
Generating Random Variates

∗ Much of this course will deal with the idea of simulation.

∗ This requires the ability to generate observations from a spe-
cific distribution.

∗ Sometimes we can generate random numbers by conducting
a random experiment (e.g. rolling a die, tossing a coin etc.)

∗ This is usually quite time-consuming and available only for a
very small number of distributions.

∗ Some physical phenomena are inherently random so observ-
ing them can produce random variates. See, for example
http://www.random.org which uses random atmospheric noise.

∗ An issue with these methods, however, is that the sequence
is generally not reproducible.

2-1

http://www.random.org


Computer Generation of Random Variates

∗ Our aim is to use a computer to produce a sequence of

independent random numbers.

∗ Such sequences should be of arbitrary length and be repro-

ducible.

∗ We must also be able to specify the exact distribution from

which the random variates are generated.

∗ In fact we only need to be able to generate random observa-

tions from a Uniform(0,1) distribution.

∗ Clever use of these random uniforms can produce sequences

from any arbitrary distribution.

2-2



Pseudo-random Numbers

∗ Computers are deterministic machines so can never produce

random numbers!

∗ Instead we will try to generate pseudo-random numbers.

∗ Pseudo-random numbers are generated from an initial state

and a deterministic function.

∗ Even though they come from a deterministic sequence, the

resulting observations should behave like a sample of random

Unif(0,1) observations.

∗ There are a number of tests that can be applied to the output

of a random generator to ensure this is the case.

2-3



Uniform Pseudo-random Generators

∗ Most uniform random generators actually generate integers

in the range 0, ...,M−1 where M is a very large number (e.g.

232).

∗ Dividing these numbers by M gives values in [0,1).

∗ Eventually the state of the random number generator will

return to the initial (or some other) state at which point the

sequence of numbers will repeat.

Definition 1

The period of a sequence of numbers is defined to be the smallest

integer T such that xi+T = xi for every i > T0 > 1. The value T0

is called the initial sequence length.

2-4



Linear Congruential Generators

Definition 2

A linear congruential generator on {0,1, . . . ,M −1} is a sequence

of integers defined by

xt+1 = (axt + b) mod M

∗ Any such generator can have period of at most M although

it could be smaller.

∗ Choosing a and b appropriately can get the period very close

to M .

∗ All such generators always generate pairs (xt, xt+1) which lie

on parallel lines although good choices of a and b can ensure

that the number of lines is very large.

2-5



Shift Generators

∗ In a computer all integers are stored in a binary representa-
tion. That is by the ordered k-tuple (e0, e1, . . . , ek−1) where

x =
k−1∑
i=0

ei2
i.

∗ Theoretically, for a random number on 0, ...,2k−1, the com-
ponents of this k-tuple are independent.

∗ This is the basis behind shift generators.

Definition 3

For a given k×k matrix T whose entries are all either 0 or 1, the
associated shift register generator is

xt+1 = Txt mod 2

where xt and xt+1 are binary representations of the correspond-
ing numbers.

2-6



Combination Generators

∗ Most modern generators use two or more parallel generators
and return a linear combination of the results modulo the
largest integer representable.

∗ By combining generators in this way the period of the final
sequence can be close to the product of the sequences of the
individual generators.

∗ One such generator is George Marsaglia’s KISS (Keep It Sim-
ple, Stupid) generator which uses one linear congruential gen-
erator and two shift register generators, returning their sum
modulo 232.

∗ The resulting sequence has period of about 295.

∗ No test of uniformity or randomness has yet been found that
the sequence from this generator does not pass!

2-7



The Mersenne-Twister Generator.

∗ The current state of the art generator is generally believed
to be the Mersenne-Twister Generator.

∗ Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister:
A 623-dimensionally equidistributed uniform pseudo-random
number generator, ACM Transactions on Modeling and Com-
puter Simulation, 8, 3–30.

∗ The state of this generator is a vector of 626 integers, the
first two of which refer to positions in the remaining vector
of length 624.

∗ The algorithm is rather involved but it results in a generator
with period of 219937 − 1!

∗ This is the default generator in R.

∗ R does, however, have a number of other generators and also
allows for a user defined generator to be supplied.

