
Monte Carlo Simulation Studies

∗ One very important way in which Monte Carlo is used in
statistical research is through simulation studies.

∗ This is a method through which we can gain understanding
of the behaviour of an inference technique.

∗ In frequentist inference, the statements we can make regard-
ing sampling distributions, coverage of intervals or power of
tests rely on the concept of repeated sampling from the un-
derlying distribution.

∗ In some cases we can get exact results but more often we
rely on asymptotic theory as the sample size goes to infinity.

∗ Simulation studies can examine the finite sample properties
of an inference procedure when these are not available ana-
lytically.
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An Example

∗ Suppose we have data from a right skewed distribution such

as the exponential with mean µ.

∗ It is easy to show that X is an unbiased estimator of µ and

get the sampling distribution of this statistic.

∗ Because of the skewness, however, we may prefer to instead

try to estimate µ based on the sample median.

∗ Consider the estimator µ̂ = median(X1, . . ., Xn)/ log(2).

∗ The distribution of this estimator can be written down but

is hard to work with.

4-2



Simulation Study for the Example

∗ Choose values of n and µ.

∗ Generate N samples each of size n from an exponential dis-

tribution with mean µ.

∗ Calculate µ̂ for each of these samples.

∗ µ̂1, . . . , µ̂N form a random sample from the sampling distri-

bution of µ̂.

∗ We can estimate the bias in µ̂ by comparing the mean of

µ̂1, . . . , µ̂N with the true value of µ.

∗ As with any Monte Carlo estimator we should also give a

measure of error in our bias estimate.
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Simulation Study for the Example

∗ In general we will want to examine the behaviour of the esti-

mator for different sample sizes and compare it to the sample

mean.

∗ We may also want to examine if the pattern changes for

different values of the mean.

∗ We could therefore run the simulation study on a grid of

values of n and µ.

∗ We can then examine the results of the simulation study to

see if we can find any general patterns.

∗ Often simulation studies can suggest some results which we

can then prove theoretically.
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Examining Robustness

∗ Most statistical procedures come with assumptions.

∗ We often wish to examine the robustness of the methodology
to violations of these assumptions since they may not hold
in practice.

∗ Simulation studies allow us to to do this by generating sam-
ples known to violate the assumptions and examining how
the behaviour changes.

∗ Another form of robustness is when there are outliers in the
data. One way to simulate data with outliers is using mixture
distributions.

∗ As with all simulation studies, we will generally want to look
at a range different departures from assumptions or contam-
ination with outliers.
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Assessing Convergence to Asymptotic Results

∗ For a great many statistical procedures we can only find

asymptotic results.

∗ In practice, however, we only ever have finite samples.

∗ Many simulation studies are designed to examine the loss

incurred by the procedure when the sample size is finite.

∗ As always we will generally consider a sequence of sample

sizes to see how large a sample is needed to make the finite

sample behaviour close enough to the asymptotic behaviour.
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Likelihood Ratio Inference Example

∗ Suppose that we wish to test

H0 : θ = θ0 V H1 : θ 6= θ0

where θ0 is some specified value of a population parameter
θ.

∗ The likelihood ratio test statistic is defined to be

Λ(X) = 2
[
max
θ

f(X | θ)− f(X | θ0)
]

where f(x | θ) is the joint density of X1, . . ., Xn when the true
parameter value is θ.

∗ Asymptotic theory says that λ(X) converges in distribution
to a chi-squared distribution with one degree of freedom.

∗ This result can be used to test the hypothesis.
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Likelihood Ratio Inference Example

∗ In this example we would want to look at the actual size of
a test with asymptotic size α for finite values of n.

∗ This will involve constructing many samples of each sample
size from the joint density f(x | θ0) and for each one calcu-
lating Λ(x) and deciding if we reject H0.

∗ We can estimate the size of the test using the proportion of
times we (incorrectly) reject H0.

∗ Plots of the density histogram of the observed likelihood ratio
statistic with the asymptotic chi-squared distribution super-
imposed can also be very illuminating.

∗ We may also be interested in the power function which will
involve generating many samples from distributions with pa-
rameter θ 6= θ0 and finding the proportion of times we reject
H0.
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Simulation Study Considerations

∗ What are the questions we wish to answer?

∗ To answer those questions which aspects of the model should

be varied and which can be held constant?

∗ What range of values should we use for the varying aspects?

∗ What calculations need to be done for each simulation?

∗ What results based on all simulations for each model are

required?

∗ How will the overall results be summarized and presented?
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The Question(s) of Interest

∗ It is very important to clearly define the questions of interest

prior to implementing a simulation study.

∗ In general a single simulation study should not try to answer

more than a small number of defined questions.

∗ A clear definition of the questions will tell us what charac-

teristics of the model need to be varied over separate runs in

the study.

∗ We then need to decide on the values of these factors that we

will use. The range of values should be as realistic as possible

but we do not want too many values as that increases the

length of the study and so may result in fewer replications at

each chosen value.
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Nuisance Factors

∗ Usually we are not interested in all possible factors in a given

system.

∗ For other factors we have two choices:

• Keep them fixed at a chosen value;

• Randomize them over all possible values by simulating

them.

∗ Which we choose will depend on how generalizable we require

our results to be. Randomization increases generalizability at

the expense of increased variation.

∗ Sometimes careful thought can completely remove the de-

pendence on some of these extraneous factors in the study.
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Computing Considerations

∗ The ease with which we can simulate the required random

variables;

∗ The computational time of a single run which will help de-

fine the number of different settings and also the number of

replicate runs within each setting.

∗ What we need to store from each run. Keeping too much can

make it hard to organize and summarize the results. Keeping

too little may mean you later find you are missing some vital

information and need to run the simulation again!

∗ Clearly storage capacity is also factor in how much informa-

tion you save from each run.
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Computing Considerations

∗ Computers will often stop in the middle of a run! Make sure
you have many checkpoints at which you save your output
during the run.

∗ A good rule of thumb is that you should save your current R
workspace around every 1-2 hours.

∗ Can any aspects of the simulation be run in parallel on sep-
arate processors?

∗ If this is possible, make sure that you set up your R code so
different R processes are writing to different workspaces or
one process will overwrite the others and you will lose data!

∗ Only when all of these aspects have been decided on and
properly documented should you proceed to programming
the study and setting it running.
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Analysis and Presentation of Conclusions

∗ A simulation study results in lots of data.

∗ An essential part of any study is a careful analysis of the

data.

∗ Standard statistical techniques for data description and sum-

marization are useful here.

∗ Proper presentation of the results is one of the most impor-

tant aspects.

∗ A lot of thought must be given to what summary statistics,

tables and figures best summarize the results of the study

and answer the original questions of interest.
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