- * Many problems in statistics involve integration.
- * This is particularly true in *Bayesian Statistics* where the basic methodology gives a distribution.
- * It is often of interest to find moments of this distribution and (for continuous distributions) this involves integration.
- * The Monte Carlo method is a technique to use simulation to approximate the value of an integral.

* Suppose we wish to evaluate

$$I = \int_{a}^{b} h(x) \, dx$$

where a and b are constants but may be infinite.

* Now suppose that we can write

$$h(x) = g(x)f(x)$$

where f(x) is a probability density function with support (a, b).

* We can then rewrite the integral as

$$I = \int_a^b g(x)f(x) \, dx = \mathsf{E}[g(X)]$$

where X is a random variable having pdf f.

- * Now suppose that we can generate values having pdf f by one of the methods described earlier.
- * We can then generate N independent random variates X_1, \ldots, X_N each having pdf f.
- * Thus we can evaluate the Monte Carlo estimator

$$\widehat{I}_N = \frac{1}{N} \sum_{i=1}^N g(X_i)$$

Theorem 7

Suppose that X_1, \ldots, X_N are iid with pdf f(x) on support \mathcal{X} and $\widehat{I}_N = N^{-1} \sum g(X_i)$ is a Monte Carlo estimator of $I = \int_{\mathcal{X}} g(x) f(x) dx$. Then

$$E(\widehat{I}_N) = I$$

Var $(\widehat{I}_N) = \frac{1}{N} \left[\int_{\mathcal{X}} g^2(x) f(x) \, dx - I^2 \right]$

* A similar result holds if the X_i are discrete with pmf f except that integrals are replaced by sums.

- * Since Monte Carlo produces an estimate of the required value, it is important to give a measure of its variability.
- * We see from the previous theorem that the variance of the estimator reduces as $N \to \infty$ so increasing the simulation size will improve the accuracy of the estimator.
- * Unfortunately the variance of the estimator is generally a function of the unknown I.
- * Instead of $Var(\hat{I}_N)$ we therefore return an estimate of the square root of this variance. This is called the standard error

$$\operatorname{se}(\widehat{I}_N) = \sqrt{\frac{1}{N} \left[\frac{1}{N} \sum_{i=1}^N g^2(X_i) - \widehat{I}_N^2 \right]}$$

Variance Reduction Techniques

- * There can often be different Monte Carlo methods for the same problem.
- Different methods can differ in efficiency in a number of respects.
 - The amount of analytical work required by the user prior to using Monte Carlo.
 - The programming complexity of the algorithm.
 - The computational complexity of the algorithm.
 - The variability of the Monte Carlo estimate.
- * Controlling the last of these is the most common way to improve efficiency of an Monte Carlo experiment.

Control Variables

- * Suppose that we have a Monte Carlo estimate \hat{I} based on a sample of size N with $E(\hat{I}) = I$.
- * Now let us suppose that we can find another quantity C which is correlated with \hat{I} and whose mean we know to be μ .
- * The simplest way to guarantee that C and \hat{I} are correlated is to have them based on the same sequence of random numbers.
- * C is called a control variable.

Monte Carlo Estimator Based on a Control Variable

* Now consider the new estimator

$$\widehat{I}_C = \widehat{I} - \beta(C - \mu)$$

for some known value of β .

 The mean and variance of this new Monte Carlo estimator are

$$E(\hat{I}_C) = I$$

Var $(\hat{I}_C) = Var(\hat{I}) + \beta^2 Var(C) - 2\beta Cov(\hat{I}, C)$

* For an appropriate choice of C and β we can have $Var(\hat{I}_C) < Var(\hat{I})$

Variance of Control Variable Monte Carlo Estimator

Theorem 8

For a Monte Carlo estimate \hat{I} and known control variable C, the minimum variance of $\hat{I}_C = \hat{I} - \beta(C - \mu)$ is achieved when

$$\beta = \frac{\operatorname{Cov}(\widehat{I}, C)}{\operatorname{Var}(C)}$$

and that minimum variance is

$$\operatorname{Var}(\widehat{I}_C) = (1 - \rho^2) \operatorname{Var}(\widehat{I})$$

where ρ is the correlation coefficient between \hat{I} and C.

