and x; 1 are binary representations of the correspond-
ing numbers.

2-6

Combination Generators

*k

Most modern generators use two or more parallel generators
and return a linear combination of the results modulo the
largest integer representable.

By combining generators in this way the period of the final
sequence can be close to the product of the sequences of the
individual generators.

One such generator is George Marsaglia’'s KISS (Keep It Sim-
ple, Stupid) generator which uses one linear congruential gen-
erator and two shift register generators, returning their sum
modulo 232,

The resulting sequence has period of about 295,

No test of uniformity or randomness has yet been found that
the sequence from this generator does not pass!
2-7

T he Mersenne-Twister Generator.

%

The current state of the art generator is generally believed
to be the Mersenne-Twister Generator.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister:
A 623-dimensionally equidistributed uniform pseudo-random
number generator, ACM Transactions on Modeling and Com-
puter Simulation, 8, 3—30.

The state of this generator is a vector of 626 integers, the
first two of which refer to positions in the remaining vector
of length 624.

The algorithm is rather involved but it results in a generator
with period of 219937 _ 11

This is the default generator in R.

R does, however, have a number of other generators and also
allows for a user defined generator to be supplied.

2-8

Non-uniform Random Number Generation

X

In general we want observations from a distribution other
than the uniform (0, 1) distribution.

All current pseudo-random number generators, however, gen-
erate “uniform’” random variates.

In what follows I will assume that we are using a good gen-
erator so we can treat the observations from that generator
as if they are actually distributed as Uniform(0,1) random
variates.

We will look at various methods to transform these observa-
tions into ones that have a specified distribution.

The function runif in R will generate uniform random num-
bers.

2-9

The Probability Integral Transform

Definition 4

Suppose that X is a random variable with cumulative distribution
function F'. Define the inverse of F' to be

Flw) = inf{x : F(x) > u}

T heorem 1

Suppose that X is a random variable with cumulative distri-

bution function F whose inverse F—1 is defined as above. If
U ~ uniform(0,1) then

F i) £ x.

2-10

The Inverse Method to Generate Observations

X

The probability integral transform gives us a general way of
generating observations from any distribution for which we
have a cdf.

If the cdf F' is strictly continuous then the inverse cdf exists
and is a function.

In that case we simply need to find the inverse cdf F-1
We then generate Us,...,Un 24 uniform(0,1) and define
X, = F YU i=1,....n

The resulting sample z1,...,zn, Will be a sample from the
required distribution.

2-11

Generating Discrete Random Variables

*x

Suppose we wish to generate observations from the discrete
distribution with possible values z1 < zo < .-+ < xp with
probability mass function

P(Xzazz) — DP; ’izl,...,k

The cdf is defined by
;
F(z;) = P(X<z;) = >
i=1

This is not a continuous function but from the Definition 4
we see that F1(u) = z; <— F(z;_1) < u < F(x;)

Hence we generate U ~ uniform(0, 1) and set the observation
equal to x; which satisfies

F(z;—1) < U < F(x;)

2-12

Generating Discrete Random Variables

k

This algorithm requires very little computation but does re-
quire a number of comparisons.

Generally one compares U with the sequence of cdf values
F(x1),F(x3),...,F(x;) until you find a value x; such that
F(z;)) > U.

This can be quite time consuming.

A better method is to first find a central value of the distri-
bution, such as the median.

Then if U > 0.5 start at the median and work upwards until
you find a value z; such that F(z;) > U.

If U < 0.5 then start at the median and work downwards until
you find a value x;_1 such that F(x;_1) < U and return z;.

2-13

Other Methods

* For many continuous distributions, the cdf does not exist in
closed form. Hence it is often not possible to apply the in-
verse method.

* For many common distributions special methods have been
proposed based on transformations of random variables.

Theorem 2 (Box—Muller Algorithm)
Suppose that Uy and U, are two independent Uniform(0,1) ran-
dom variables and define

Y1 = y/-2logUisin(2nUp) and Y, = \/—2logU; cos(27Us)

Then Y1 and Y> are independent standard normal random vari-
ables.

2-14

Chi-Squared Random variables

* If we can generate standard normal random variables then
we can generate chi-squared random variables using the fol-
lowing theorems.

Theorem 3
Suppose that Z ~ Normal(0,1) then Z? ~ x%.

