
Markov Chain Monte Carlo

∗ Using the methods we have already seen we can easily gen-

erate from many univariate distributions.

∗ Another general technique which can be employed to gener-

ate observations from arbitrary distributions is Markov Chain

Monte Carlo (MCMC).

∗ We will examine two of the most widely used MCMC meth-

ods.

∗ As the name suggests they are based on Markov chains so we

will start by reviewing some of the basic properties of Markov

chains.
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Markov Chains

Definition 6

A Markov chain is a series of dependent random variables

X(0), X(1), . . . , X(t), . . .

such the conditional distribution of X(t+1) given the previous

observations in the sequence depends only on X(t).

This conditional distribution is called the Transition Kernel or

Markov Kernel of the chain and can be written as

X(t+1) | X(0), X(1), . . . , X(t) ∼ K(X(t), X(t+1))

where for any fixed value X(t) = x we have

X(t+1) | X(t) = x ∼ K(x,X(t+1))
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Stationary Distributions

Definition 7

A Markov chain is said to have a stationary distribution f if

X(t) ∼ f ⇒ X(t+1) ∼ f

∗ If K is the transition kernel of the Markov chain then the

stationary distribution f satisfies∫
X
K(x, y)f(x) dx = f(y)
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Irreducible, Positive Recurrent Markov Chains

∗ For our purposes we need some conditions on the chain.

∗ For one thing we need to chain to be able to get from any

set the sample space X to any other set in finite time. This

is called irreducibility.

∗ Secondly we need the chain to return to any set with non-

zero probability infinitely often in an infinite chain. This is

called positive recurrence.

∗ The chains that we will examine are designed to have these

two properties.
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Convergence of Markov Chains

∗ If X(1), X(2), . . . , is positive recurrent and irreducible Markov

chain then it can be shown that the marginal distribution of

X(t) converges to the stationary distribution f as t→∞.

∗ This is a fundamental property which allows us to use a

Markov chain to simulate at least approximately from the

distribution f .

∗ We can start the Markov chain at an arbitrary point x ∈ X
and allow it to run for a long time. Beyond some (unknonwn)

burn-in period t0 we will have that

X(t0+1), X(t0+2), . . .

is a sequence of dependent random variables all with marginal

distribution approximately equal to f .
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The Ergodic Theorem

Theorem 11

Suppose that X(0), X(1), . . . , X(N) is a sequence of observations
from a positive recurrent and irreducible Markov chain with sta-
tionary distribution f and suppose that h is a function such that
Ef [h(X)] exists then

1

N

N∑
t=1

h
(
X(t)

) p−→ Ef [h(X)]

∗ This is basically the Weak Law of Large Numbers applied to
a dependent sequence of random variables.

∗ Even though the Ergodic Theorem applies as stated above
we will usually use the form that says that for any t0

1

N

N∑
t=1

h
(
X(t0+t)

) p−→ Ef [h(X)]
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The Metropolis–Hastings Algorithm

∗ Suppose that we want to simulate from a distribution f .

∗ Select a candidate family of distributions q(y | x) which is
easy to simulate from.

∗ Then set up the Markov chain as follows such that X(t+1) is
found by
1. Given X(t) = x simulate Yt = y from q(y | x).
2. Compute

ρ(x, y) = min

{
f(y)

f(x)
×
q(x | y)

q(y | x)
, 1

}
3. If ρ(x, y) < 1 then generate Ut ∼ Uniform(0,1).
4. Set

X(t+1) =

{
y if ρ(x, y) = 1 or Ut < ρ(x, y)

x if Ut > ρ(x, Yt)
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Acceptance Probabilities

∗ At any given iteration the Metropolis–Hastings acceptance

probability is the quantity ρ(x, y).

∗ The overall acceptance probability is the expected value of

ρ(x, y)

ρ =
∫ ∫

ρ(x, y)f(x)q(y | x) dy dx

∗ We can estimate this quantity using the Metropolis–Hastings

acceptance probabilities and the Ergodic Theorem

1

N

N∑
t=0

ρ(X(t), Yt)
p−→ ρ
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Independence Metropolis–Hastings

∗ One method of generating the candidate variables is to do

so with no reference to the current state of the chain

q(y | x) = g(y)

∗ In this case the acceptance probability at each iteration be-

comes

ρ(x, y) = min

{
f(y)

f(x)
×
g(x)

g(y)
, 1

}

= min

{
f(y)

g(y)
×
g(x)

f(x)
, 1

}
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Choice of Candidate Density

∗ For this to work well, the choice of g is quite similar to the

choice of proposal distribution in the Accept-Reject algo-

rithm.

∗ In particular we require that g has the same support as f .

∗ It is not essential that f(x)/g(x) be bounded but the algo-

rithm will not work well if it is not.
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Independence Metropolis–Hastings and Accept-Reject Sam-
pling

∗ For the same pair of target and candidate densities (f, g),
the acceptance rate of the Metropolis–Hastings algorithm is
higher than for the Accept-Reject algorithm.

∗ However, the resulting sequence of values from Metropolis–
Hastings is a dependent sequence whereas the output of the
Accept-Reject algorithm is an iid sample.

∗ The Metropolis–Hastings algorithm will generally result in
many ties since if a candidate is rejected, the previous value
is repeated in the chain.

∗ It is necessary to find M > sup f(x)/g(x) for the Accept-
Reject algorithm but this is not necessary in the Metropolis–
Hastings algorithm.
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Independence Metropolis–Hastings

∗ In practice the Independence Metropolis–Hastings algorithm
is very sensitive to the choice of g.