Choice of Control Variables

- * We thus need to find a variable C which is strongly correlated with \hat{I} and then choose β according to the formula in the theorem.
- * Although variables correlated with \hat{I} are not hard to find, it is often the case that we cannot evaluate the covariance between them and so we cannot find the best β .
- * One strategy which is sometimes employed is to use the Monte Carlo results themselves to estimate the correct β and so achieve variance reduction in that way.
- * If possible, it is preferable to do as much analytic calculation as possible prior to the Monte Carlo run and so reduce the error and variability in finding β .

- * Another variance reduction scheme relies on making two Monte Carlo estimates of the same quantity.
- * Suppose that \hat{I}_1 and \hat{I}_2 are both unbiased Monte Carlo estimators of I. Then so is $\hat{I}_A = \frac{1}{2} \left(\hat{I}_1 + \hat{I}_2 \right)$
- * The variance of \hat{I}_A is

$$Var(\hat{I}_{A}) = \frac{Var(\hat{I}_{1})}{4} + \frac{Var(\hat{I}_{2})}{4} + \frac{Cov(\hat{I}_{1}, \hat{I}_{2})}{2}$$
$$\approx \frac{Var(\hat{I}_{1})}{2} + \frac{Cov(\hat{I}_{1}, \hat{I}_{2})}{2}$$
$$\hat{I}_{1}) = Var(\hat{I}_{2}).$$

if $Var(\hat{I}_1) = Var(\hat{I}_2)$.

 Since we are doing twice as much computational work, there will only be a gain in efficiency when the two estimates are negatively correlated.

- * Typically both original estimators will be means of some functions of a sequence of random variables.
- * If we can make the random variables used in each estimator as negatively correlated as possible, then we can hope that the resulting estimators will share similar properties.
- * Since all random numbers are derived from Uniform random variates this is not hard to do.
- * It is clear that if U is a uniform random variable then so is 1-U and the correlation coefficient between these two is -1 so they are maximally negatively correlated.
- * The concept of antithetic variables uses this to try to improve on the variability of Monte Carlo estimators.

* Consider estimation of
$$I = \int_0^1 g(x) \, dx$$
.

* Let U_i, \ldots, U_N be iid uniform(0, 1) random variates and define

$$\widehat{I}_1 = \frac{1}{N} \sum_{i=1}^N g(U_i) \qquad \widehat{I}_2 = \frac{1}{N} \sum_{i=1}^N g(1 - U_i)$$

for the same random variables U_1, \ldots, U_N .

- * Both \hat{I}_1 and \hat{I}_2 are unbiased estimators of I with the same variance but are negatively correlated for monotone g.
- * Hence the antithetic variable estimator

$$\widehat{I}_A = \frac{1}{2N} \sum_{i=1}^{N} \left[g(U_i) - g(1 - U_i) \right]$$

may have reduced variability.

Theorem 9

Suppose that we are interested in estimation of the integral $I = \int_0^1 g(x) dx$ where g is a continuous, monotonic function with continuous first derivatives. Let U_1, \ldots, U_N be iid U(0, 1) random variables and define

$$\widehat{I} = \frac{1}{N} \sum g(U_i)$$
 and $\widehat{I}_A = \frac{1}{2N} \sum \left[g(U_i) - g(1 - U_i) \right]$

to be two Monte Carlo estimates of I. Then

$$\operatorname{Var}(\widehat{I}_A) \leqslant rac{\operatorname{Var}(\widehat{I})}{2}$$

- * In general we are not trying to integrate over the interval (0,1).
- * In that case we have estimators

$$\hat{I}_1 = N^{-1} \sum_{i=1}^N g(X_i) \qquad \hat{I}_2 = N^{-1} \sum_{i=1}^N g(Y_i)$$

where X_i and Y_i have the same distribution.

