
Monte Carlo Integration

∗ Many problems in statistics involve integration.

∗ This is particularly true in Bayesian Statistics where the basic

methodology gives a distribution.

∗ It is often of interest to find moments of this distribution and

(for continuous distributions) this involves integration.

∗ The Monte Carlo method is a technique to use simulation to

approximate the value of an integral.
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Monte Carlo Integration

∗ Suppose we wish to evaluate

I =
∫ b
a
h(x) dx

where a and b are constants but may be infinite.

∗ Now suppose that we can write

h(x) = g(x)f(x)

where f(x) is a probability density function with support
(a, b).

∗ We can then rewrite the integral as

I =
∫ b
a
g(x)f(x) dx = E [g(X)]

where X is a random variable having pdf f .
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Monte Carlo Integration

∗ Now suppose that we can generate values having pdf f by

one of the methods described earlier.

∗ We can then generate N independent random variates X1, . . . , XN
each having pdf f .

∗ Thus we can evaluate the Monte Carlo estimator

ÎN =
1

N

N∑
i=1

g(Xi)
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Monte Carlo Integration

Theorem 7

Suppose that X1, . . . , XN are iid with pdf f(x) on support X and

ÎN = N−1∑ g(Xi) is a Monte Carlo estimator of I =
∫
X g(x)f(x) dx.

Then

E(ÎN) = I

Var(ÎN) =
1

N

[∫
X
g2(x)f(x) dx− I2

]

∗ A similar result holds if the Xi are discrete with pmf f except

that integrals are replaced by sums.

3-4



Monte Carlo Integration

∗ Since Monte Carlo produces an estimate of the required
value, it is important to give a measure of its variability.

∗ We see from the previous theorem that the variance of the
estimator reduces as N →∞ so increasing the simulation size
will improve the accuracy of the estimator.

∗ Unfortunately the variance of the estimator is generally a
function of the unknown I.

∗ Instead of Var(ÎN) we therefore return an estimate of the
square root of this variance. This is called the standard error

se(ÎN) =

√√√√√ 1

N

 1

N

N∑
i=1

g2(Xi)− Î2
N

.
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Variance Reduction Techniques

∗ There can often be different Monte Carlo methods for the

same problem.

∗ Different methods can differ in efficiency in a number of

respects.

• The amount of analytical work required by the user prior

to using Monte Carlo.

• The programming complexity of the algorithm.

• The computational complexity of the algorithm.

• The variability of the Monte Carlo estimate.

∗ Controlling the last of these is the most common way to

improve efficiency of an Monte Carlo experiment.
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Control Variables

∗ Suppose that we have a Monte Carlo estimate Î based on a

sample of size N with E(Î) = I.

∗ Now let us suppose that we can find another quantity C

which is correlated with Î and whose mean we know to be µ.

∗ The simplest way to guarantee that C and Î are correlated

is to have them based on the same sequence of random

numbers.

∗ C is called a control variable.
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Monte Carlo Estimator Based on a Control Variable

∗ Now consider the new estimator

ÎC = Î − β(C − µ)

for some known value of β.

∗ The mean and variance of this new Monte Carlo estimator

are

E(ÎC) = I

Var(ÎC) = Var(Î) + β2Var(C)− 2βCov(Î, C)

∗ For an appropriate choice of C and β we can have

Var(ÎC) < Var(Î)
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Variance of Control Variable Monte Carlo Estimator

Theorem 8

For a Monte Carlo estimate Î and known control variable C, the

minimum variance of ÎC = Î − β(C − µ) is achieved when

β =
Cov(Î, C)

Var(C)

and that minimum variance is

Var(ÎC) = (1− ρ2)Var(Î)

where ρ is the correlation coefficient between Î and C.
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Choice of Control Variables

∗ We thus need to find a variable C which is strongly correlated

with Î and then choose β according to the formula in the

theorem.

∗ Although variables correlated with Î are not hard to find,

it is often the case that we cannot evaluate the covariance

between them and so we cannot find the best β.

∗ One strategy which is sometimes employed is to use the

Monte Carlo results themselves to estimate the correct β

and so achieve variance reduction in that way.

∗ If possible, it is preferable to do as much analytic calculation

as possible prior to the Monte Carlo run and so reduce the

error and variability in finding β.
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Antithetic Variables

∗ Another variance reduction scheme relies on making two
Monte Carlo estimates of the same quantity.

∗ Suppose that Î1 and Î2 are both unbiased Monte Carlo esti-
mators of I. Then so is ÎA = 1

2

(
Î1 + Î2

)
∗ The variance of ÎA is

Var(ÎA) =
Var(Î1)

4
+

Var(Î2)

4
+

Cov(Î1, Î2)

2

≈
Var(Î1)

2
+

Cov(Î1, Î2)

2
if Var(Î1) = Var(Î2).

∗ Since we are doing twice as much computational work, there
will only be a gain in efficiency when the two estimates are
negatively correlated.
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Antithetic Variables

∗ Typically both original estimators will be means of some func-
tions of a sequence of random variables.

∗ If we can make the random variables used in each estimator
as negatively correlated as possible, then we can hope that
the resulting estimators will share similar properties.