2-8



Non-uniform Random Number Generation

∗ In general we want observations from a distribution other
than the uniform (0,1) distribution.

∗ All current pseudo-random number generators, however, gen-
erate “uniform” random variates.

∗ In what follows I will assume that we are using a good gen-
erator so we can treat the observations from that generator
as if they are actually distributed as Uniform(0,1) random
variates.

∗ We will look at various methods to transform these observa-
tions into ones that have a specified distribution.

∗ The function runif in R will generate uniform random num-
bers.

2-9



The Probability Integral Transform

Definition 4

Suppose that X is a random variable with cumulative distribution

function F . Define the inverse of F to be

F−1(u) = inf{x : F (x) > u}

Theorem 1

Suppose that X is a random variable with cumulative distri-

bution function F whose inverse F−1 is defined as above. If

U ∼ uniform(0,1) then

F−1(U)
d
= X.

2-10



The Inverse Method to Generate Observations

∗ The probability integral transform gives us a general way of

generating observations from any distribution for which we

have a cdf.

∗ If the cdf F is strictly continuous then the inverse cdf exists

and is a function.

∗ In that case we simply need to find the inverse cdf F−1.

∗ We then generate U1, . . . , Un
iid∼ uniform(0,1) and define

Xi = F−1(Ui) i = 1, . . . , n

∗ The resulting sample x1, . . ., xn will be a sample from the

required distribution.

2-11



Generating Discrete Random Variables

∗ Suppose we wish to generate observations from the discrete
distribution with possible values x1 < x2 < · · · < xk with
probability mass function

P(X = xi) = pi i = 1, . . . , k

∗ The cdf is defined by

F (xj) = P(X 6 xj) =
j∑

i=1

pi.

∗ This is not a continuous function but from the Definition 4
we see that F−1(u) = xi ⇐⇒ F (xi−1) < u 6 F (xi)

∗ Hence we generate U ∼ uniform(0,1) and set the observation
equal to xi which satisfies

F (xi−1) < U 6 F (xi)

2-12



Generating Discrete Random Variables

∗ This algorithm requires very little computation but does re-
quire a number of comparisons.

∗ Generally one compares U with the sequence of cdf values
F (x1), F (x2), . . . , F (xk) until you find a value xi such that
F (xi) > U .

∗ This can be quite time consuming.

∗ A better method is to first find a central value of the distri-
bution, such as the median.

∗ Then if U > 0.5 start at the median and work upwards until
you find a value xi such that F (xi) > U .

∗ If U < 0.5 then start at the median and work downwards until
you find a value xi−1 such that F (xi−1) < U and return xi.

2-13



Other Methods

∗ For many continuous distributions, the cdf does not exist in

closed form. Hence it is often not possible to apply the in-

verse method.

∗ For many common distributions special methods have been

proposed based on transformations of random variables.

Theorem 2 (Box–Muller Algorithm)

Suppose that U1 and U2 are two independent Uniform(0,1) ran-

dom variables and define

Y1 =
√
−2 logU1 sin(2πU2) and Y2 =

√
−2 logU1 cos(2πU2)

Then Y1 and Y2 are independent standard normal random vari-

ables.

2-14



Chi-Squared Random variables

∗ If we can generate standard normal random variables then

we can generate chi-squared random variables using the fol-

lowing theorems.

Theorem 3

Suppose that Z ∼ Normal(0,1) then Z2 ∼ χ2
1.

Theorem 4

If X1 ∼ χ2
p and X2 ∼ χ2

q and X1 and X2 are independent then

X1 +X2 ∼ χ2
p+q

2-15



Student’s t and Snedecor’s F Distributions

Theorem 5

Suppose that Z is a standard normal random variable and X ∼ χ2
p

and that Z and X are independent then

T =
Z√
X/p

∼ tp

Theorem 6

Suppose that X ∼ χ2
p, Y ∼ χ2

q and X and Y are independent

then

F =
X/p

Y/q
∼ Fp,q

2-16



Random Variate Generation in R

∗ In R there are inbuilt functions to generate observations from
most “named” distribution

∗ The random seed is stored in a special variable called .Random.seed

whose exact form depends on the uniform random number
generator being used.

∗ Generally you should not access this variable directly but use
the function set.seed to set the seed. This function takes a
single integer argument.

