
Bayesian Statistics

∗ We have seen that Monte Carlo and simulation methods can

be used to evaluate the performance of statistical methods.

∗ Monte Carlo can also be used for inference from a single

sample when integration is required.

∗ They can also be used for optimization problems but we shall

not consider that use of Monte Carlo in this course.

∗ Integration most commonly appears in Bayesian inference

problems.

6-1



Basics of Bayesian Inference

∗ In Bayesian statistics, all unknown quantities including the

parameters of the distribution are considered to be random

variables.

∗ The distribution of the data X1, . . . , Xn is then a conditional

distribution given a value of the random variable θ.

∗ We also need a distribution for the parameter θ.

∗ This represents our knowledge of the parameter before we

see any data and is called the prior distribution.
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Bayesian Statistics Process

1. Specify a conditional distribution of the data given the pa-
rameters. This is identical to the usual model specification
in frequentist statistics.

2. Specify the prior distribution of the model parameter π(θ).

3. Collect the data, x1, . . . , xn.

4. Update the prior distribution based on the data observed
to give a Posterior Distribution of the parameter given the
observed data x, π(θ | x).

5. All inference is then based on this posterior distribution.
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Finding the Posterior Distribution

∗ Prior distribution π(θ)

∗ Data x1, . . ., xn and likelihood L(θ | x1, . . ., xn).

∗ Posterior distribution

π(θ | x1, . . ., xn) =
π(θ)L(θ | x1, . . ., xn)∫
π(θ)L(θ | x1, . . ., xn) dθ

∝ π(θ)L(θ | x1, . . ., xn)
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Bayesian Inference

∗ Typically we use the posterior mean and standard deviation

of the parameters for inference.

E(θ | x1, . . ., xn) =
∫ ∞
−∞

θπ(θ | x1, . . ., xn) dθ

Var(θ | x1, . . ., xn) =
∫ ∞
−∞

θ2π(θ | x1, . . ., xn) dθ −
(
E(θ | x1, . . ., xn)

)2

∗ Since these quantities involve integration we can use Monte

Carlo.
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Monte Carlo Bayesian Inference

∗ Find the posterior distribution

π(θ | x1, . . . , xn) ∝ π(θ)L(θ | x1, . . . , xn)

∗ Use one of the simulation methods described earlier to gen-

erate

θ1, . . . , θN ∼ π(θ | x1, . . . , xn)

∗ Note that, in many instances, we only have the posterior

distribution up to a constant which may depend on the data

but not on the parameters. so we need to use methods (such

as MCMC or accept-reject) that do not require this constant.
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Monte Carlo Bayesian Inference

∗ Given a sample from the posterior distribution we can use

simple Monte Carlo estimation of properties of the posterior

distribution.
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Bayesian Credible Intervals

Definition 8

A 100(1 − α)% Bayesian Credible Interval is an interval
[
θl, θu

]
such that

P
(
θl < θ < θu | x1, . . ., xn

)
= 1− α

∗ There are a number of ways to find these intervals.

∗ One method is to select θl and θu such that

P
(
θ < θl | x1, . . ., xn

)
=

α

2
P
(
θ > θu | x1, . . ., xn

)
=

α

2

∗ These are called equi-tailed credible intervals.

∗ Note that the endpoints will depend on the data x1, . . ., xn

since they are based on the posterior distribution.
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Monte Carlo Credible Intervals

∗ Equi-tailed intervals require evaluation of the quantiles of the
posterior distribution.

∗ Given a large sample from the posterior distribution we can
estimate these.

∗ Suppose that we order the sample

θ(1) < θ(2) < · · · < θ(N)

and let Nα = bNα/2c.

∗ Then we can take

θ̂l = θ(Nα) θ̂u = θ(N−Nα)

∗ We require a large N for this to be a good approximation
since the variability will be much too high if Nα/2 is small.
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Multiparameter Bayesian Inference

∗ In many settings we have more than one unknown parameter.

∗ Bayesian inference works in the same way with multiple pa-

rameters except that the prior and posterior distributions are

for multivariate random vectors.

∗ This can really complicate the calculations in Bayesian infer-

ence.

∗ MCMC methods, however, are very useful in this setting.

∗ We can then simulate from the multivariate posterior distri-

bution and use Monte Carlo methods to approximate what-

ever functions of the parameter vector we are interested in.
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Example

Consider Bayesian inference for the Normal(µ, σ2) based on a

sample X1, . . . , Xn

Xi | µ, σ2 iid∼ Normal(µ, σ2)

µ ∼ Normal(m, v)

1

σ2
∼ Gamma(a, b)

where m, v, a, b are all specified constants and µ and σ2 are inde-

pendent a priori.

We wish to use Monte Carlo methods to examine the posterior

distribution of θ = (µ, σ2) for the dataset

17.03 18.45 18.59 18.58 18.23 21.78 13.71 17.66
21.93 24.40 14.81 26.19 16.36 22.97 26.67 24.68
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Hierarchical Bayesian Inference

∗ In the standard Bayesian model we have the likelihood (inter-

preted as the conditional distribution of the data given the

parameters) and a prior for the parameter vector, θ.

∗ The prior often depends on a vector of hyperparameters γ

and these are usually assumed known.

∗ An extension, however, could consider the γ as random vari-

ables also and put a prior g(γk) on the components of γ

∗ Often these priors on the hyperparameters are defined to be

non-informative priors.
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Non-informative Priors

∗ An attempt to define a prior distribution that will have no or

minimal effect on the posterior inference.

∗ For location parameters we will often use π(µ) ∝ 1 for µ ∈ IR.

∗ For scale parameters we often use the same prior but on the

log scale so we get π(v) ∝ 1
v for v > 0.

∗ Note that neither of these are proper densities since∫ ∞
−∞

π(γ) dγ = ∞

∗ Nonetheless using these improper priors usually still results

in proper posterior distributions.
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Hierarchical Bayesian Inference

∗ Consider the following hierarchical structure

Xi
iid∼ f(xi | θ) i = 1, . . . , n; θ = (θ1, . . . , θp)

θj ∼ πj(θj | γ), j = 1, . . . , p;γ = (γ1, . . . , γd)

γk ∼ gk(γk) k = 1, . . . , d

and at each stage we assume conditional independence of

the components.

∗ We can then write the joint posterior as

π(θ,γ |X) ∝
n∏
i=1

f(xi | θ)
p∏

j=1

πj(θj | γ)
d∏

k=1

g(γk)
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Hierarchical Bayesian Inference

∗ Hence we can write down the full conditional posteriors

π(θj | θ−j,γ,x) ∝ πj(θj | γ)
n∏
i=1

f(xi | θ) j = 1, . . . , p

π(γk | θ,γ−k,x) ∝ g(γk)
p∏

j=1

πj(θj | γ)

∗ We can then use the Gibbs Sampler to simulate from these

full conditional distributions.

∗ In some cases the full conditionals are not easy to simu-

late from. In such situations it is common to use a single

step of a Metropolis-Hastings algorithm to generate from the

full conditional. This is often called Metropolis-Within-Gibbs

Sampling.
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