
Computational Frequentist Inference

∗ While Monte Carlo techniques are very useful in Bayesian

inference, they are less applicable for standard (frequentist)

inference in general.

∗ Consider estimation of a quantity θ by some estimator θ̂.

∗ The primary vehicle for frequentist inference is the sampling

distribution of θ̂.

∗ Unfortunately this distribution is rarely known and even when

it is it usually depends on the unknown θ.

∗ In many situations, the best we have is a limiting distribution

as the sample size n gets very large but this may be inaccurate

for realistic sample sizes.
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The Bootstrap

∗ Recall that the sampling distribution of θ̂ involves considering
how θ̂ varies over repeated sampling.

∗ If we know the underlying distribution F then we could use
simulation to draw repeated samples from F , calculate the
estimator for each of these samples and use Monte Carlo
methods to approximate quantities such as the bias or sam-
pling variability.

∗ Of course we generally do not know F since it depends on θ.

∗ The bootstrap approximates the repeated sampling proce-
dure by taking repeated samples from an estimate of F rather
than F itself.

∗ The method was first proposed by Bradley Efron in the 1978
Weiss Lecture published in the Annals of Statistics in 1979.
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The Parametric Bootstrap

∗ Suppose that X1, . . ., Xn is a sample from a population with

cdf Fψ(x) = F (x;ψ) and we are interested in estimation of

θ = h(ψ) = t(Fψ).

∗ Since Fψ is known up to a finite set of parameters we can

use maximum likelihood estimation to estimate ψ.

∗ Then the maximum likelihood estimator of θ is

θ̂ = h(ψ̂) = t(Fψ̂).

∗ We are interested in estimating the bias and standard error

of θ̂.
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The Parametric Bootstrap

∗ Suppose that we draw a sample of size n from Fψ̂, X∗ =

(X∗1, . . ., X
∗
n).

∗ Then we can use maximum likelihood again to find ψ̂∗, the

maximum likelihood estimate of ψ̂.

∗ Hence we can get θ̂∗ = h(ψ̂∗) which is the mle of θ̂ based on

this simulated sample.

∗ The bootstrap idea is that under certain conditions and pro-

vided that the sampling from Fψ̂ mimics that from Fψ

(θ̂∗ − θ̂) |X∗ iid∼ Fψ̂
d−→ (θ̂ − θ) |X iid∼ Fψ.
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Bootstrap Bias and Variance

∗ The implementation of the bootstrap then assumes that the

sample size n is sufficiently large that

(θ̂ − θ) |X iid∼ Fψ
d≈ (θ̂∗ − θ̂) |X∗ iid∼ Fψ̂.

∗ Assuming this distributional approximation holds, we can es-

timate properties of the sampling distribution of θ̂ − θ using

those of θ̂∗ − θ̂.

∗ In particular we have the bias and variance approximations

b(θ̂) = E(θ̂ − θ |X iid∼ Fψ) ≈ E(θ̂∗ − θ̂ |X∗ iid∼ Fψ̂)

Var(θ̂) = Var(θ̂ − θ |X iid∼ Fψ) ≈ Var(θ̂∗ − θ̂ |X∗ iid∼ Fψ̂)
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Monte Carlo Parametric Bootstrap

∗ Since we know Fψ̂, we can sometimes find these bias and
variances analytically. Usually, however, we use Monte Carlo
techniques

∗ Generate R independent samples each of size n from Fψ̂.

∗ For each generated sample calculate the estimate θ̂∗ to pro-
duce the R repeated estimates of θ̂: θ̂∗1, . . . , θ̂

∗
R.

∗ Use the empirical bias and variance of the replicates to esti-
mate the bias and variance of θ̂.

b̂boot(θ̂) =
1

R

R∑
r=1

(θ̂∗r − θ̂)

V̂arboot(θ̂) =
1

R− 1

R∑
r=1

(θ̂∗r − θ̂∗)2
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Alternatives to the Parametric Bootstrap

∗ Since we are in a parametric family there are always alterna-

tives to the parametric bootstrap.

∗ When the true sampling distribution of θ̂ − θ is completely

known then using this distribution will always give better

results since the bootstrap is an asymptotic procedure.

∗ In the case of the mle it can be shown that

√
n(θ̂ − θ)

d−→ Normal
(
0, v(θ)

)
where v(θ) is the Cramér-Rao lower bound.

∗ Generally v(θ) is unknown since it depends on θ so we use

v(θ̂) instead.
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Comparison

∗ A major advantage of the asymptotic likelihood inference is
that there is no need for Monte Carlo simulation.

∗ This is clearly a computational saving but it also improves
the accuracy since the bootstrap accuracy is a function of
the simulation size R.

∗ However it is impossible to estimate the bias or any asym-
metry in the distribution of θ̂ − θ for finite n.

∗ The parametric bootstrap alleviates these problems some-
what since it does not impose unbiasedness or symmetry.

∗ Both results are asymptotic in the sample size n so neither
is truly correct for finite n. The bootstrap, however, may be
closer to accurate for finite n and very large R.
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An Example

∗ Let us compare the parametric bootstrap and the asymptotic

likelihood inference for a specific example.

∗ Suppose that X1, . . ., Xn are exponential with rate parameter

λ.

∗ The mle of λ is λ̂ = 1/X.