∗ Since all random numbers are derived from Uniform random
variates this is not hard to do.

∗ It is clear that if U is a uniform random variable then so is
1−U and the correlation coefficient between these two is −1
so they are maximally negatively correlated.

∗ The concept of antithetic variables uses this to try to improve
on the variability of Monte Carlo estimators.
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Antithetic Variables

∗ Consider estimation of I =
∫ 1

0
g(x) dx.

∗ Let Ui, . . . , UN be iid uniform(0,1) random variates and define

Î1 =
1

N

N∑
i=1

g(Ui) Î2 =
1

N

N∑
i=1

g(1− Ui)

for the same random variables U1, . . . , UN .

∗ Both Î1 and Î2 are unbiased estimators of I with the same
variance but are negatively correlated for monotone g.

∗ Hence the antithetic variable estimator

ÎA =
1

2N

N∑
i=1

[
g(Ui)− g(1− Ui)

]
may have reduced variability.
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Theorem 9

Suppose that we are interested in estimation of the integral

I =
∫ 1

0
g(x) dx where g is a continuous, monotonic function with

continuous first derivatives. Let U1, . . . , UN be iid U(0,1) random

variables and define

Î =
1

N

∑
g(Ui) and ÎA =

1

2N

∑[
g(Ui)− g(1− Ui)

]
to be two Monte Carlo estimates of I. Then

Var(ÎA) 6
Var(Î)

2
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Antithetic Variables

∗ In general we are not trying to integrate over the interval

(0,1).

∗ In that case we have estimators

Î1 = N−1
N∑
i=1

g(Xi) Î2 = N−1
N∑
i=1

g(Yi)

where Xi and Yi have the same distribution.

∗ To make an efficiency gain we need g(Xi) and g(Yi) to be

negatively correlated.

∗ In general this is not easy to achieve.
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Antithetic Variables

∗ One case in which we can try to make this happen is when

we have

Xi = F−1(Ui) for Ui ∼ uniform(0,1).

∗ In that case we can define

Yi = F−1(1− Ui)

for the same set of uniform random variables.

∗ Since F is monotone, so is F−1 so g(X1), . . . , g(XN) and

g(Y1), . . . , g(YN) will be negatively correlated if the function

g is monotone.
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Importance Sampling

∗ Consider estimation of the quantity

I = Ef
[
h(X)

]
=
∫
h(x)f(x) dx

∗ The usual Monte Carlo method for this would be to simulate

X1 . . . , XN with density f(x) and use

Î = N−1∑h(Xi)

∗ In this process, the distribution from which we are simulating

does not relate in any way to the function to be integrated.

∗ It is very possible for us to simulate many of the variables

from areas where h(x) is very small or even 0.
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Importance Sampling

∗ The idea of importance sampling is that it would be bet-

ter to simulate more variates in those areas which are more

important for estimation of I.

∗ We would therefore simulate from a different density g(x)

which concentrates more mass in important areas.

∗ Note that we can write

I =
∫
h(x)f(x) dx

=
∫
h(x)

f(x)

g(x)
g(x) dx

=
∫
h(x)w(x)g(x) dx

= Eg[h(X)w(X)]
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Importance Sampling

∗ If X1 . . . , XN are simulated to be iid with density g then a

Monte Carlo estimator of I is

ÎIS =
1

N

N∑
i=1

h(Xi)w(Xi)

∗ The quantity w(Xi) = f(Xi)/g(Xi) is known as the impor-

tance sampling weight of the point Xi.

∗ The importance sampling weight adjusts for the fact that

X1, . . . , XN were simulated from g rather than f .
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Choosing the Importance Sampling Density

∗ We wish to choose the importance sampling density g in such

a way that

1. It is easy to simulate random variables having density g.

2. Var(ÎIS) < Var(Î).

∗ Ideally we would like to make the variance of the resulting

estimator as small as possible.
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Optimal Importance Sampling Density

Theorem 10

The minimum variance of ÎIS is

Var(ÎIS) >
1

N

{[ ∫
|h(x)|f(x) dx

]2
− I2

}
and this is achieved when we take

g(x) =
|h(x)|f(x)∫
|h(x)|f(x) dx
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Optimal Importance Sampling Density

∗ Unfortunately the optimal importance sampling distribution

is rarely available.

∗ However the previous theorem says we should look for density

functions g which have shape close to |h(x)|f(x) and the same

support as f .

∗ Often we will decide on a particular family of distributions

from which we can sample easily and then find parameter

values θ such that |h(x)|f(x)/g(x | θ) is close to constant.
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Standard Error of Importance Sampling Estimate

∗ As with all Monte Carlo estimates, we require a measure of

the variability of the estimate. We will use the same random

variates to estimate the variability.

∗ Recall that

Var(ÎIS) =
1

N

{∫
h2(x)f2(x)

g(x)
dx− I2

}

∗ We can use X1, . . . , XN to estimate this quantity and get the

standard error

se(ÎIS) =
1

N

√∑[
h(Xi)w(Xi)

]2
−NÎ2

IS
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