- * To make an efficiency gain we need $g(X_i)$ and $g(Y_i)$ to be negatively correlated.
- * In general this is not easy to achieve.

* One case in which we can try to make this happen is when we have

$$X_i = F^{-1}(U_i)$$
 for $U_i \sim \text{uniform}(0, 1)$.

* In that case we can define

$$Y_i = F^{-1}(1 - U_i)$$

for the same set of uniform random variables.

* Since F is monotone, so is F^{-1} so $g(X_1), \ldots, g(X_N)$ and $g(Y_1), \ldots, g(Y_N)$ will be negatively correlated if the function g is monotone.

Importance Sampling

* Consider estimation of the quantity

$$I = \mathsf{E}_f \Big[h(X) \Big] = \int h(x) f(x) \, dx$$

* The usual Monte Carlo method for this would be to simulate $X_1 \dots, X_N$ with density f(x) and use

$$\widehat{I} = N^{-1} \sum h(X_i)$$

- * In this process, the distribution from which we are simulating does not relate in any way to the function to be integrated.
- * It is very possible for us to simulate many of the variables from areas where h(x) is very small or even 0.

Importance Sampling

- * The idea of importance sampling is that it would be better to simulate more variates in those areas which are *more important* for estimation of *I*.
- * We would therefore simulate from a different density g(x) which concentrates more mass in important areas.
- * Note that we can write

$$I = \int h(x)f(x) dx$$

= $\int h(x)\frac{f(x)}{g(x)}g(x) dx$
= $\int h(x)w(x)g(x) dx$
= $\mathsf{E}_g[h(X)w(X)]$

Importance Sampling

* If $X_1 \dots, X_N$ are simulated to be *iid* with density g then a Monte Carlo estimator of I is

$$\widehat{I}_{IS} = \frac{1}{N} \sum_{i=1}^{N} h(X_i) w(X_i)$$

- * The quantity $w(X_i) = f(X_i)/g(X_i)$ is known as the importance sampling weight of the point X_i .
- * The importance sampling weight adjusts for the fact that X_1, \ldots, X_N were simulated from g rather than f.

Choosing the Importance Sampling Density

- * We wish to choose the importance sampling density g in such a way that
 - **1.** It is easy to simulate random variables having density g.
 - **2.** $Var(\hat{I}_{IS}) < Var(\hat{I}).$
- * Ideally we would like to make the variance of the resulting estimator as small as possible.

Optimal Importance Sampling Density

Theorem 10

The minimum variance of \widehat{I}_{IS} is

$$\operatorname{Var}(\widehat{I}_{IS}) \geq \frac{1}{N} \left\{ \left[\int |h(x)| f(x) \, dx \right]^2 - I^2 \right\}$$

and this is achieved when we take

$$g(x) = \frac{|h(x)|f(x)}{\int |h(x)|f(x) \, dx}$$

Optimal Importance Sampling Density

- * Unfortunately the optimal importance sampling distribution is rarely available.
- * However the previous theorem says we should look for density functions g which have shape close to |h(x)|f(x) and the same support as f.
- * Often we will decide on a particular family of distributions from which we can sample easily and then find parameter values θ such that $|h(x)|f(x)/g(x \mid \theta)$ is close to constant.

Standard Error of Importance Sampling Estimate

- * As with all Monte Carlo estimates, we require a measure of the variability of the estimate. We will use the same random variates to estimate the variability.
- * Recall that

$$\operatorname{Var}(\widehat{I}_{IS}) = \frac{1}{N} \left\{ \int \frac{h^2(x)f^2(x)}{g(x)} \, dx - I^2 \right\}$$

* We can use X_1, \ldots, X_N to estimate this quantity and get the standard error

$$\operatorname{se}(\widehat{I}_{IS}) = \frac{1}{N} \sqrt{\sum \left[h(X_i)w(X_i)\right]^2 - N\widehat{I}_{IS}^2}$$