∗ If a random number generating function is called and .Random.seed

does not exist it is created using the current system time.

∗ Each time a random observation is created the value of
.Random.seed is updated.

2-17



Random Number Generating Functions in R

Distribution Function Parameter(s)
Beta rbeta shape1 (α), shape2 (β)
Binomial rbinom size (n), prob (θ)
Cauchy rcauchy location, scale

Chi-squared rchisq df (degrees of freedom)
Exponential rexp rate (λ)
F rf df1 (numerator df), df2 (denominator df)
Gamma rgamma shape (α), rate (λ)
Geometric rgeom prob (θ)
Normal rnorm mean (µ), sd (σ)
Poisson rpois lambda (λ)
Student’s t rt df (degrees of freedom)
Uniform runif min, max

2-18



Finite Mixture Distributions

Definition 5

Suppose that f1, f2, ..., fk are probability distributions and that
p1, . . . , pk are positive numbers such that

∑
pj = 1. Then

f(x) =
k∑

j=1

pkfk(x)

is a valid probability distribution and is called a finite mixture
distribution

∗ Suppose we can generate from observations from all of the
f1, f2, ..., fk.

∗ To generate from the mixture distribution we first generate
the latent variable z with discrete pmf given by

P(Z = j) = pj j = 1, . . . , k.

Having generated z we then generate X ∼ fz(x).

2-19



Accept-Reject Methods

∗ General technique which can be used for most continuous
distributions.

∗ Let f be the pdf of interest (called the target density) and
suppose that f is difficult to sample from.

∗ Instead of sampling from f , we shall sample from another
density g (called the candidate density) which is easier to
sample from.

∗ We then decide whether or not to accept the observation
sampled from g as coming from f or to reject it and start
over.

∗ How we make this decision will ensure that the resulting set
of accepted observations do form a random sample from f .

2-20



Motivating Example

∗ Suppose that f is the uniform distribution on the unit circle

f(x, y) =


1

2π 0 < x2 + y2 < 1

0 otherwise

∗ It is not trivial to sample from f but it is easy to sample from

g(x, y) =


1
4 −1 < x < 1, − 1 < y < 1

0 otherwise

∗ If we generate pairs (x1, y1), (x2, y2), . . . , (xN , yN) from g and

accept only those points with x2
i + y2

i 6 1 we will generate a

sample from f .

∗ This is a special case of the accept-reject algorithm.

2-21



The Candidate Density

∗ The candidate density g must be easy to sample from!

∗ The supports of f must be the same or a subset of the

support of g (f(x) > 0 ⇒ g(x) > 0).

∗ The ratio f/g must be bounded. That is there must exist a

constant M <∞ such that

f(x)

g(x)
6 M for every x with g(x) > 0.

2-22



The Accept-Reject Algorithm

1. Select a candidate density g satisfying the previous conditions
and calculate the bounding constant M .

2. Generate a candidate random variate Y ∼ g.

3. Independently of Y generate U ∼ uniform(0,1).

4. If

U 6
1

M

f(Y )

g(Y )

then stop and return X = Y , otherwise discard Y and U and
repeat from step 2.

Theorem 7

The observation returned from the accept-reject algorithm de-
scribed above has probability density function f .

2-23



Normalizing Constants

∗ In many situations we do not know the correct normalizing
constant for the target distribution f but only know that

f(x) = Kf1(x) for every x.

∗ In that case we cannot calculate M so it seems that the
algorithm will fail.

∗ Suppose, however, that we can calculate M1 such that

f1(x)

g(x)
6 M1 for every x with g(x) > 0.

∗ Then the algorithm will still work if we use the acceptance
rule

U 6
1

M1

f1(Y )

g(Y )

2-24



Some Properties of the Accept-Reject Method

∗ The bound M need not be a tight bound, we can use any

constant M such that

M > sup
x:g(x)>0

f(x)

g(x)
.

∗ The probability of acceptance, however, is 1/M so using a

larger M results in a drop in efficiency.

∗ Different candidate densities g result in different values of M

and so we may need to balance ease of simulation from g

with efficiency of the algorithm.

∗ In the case when the target is known only up to a normalizing

constant K, the acceptance probability is equal to 1/(KM1)

and so is not known in advance.

2-25


