Generating Random Variates

* Much of this course will deal with the idea of simulation.
* This requires the ability to generate observations from a specific distribution.
* Sometimes we can generate random numbers by conducting a random experiment (e.g. rolling a die, tossing a coin etc.)
* This is usually quite time-consuming and available only for a very small number of distributions.
* Some physical phenomena are inherently random so observing them can produce random variates. See, for example http://www.random.org which uses random atmospheric noise.
* An issue with these methods, however, is that the sequence is generally not reproducible.

Computer Generation of Random Variates

* Our aim is to use a computer to produce a sequence of independent random numbers.
* Such sequences should be of arbitrary length and be reproducible.
* We must also be able to specify the exact distribution from which the random variates are generated.
* In fact we only need to be able to generate random observations from a Uniform $(0,1)$ distribution.
* Clever use of these random uniforms can produce sequences from any arbitrary distribution.

Pseudo-random Numbers

* Computers are deterministic machines so can never produce random numbers!
* Instead we will try to generate pseudo-random numbers.
* Pseudo-random numbers are generated from an initial state and a deterministic function.
* Even though they come from a deterministic sequence, the resulting observations should behave like a sample of random Unif(0,1) observations.
* There are a number of tests that can be applied to the output of a random generator to ensure this is the case.

Uniform Pseudo-random Generators

* Most uniform random generators actually generate integers in the range $0, \ldots, M-1$ where M is a very large number (e.g. 2^{32}).
* Dividing these numbers by M gives values in $[0,1)$.
* Eventually the state of the random number generator will return to the initial (or some other) state at which point the sequence of numbers will repeat.

Definition 1
The period of a sequence of numbers is defined to be the smallest integer T such that $x_{i+T}=x_{i}$ for every $i \geqslant T_{0} \geqslant 1$. The value T_{0} is called the initial sequence length.

Linear Congruential Generators

Definition 2

A linear congruential generator on $\{0,1, \ldots, M-1\}$ is a sequence of integers defined by

$$
x_{t+1}=\left(a x_{t}+b\right) \quad \bmod M
$$

* Any such generator can have period of at most M although it could be smaller.
* Choosing a and b appropriately can get the period very close to M.
* All such generators always generate pairs $\left(x_{t}, x_{t+1}\right)$ which lie on parallel lines although good choices of a and b can ensure that the number of lines is very large.

Shift Generators

* In a computer all integers are stored in a binary representation. That is by the ordered k-tuple $\left(e_{0}, e_{1}, \ldots, e_{k-1}\right)$ where

$$
x=\sum_{i=0}^{k-1} e_{i} 2^{i}
$$

* Theoretically, for a random number on $0, \ldots, 2^{k}-1$, the components of this k-tuple are independent.
* This is the basis behind shift generators.

Definition 3

For a given $k \times k$ matrix T whose entries are all either 0 or 1 , the associated shift register generator is

$$
\boldsymbol{x}_{t+1}=T \boldsymbol{x}_{t} \quad \bmod 2
$$

where x_{t} and x_{t+1} are binary representations of the corresponding numbers.

Combination Generators

* Most modern generators use two or more parallel generators and return a linear combination of the results modulo the largest integer representable.
* By combining generators in this way the period of the final sequence can be close to the product of the sequences of the individual generators.
* One such generator is George Marsaglia's KISS (Keep It Simple, Stupid) generator which uses one linear congruential generator and two shift register generators, returning their sum modulo 2^{32}.
* The resulting sequence has period of about 2^{95}.
* No test of uniformity or randomness has yet been found that the sequence from this generator does not pass!

The Mersenne-Twister Generator.

* The current state of the art generator is generally believed to be the Mersenne-Twister Generator.
* Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, 8, 3-30.
* The state of this generator is a vector of 626 integers, the first two of which refer to positions in the remaining vector of length 624.
* The algorithm is rather involved but it results in a generator with period of $2^{19937}-1$!
* This is the default generator in R .
* R does, however, have a number of other generators and also allows for a user defined generator to be supplied.

Non-uniform Random Number Generation

* In general we want observations from a distribution other than the uniform $(0,1)$ distribution.
* All current pseudo-random number generators, however, generate "uniform" random variates.
* In what follows I will assume that we are using a good generator so we can treat the observations from that generator as if they are actually distributed as Uniform $(0,1)$ random variates.
* We will look at various methods to transform these observations into ones that have a specified distribution.
* The function runif in R will generate uniform random numbers.