T heorem 4

If X1 ~ X3 and X5 ~ x2 and X1 and X, are independent then
X1+ Xo ~ X§+q

2-15

Student’s t and Snedecor’s F' Distributions

Theorem 5
Suppose that Z is a standard normal random variable and X ~ Xz%
and that Z and X are independent then

T = % ¢
— nJ p
X/p

Theorem 6
Suppose that X ~ X;Qy Y ~ x§ and X and Y are independent
then

X
FZﬂNFp,q

Y/q

2-16

Random Variate Generation in R

* In R there are inbuilt functions to generate observations from
most “named” distribution

* T herandom seed is stored in a special variable called .Random.seed
whose exact form depends on the uniform random number
generator being used.

* Generally you should not access this variable directly but use
the function set.seed to set the seed. This function takes a
single integer argument.

* If a random number generating function is called and .Random.seed
does not exist it is created using the current system time.

* Each time a random observation is created the value of
.Random.seed iS updated.

2-17

Random Number Generating Functions in R

Distribution Function Parameter(s)

Beta rbeta shapel («), shape2 ()
Binomial rbinom size (n), prob ()
Cauchy rcauchy location, scale
Chi-squared rchisq df (degrees of freedom)
Exponential rexp rate ()

F rf df1 (numerator df), df2 (denominator df)
Gamma rgamma shape (a), rate ()
Geometric rgeom prob (0)

Normal rnorm mean (u), sd (o)

Poisson rpois lambda ()

Student’'st rt df (degrees of freedom)
Uniform runif min, max

2-18

Finite Mixture Distributions

Definition 5
Suppose that f1, fo, ..., fi. are probability distributions and that
p1,-..,pE are positive numbers such that > p; = 1. Then

k
fx) =) ppfr(x)

J=1
is a valid probability distribution and is called a finite mixture
distribution

* Suppose we can generate from observations from all of the

J1, f2o o0 SR
* To generate from the mixture distribution we first generate
the latent variable z with discrete pmf given by

P(Z=3j) = p, i=1,... k.
Having generated z we then generate X ~ f,(x).

2-19

Accept-Reject Methods

*x

General technique which can be used for most continuous
distributions.

Let f be the pdf of interest (called the target density) and
suppose that f is difficult to sample from.

Instead of sampling from f, we shall sample from another
density g (called the candidate density) which is easier to
sample from.

We then decide whether or not to accept the observation
sampled from g as coming from f or to reject it and start
over.

How we make this decision will ensure that the resulting set
of accepted observations do form a random sample from f.

2-20

Motivating Example

* Suppose that f is the uniform distribution on the unit circle

O<z?+y°<1
otherwise

o
flz,y) = {o

* It is not trivial to sample from f but it is easy to sample from

—l<xrx<l, —1<y<1
0 otherwise

D=

g(z,y) = {

* If we generate pairs (z1,y1), (x2,y2),...,(zn,yyn) from g and
accept only those points with =2 + y? < 1 we will generate a
sample from f.

* This is a special case of the accept-reject algorithm.

2-21

The Candidate Density

* The candidate density ¢ must be easy to sample from!

* The supports of f must be the same or a subset of the
support of g (f(z) >0 = g(x) > 0).

* The ratio f/g must be bounded. That is there must exist a
constant M < oo such that

/(=) < M for every =z with g(z) > 0.
g(z)

2-22

The Accept-Reject Algorithm

1. Select a candidate density g satisfying the previous conditions
and calculate the bounding constant M.

2. Generate a candidate random variate ¥ ~ g.
3. Independently of Y generate U ~ uniform(0,1).

4. If
go< LI
M g(Y)
then stop and return X =Y, otherwise discard Y and U and
repeat from step 2.

T heorem 7

The observation returned from the accept-reject algorithm de-
scribed above has probability density function f.

2-23

Normalizing Constants

X

In many situations we do not know the correct normalizing
constant for the target distribution f but only know that

f(x) = Kfi(x) for every x.

In that case we cannot calculate M so it seems that the
algorithm will fail.

Suppose, however, that we can calculate My such that

f1(x)
g(x)

Then the algorithm will still work if we use the acceptance
rule

< My for every x with g(z) > 0.

1 f1(Y)

U <
My g(Y)

2-24

Some Properties of the Accept-Reject Method

* The bound M need not be a tight bound, we can use any
constant M such that

M > sup f(w).
x.g(x)>0 g(x)

* The probability of acceptance, however, is 1/M so using a
larger M results in a drop in efficiency.

* Different candidate densities g result in different values of M
and so we may need to balance ease of simulation from g
with efficiency of the algorithm.

* In the case when the target is known only up to a normalizing
constant K, the acceptance probability is equal to 1/(KM7)
and so is not known in advance.

2-25

