Bayesian Statistics

* We have seen that Monte Carlo and simulation methods can
be used to evaluate the performance of statistical methods.

* Monte Carlo can also be used for inference from a single
sample when integration is required.

* They can also be used for optimization problems but we shall
not consider that use of Monte Carlo in this course.

* Integration most commonly appears in Bayesian inference
problems.
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Basics of Bayesian Inference

X

In Bayesian statistics, all unknown quantities including the
parameters of the distribution are considered to be random
variables.

The distribution of the data X4,..., Xy is then a conditional
distribution given a value of the random variable 6.

We also need a distribution for the parameter 6.

This represents our knowledge of the parameter before we
see any data and is called the prior distribution.
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Bayesian Statistics Process

1. Specify a conditional distribution of the data given the pa-
rameters. This is identical to the usual model specification
in frequentist statistics.

2. Specify the prior distribution of the model parameter «(0).

3. Collect the data, xz1,...,xn.

4. Update the prior distribution based on the data observed
to give a Posterior Distribution of the parameter given the
observed data x, 7 (6 | x).

5. All inference is then based on this posterior distribution.
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Finding the Posterior Distribution

* Prior distribution =« (0)
* Data z1,...,zn and likelihood L(O | z1,...,xn).

* Posterior distribution
7(0)L(0 | z1,. .., zn)

70| x1,...,xn) =
' /w(@)L(@ (21, zn) dO

x w(O)L(O|x1,...,2n)



Bayesian Inference

* Typically we use the posterior mean and standard deviation
of the parameters for inference.
©.@)
EO|x1,...,zn) = / Or(0 | x1,...,xpn) dO
oo

00 2
/ 0%m(0 | 21,...,2n)d0 — (E(O | z1,...,n))

— 00

Var(0 | z1,...,xn)

* Since these quantities involve integration we can use Monte
Carlo.
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Monte Carlo Bayesian Inference

* Find the posterior distribution

70| x1,...,2n) ox w(O)L(O|x1,...,2n)

* Use one of the simulation methods described earlier to gen-
erate

01,....0y ~ 70| x1,...,2n)
* Note that, in many instances, we only have the posterior
distribution up to a constant which may depend on the data

but not on the parameters. so we need to use methods (such
as MCMC or accept-reject) that do not require this constant.
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Monte Carlo Bayesian Inference

* Given a sample from the posterior distribution we can use
simple Monte Carlo estimation of properties of the posterior
distribution.

_ 1 N
1=1

- A 1 N O\?
Var(9|$1,,$n) — NZ 02 — NZ 92
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Bayesian Credible Intervals

Definition 8
A 100(1 — a)% Bayesian Credible Interval is an interval [Ql, Gu}
such that

P(Hl <0 < Oy | $1,...,a:'n> = 1—«
* There are a number of ways to find these intervals.

* One method is to select 6; and 6, such that

(8% (8%
* T hese are called equi-tailed credible intervals.
* Note that the endpoints will depend on the data x1,...,zn

since they are based on the posterior distribution.
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Monte Carlo Credible Intervals

*k

Equi-tailed intervals require evaluation of the quantiles of the
posterior distribution.

Given a large sample from the posterior distribution we can
estimate these.
Suppose that we order the sample

(9(1) < 9(2) < e < 9(]\7)
and let No = |Na/2].

Then we can take

-~ -~

0 = 0(n,) Ou = O(N_N,)

We require a large N for this to be a good approximation
since the variability will be much too high if Na/2 is small.
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Multiparameter Bayesian Inference

* In many settings we have more than one unknown parameter.

*

Bayesian inference works in the same way with multiple pa-
rameters except that the prior and posterior distributions are
for multivariate random vectors.

This can really complicate the calculations in Bayesian infer-
ence.

MCMC methods, however, are very useful in this setting.

We can then simulate from the multivariate posterior distri-
bution and use Monte Carlo methods to approximate what-
ever functions of the parameter vector we are interested in.
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Example

Consider Bayesian inference for the Normal(u, c2) based on a
sample Xq,...,Xn

XZ-|,u,a2 td Normal(u, o2)

i~  Normal(m,wv)
— o~ Gammal(a, b)
o
where m, v, a,b are all specified constants and p and o2 are inde-
pendent a priori.

We wish to use Monte Carlo methods to examine the posterior
distribution of 8 = (u,c?) for the dataset

17.03 18.45 18.59 18.58 18.23 21.78 13.71 17.66
21.93 24.40 14.81 26.19 16.36 2297 26.67 24.68
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Hierarchical Bayesian Inference

* In the standard Bayesian model we have the likelihood (inter-
preted as the conditional distribution of the data given the
parameters) and a prior for the parameter vector, 6.

* The prior often depends on a vector of hyperparameters ~
and these are usually assumed known.

* An extension, however, could consider the v as random vari-
ables also and put a prior g(v;) on the components of ~

* Often these priors on the hyperparameters are defined to be
non-informative priors.
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Non-informative Priors

X

An attempt to define a prior distribution that will have no or
minimal effect on the posterior inference.

For location parameters we will often use 7w(u) o< 1 for u € R.

For scale parameters we often use the same prior but on the
log scale so we get 7(v) o« + for v > 0.

Note that neither of these are proper densities since

/OO m(y)dy = oo

— 00

Nonetheless using these improper priors usually still results
in proper posterior distributions.
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Hierarchical Bayesian Inference

* Consider the following hierarchical structure
X; W (x| 0) i=1,...,n0=(61,...,0p)
0, ~ mi0;]~), i=1...,007v=O157)
e o~ gk() k=1,...,d

and at each stage we assume conditional independence of
the components.

* We can then write the joint posterior as

n p d
(0,7 X) o< ] f(xi|0) ][ 7500 |v) 1] 9()
=1 =1 k=1

J
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Hierarchical Bayesian Inference

* Hence we can write down the full conditional posteriors

n
1=1

p
(v | 0, v—k, ) o< glvi) 1] =65 |~)
j=1

* We can then use the Gibbs Sampler to simulate from these
full conditional distributions.

* In some cases the full conditionals are not easy to simu-
late from. In such situations it is common to use a single
step of a Metropolis-Hastings algorithm to generate from the
full conditional. This is often called Metropolis-Within-Gibbs
Sampling.
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