The Probability Integral Transform

Definition 4
Suppose that X is a random variable with cumulative distribution function F. Define the inverse of F to be

$$
F^{-1}(u)=\inf \{x: F(x) \geqslant u\}
$$

Theorem 1

Suppose that X is a random variable with cumulative distribution function F whose inverse F^{-1} is defined as above. If $U \sim \operatorname{uniform}(0,1)$ then

$$
F^{-1}(U) \stackrel{d}{=} X
$$

The Inverse Method to Generate Observations

* The probability integral transform gives us a general way of generating observations from any distribution for which we have a cdf.
* If the cdf F is strictly continuous then the inverse cdf exists and is a function.
* In that case we simply need to find the inverse cdf F^{-1}.
* We then generate $U_{1}, \ldots, U_{n} \stackrel{i i d}{\sim}$ uniform $(0,1)$ and define

$$
X_{i}=F^{-1}\left(U_{i}\right) \quad i=1, \ldots, n
$$

* The resulting sample x_{1}, \ldots, x_{n} will be a sample from the required distribution.

Generating Discrete Random Variables

* Suppose we wish to generate observations from the discrete distribution with possible values $x_{1}<x_{2}<\cdots<x_{k}$ with probability mass function

$$
\mathrm{P}\left(X=x_{i}\right)=p_{i} \quad i=1, \ldots, k
$$

* The cdf is defined by

$$
F\left(x_{j}\right)=\mathrm{P}\left(X \leqslant x_{j}\right)=\sum_{i=1}^{j} p_{i}
$$

* This is not a continuous function but from the Definition 4 we see that $F^{-1}(u)=x_{i} \Longleftrightarrow F\left(x_{i-1}\right)<u \leqslant F\left(x_{i}\right)$
* Hence we generate $U \sim$ uniform $(0,1)$ and set the observation equal to x_{i} which satisfies

$$
F\left(x_{i-1}\right)<U \leqslant F\left(x_{i}\right)
$$

Generating Discrete Random Variables

* This algorithm requires very little computation but does require a number of comparisons.
* Generally one compares U with the sequence of cdf values $F\left(x_{1}\right), F\left(x_{2}\right), \ldots, F\left(x_{k}\right)$ until you find a value x_{i} such that $F\left(x_{i}\right) \geqslant U$.
* This can be quite time consuming.
* A better method is to first find a central value of the distribution, such as the median.
* Then if $U>0.5$ start at the median and work upwards until you find a value x_{i} such that $F\left(x_{i}\right) \geqslant U$.
* If $U<0.5$ then start at the median and work downwards until you find a value x_{i-1} such that $F\left(x_{i-1}\right)<U$ and return x_{i}.

Other Methods

* For many continuous distributions, the cdf does not exist in closed form. Hence it is often not possible to apply the inverse method.
* For many common distributions special methods have been proposed based on transformations of random variables.

Theorem 2 (Box-Muller Algorithm)

Suppose that U_{1} and U_{2} are two independent Uniform $(0,1)$ random variables and define
$Y_{1}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right) \quad$ and $\quad Y_{2}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right)$
Then Y_{1} and Y_{2} are independent standard normal random variables.

Chi-Squared Random variables

* If we can generate standard normal random variables then we can generate chi-squared random variables using the following theorems.

Theorem 3
Suppose that $Z \sim \operatorname{Normal}(0,1)$ then $Z^{2} \sim \chi_{1}^{2}$.

Theorem 4
If $X_{1} \sim \chi_{p}^{2}$ and $X_{2} \sim \chi_{q}^{2}$ and X_{1} and X_{2} are independent then $X_{1}+X_{2} \sim \chi_{p+q}^{2}$

Student's t and Snedecor's F Distributions

Theorem 5

Suppose that Z is a standard normal random variable and $X \sim \chi_{p}^{2}$ and that Z and X are independent then

$$
T=\frac{Z}{\sqrt{X / p}} \sim t_{p}
$$

Theorem 6
Suppose that $X \sim \chi_{p}^{2}, Y \sim \chi_{q}^{2}$ and X and Y are independent then

$$
F=\frac{X / p}{Y / q} \sim F_{p, q}
$$

Random Variate Generation in \mathbf{R}

* In R there are inbuilt functions to generate observations from most "named" distribution
* The random seed is stored in a special variable called .Random.seed whose exact form depends on the uniform random number generator being used.
* Generally you should not access this variable directly but use the function set.seed to set the seed. This function takes a single integer argument.
* If a random number generating function is called and . Random. seed does not exist it is created using the current system time.
* Each time a random observation is created the value of .Random.seed is updated.