∗ Having a bad candidate density can result in the chain be-
coming stuck at a point x with f(x)� g(x) for long periods
of time.

∗ This is particularly prone to occur if the variability under the
candidate distribution g is less than that under the target
distribution f .

∗ We should choose a candidate g as similar to the target as
possible and it is best to try to ensure that the variability of
the candidate distribution is at least as large as the target.

∗ For complex high dimensional problems commonly encoun-
tered in MCMC, this can be very hard to do.
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Random Walk Metropolis–Hastings

∗ An alternative to the Independence Metropolis–Hastings has

the candidate density centred at the current value.

∗ In this way the chain will move more frequently although

usually by smaller amounts.

∗ A random walk is defined by Yt = X(t) + εt where εt ∼ g.

∗ This results in the proposal kernel q(y | x) = g(y − x).

∗ The choice of g is not so critical here since we are essentially

exploring the target density locally.

∗ We still need to ensure that we run the chain long enough

that the entire support of f is explored.

5-13



Random Walk Metropolis–Hastings

∗ It is very common to have g symmetric about 0.

∗ In that case q(y | x) = g(y − x) = g(x− y) = q(x | y) and

so the Metropolis–Hastings acceptance probability becomes

ρ(x, y) = min

{
f(y)

f(x)
, 1

}

∗ This means that if the generated candidate Yt is in a region

with higher probability under f then we are guaranteed to

move to it, but there is still a non-zero probability that we

will move to regions with lower probability.
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Random Walk Metropolis–Hastings

∗ Common choices of g are the Uniform[−δ, δ] distribution or

the Normal(0, σ2) distribution.

∗ In either case, the choice of scale (δ or σ2) is crucial.

∗ If the scale is too small, then convergence will be very slow

since the candidate will always be close to the current value

of the chain.

∗ If the scale is too large, then the random walk algorithm

becomes more like the independence algorithm and so the

acceptance probability can be badly reduced and the chain

can get stuck for long periods.
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The Gibbs Sampler

∗ The Gibbs Sampler is designed to simulate from multivariate

distributions based on simulations from univariate distribu-

tions.

∗ Unlike the Metropolis–Hastings algorithm the Gibbs Sampler

is guaranteed to move at every iteration.

∗ Iterations are actually made up of a number of stages, typi-

cally as many stages as there are components in the random

vector being considered.

∗ For simplicity we shall start by considering the two-stage

version for a bivariate random vector.
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The Two Stage Gibbs Sampler

∗ Suppose that (X,Y ) is a bivariate random vector with joint

density f(x, y).

∗ The conditional distributions are then given by

fY |X(y | x) =
f(x, y)∫
f(x, y) dy

fX|Y (x | y) =
f(x, y)∫
f(x, y) dx

∗ In many situations, these conditional distributions are rela-

tively easy to find and to simulate from.

∗ The two stage Gibbs sampler constructs a bivariate Markov

Chain by alternately generating observations from these two

univariate densities.
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The Two Stage Gibbs Sampler

1. Initialise the chain at X(0).

2. At iteration t = 1,2, . . .

2.1 Generate Y (t) from fY |X(y | X(t−1)).

2.2 Generate X(t) from fX|Y (x | Y (t)).
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The Multi-Stage Gibbs Sampler

∗ The general multi-stage Gibbs Sampler is a natural extension

to the 2-stage situation.

∗ Suppose that X = (X1, . . . , Xd) where the Xi are univariate.

∗ Define the p full conditional densities

fi(xi | x1, . . . , xi−1, xi+1, . . . , xd) ∝ f(x)
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The Multi-Stage Gibbs Sampler

∗ The multi-stage Gibbs sampler is then

1. Initialise the chain at X(0) = (X(0)
1 , . . . , X(0)

d ).

2. At each iteration t = 1,2, . . .

2.1 Generate X(t)
1 from f1(x1 | X

(t−1)
2 , . . . , X(t−1)

d ).

2.2 Generate X(t)
2 from f2(x2 | X

(t)
1 , X(t−1)

3 , . . . , X(t−1)
d ).

...

2.i Generate X(t)
i from fi(xi | X

(t)
1 , . . . , X(t)

i−1, X
(t−1)
i+1 , . . . , X(t−1)

d ).

...

2.d Generate X(t)
d from fd(xd | X

(t)
1 , . . . , X(t)

d−1).
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Monitoring Convergence of MCMC

∗ It is very important to examine the output of the Markov

chain to assess if convergence to the stationary distribution

and/or ergodic convergence of estimates has occurred.

∗ The R package coda has a number of functions to do this.

∗ Plots of the components of the vector against iteration num-

ber are one important graphical diagnostic.

∗ Plotting the estimator of a function of interest against the

iteration number can also be useful in examining ergodic con-

vergence.
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Multiple Chains

∗ One drawback of many methods for convergence checking is
that we can often see “false convergence”.

∗ This commonly occurs when a chain gets “stuck” in a region
of the sample space and does not properly move over the
space.

∗ For this reason it is usually suggested that multiple chains
are run from different starting points.

∗ It is commonly suggested that the starting points for the
chains come from a distribution which is over-dispersed rel-
ative to the target distribution.

∗ If multiple chains, run for the same length of time, display
different behaviours then convergence is unlikely to have oc-
curred.
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