Random Number Generating Functions in R

Distribution	Function	Parameter (s)
Beta	rbeta	shape1 (α), shape2 (β)
Binomial	rbinom	size (n), prob (θ)
Cauchy	rcauchy	location, scale
Chi-squared	rchisq	df (degrees of freedom)
Exponential	rexp	rate (λ)
F	rf	df1 (numerator df), df2 (denominator df)
Gamma	rgamma	shape (α), rate (λ)
Geometric	rgeom	prob (θ)
Normal	rnorm	mean (μ), sd (σ)
Poisson	rpois	lambda (λ)
Student's t	rt	df (degrees of freedom)
Uniform	runif	min, max

Finite Mixture Distributions

Definition 5

Suppose that $f_{1}, f_{2}, \ldots, f_{k}$ are probability distributions and that p_{1}, \ldots, p_{k} are positive numbers such that $\sum p_{j}=1$. Then

$$
f(x)=\sum_{j=1}^{k} p_{k} f_{k}(x)
$$

is a valid probability distribution and is called a finite mixture distribution

* Suppose we can generate from observations from all of the $f_{1}, f_{2}, \ldots, f_{k}$.
* To generate from the mixture distribution we first generate the latent variable z with discrete pmf given by

$$
\mathrm{P}(Z=j)=p_{j} \quad j=1, \ldots, k .
$$

Having generated z we then generate $X \sim f_{z}(x)$.

Accept-Reject Methods

* General technique which can be used for most continuous distributions.
* Let f be the pdf of interest (called the target density) and suppose that f is difficult to sample from.
* Instead of sampling from f, we shall sample from another density g (called the candidate density) which is easier to sample from.
* We then decide whether or not to accept the observation sampled from g as coming from f or to reject it and start over.
* How we make this decision will ensure that the resulting set of accepted observations do form a random sample from f.

Motivating Example

* Suppose that f is the uniform distribution on the unit circle

$$
f(x, y)= \begin{cases}\frac{1}{2 \pi} & 0<x^{2}+y^{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

* It is not trivial to sample from f but it is easy to sample from

$$
g(x, y)= \begin{cases}\frac{1}{4} & -1<x<1, \quad-1<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

* If we generate pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)$ from g and accept only those points with $x_{i}^{2}+y_{i}^{2} \leqslant 1$ we will generate a sample from f.
* This is a special case of the accept-reject algorithm.

The Candidate Density

* The candidate density g must be easy to sample from!
* The supports of f must be the same or a subset of the support of $g(f(x)>0 \Rightarrow g(x)>0)$.
* The ratio f / g must be bounded. That is there must exist a constant $M<\infty$ such that

$$
\frac{f(x)}{g(x)} \leqslant M \quad \text { for every } x \text { with } g(x)>0
$$

The Accept-Reject Algorithm

1. Select a candidate density g satisfying the previous conditions and calculate the bounding constant M.
2. Generate a candidate random variate $Y \sim g$.
3. Independently of Y generate $U \sim \operatorname{uniform}(0,1)$.
4. If

$$
U \leqslant \frac{1}{M} \frac{f(Y)}{g(Y)}
$$

then stop and return $X=Y$, otherwise discard Y and U and repeat from step 2.

Theorem 7

The observation returned from the accept-reject algorithm described above has probability density function f.

Normalizing Constants

* In many situations we do not know the correct normalizing constant for the target distribution f but only know that

$$
f(x)=K f_{1}(x) \quad \text { for every } x
$$

* In that case we cannot calculate M so it seems that the algorithm will fail.
* Suppose, however, that we can calculate M_{1} such that

$$
\frac{f_{1}(x)}{g(x)} \leqslant M_{1} \quad \text { for every } x \text { with } g(x)>0
$$

* Then the algorithm will still work if we use the acceptance rule

$$
U \leqslant \frac{1}{M_{1}} \frac{f_{1}(Y)}{g(Y)}
$$

Some Properties of the Accept-Reject Method

* The bound M need not be a tight bound, we can use any constant M such that

$$
M \geqslant \sup _{x: g(x)>0} \frac{f(x)}{g(x)}
$$

* The probability of acceptance, however, is $1 / M$ so using a larger M results in a drop in efficiency.
* Different candidate densities g result in different values of M and so we may need to balance ease of simulation from g with efficiency of the algorithm.
* In the case when the target is known only up to a normalizing constant K, the acceptance probability is equal to $1 /\left(K M_{1}\right)$ and so is not known in advance.