∗ The asymptotic variance of
√
n(λ̂− λ) is

v(λ) = λ2 ⇒ se(λ̂) = λ̂/
√
n

∗ For the parametric bootstrap we generate samples from the

exponential distribution with rate equal to λ̂, and use R repli-

cates of λ̂∗ = 1/X∗ to find the bias and standard error.
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Example Continued

∗ In this case the exact distribution of λ̂ is known since

X ∼ Gamma(α = n, β = 1/nλ)

∗ From this we find the bias and variance

b(λ̂) =
λ

n− 1
Var(λ̂) =

n2λ2

(n− 1)2(n− 2)

∗ Since these depend on the unknown λ we replace λ by λ̂ to

get the estimated bias and standard error.

∗ It is interesting to note that these results are the same as the

theoretical parametric bootstrap results (assuming an infinite

Monte Carlo size).
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Simulation Study

∗ Based on the previous example we can conduct a simulation

study.

∗ We will use λ = 0.1 and n = 10.

∗ Taking N = 1000 samples we can compare the following

quantities

1. The true bias and standard deviation.

2. The Monte Carlo repeated sampling bias and standard

deviation.

3. The average bias and standard error based on the exact

distribution.

4. The average asymptotic maximum likelihood standard er-

ror (bias is not available).

5. The average parametric bootstrap bias and standard error.
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Results of Simulation Study

∗ The true bias and standard deviation are 0.0111 and 0.0393.

∗ Monte Carlo estimates from the simulation are 0.0111 and

0.0400.

∗ The bias and standard error from the exact distribution have

means 0.0123 and 0.0436.

∗ The asymptotic standard error has mean 0.0351 so is anti-

conservative.

∗ The bootstrap bias and standard error have means 0.0124

and 0.0436.

∗ The bootstrap results and those from the exact distribution

are quite similar for all samples.

∗ The asymptotic method cannot estimate bias and badly un-

derestimates the standard error.
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The Nonparametric Bootstrap

∗ The bootstrap is probably most powerful when we do not

wish to make any distributional assumptions.

∗ In such cases there are rarely any asymptotic results such as

those for the likelihood and the sampling distribution of an

estimator is almost always unknown.

∗ The bootstrap can still be applied, however.

∗ The idea is still the same: estimate the population distribu-

tion F and consider estimates based on sampling from this

estimated distribution.
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Nonparametric Estimation of F

∗ To apply the bootstrap we still need to estimate the unknown

F .

∗ The most common estimator is the empirical distribution

function.

Definition 9

Suppose that X1, . . ., Xn is a sample from a population with cdf

F (x), then the empirical distribution function is defined by

F̂ (x) =
1

n

n∑
i=1

I(Xi 6 x)
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Properties of the EDF

∗ The empirical distribution function is a valid distribution func-

tion.

∗ It corresponds to a discrete distribution putting equal mass

on each of the observed values x1, . . ., xn.

Theorem 12

Suppose that F is a distribution function and F̂ is the empirical

distribution function based on X1, . . ., Xn then for any point x ∈ IR

E
(
F̂ (x)

)
= F (x)

Var
(
F̂ (x)

)
=

F (x)
(
1− F (x)

)
n
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Statistical Functionals

∗ In nonparametric inference, there are no parameters to esti-

mate.

∗ Instead we concentrate on estimation of quantities called

statistical functionals.

∗ A statistical functional is a (usually scalar) quantity which

can be defined by θ = t(F ).

∗ Some statistical functional that might be of interest are

• t(F ) = F (x0) = PF (X 6 x0), a tail probability

• t(F ) = F−1(q), a quantile.

• t(F ) = F−1(0.5), the median.

• t(F ) =
∫
xdF (x) = EF (X), the mean.
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The Plug-in Principle

∗ Suppose that θ = t(F ) is a statistical functional.

∗ The plug-in principle says that to find an estimator of θ we

should replace F with an estimator of F .

∗ In the parametric setting we have F (x) = Fψ(x) = F (x;ψ)

then we would estimate ψ by ψ̂ and use the estimator

θ̂ = t
(
Fψ̂

)
.

∗ For nonparametric inference we use the empirical distribution

function and so get the estimator

θ̂ = t
(
F̂
)
.
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The Nonparametric Bootstrap

∗ As our estimator of the population distribution function we
will take the empirical distribution function F̂ .

∗ We will generally be interested in some scalar functional θ =
t(F ) which we will estimate using the plug-in estimator θ̂ =
t(F̂ ).

∗ As θ̂ is an estimator, we can always write

θ̂ = t(F̂ ) = θ̂(X1, . . ., Xn).

∗ We then consider samples X∗1, . . ., X
∗
n drawn from F̂ and the

bootstrap replicates

θ̂∗ = θ̂(X∗1, . . ., X
∗
n)

∗ The procedure is then identical to the parametric bootstrap.
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The Nonparametric Bootstrap

∗ As with the parametric bootstrap we can sometimes find the
nonparametric bootstrap bias and standard error exactly.

∗ We do this by recalling that F̂ corresponds to a discrete dis-
tribution with equal probability at each of the n datapoints.

∗ For example we can show

E∗
(
X∗

)
= x Var∗

(
X∗

)
=

1

n

n∑
i=1

(xi − x)2

∗ From these results we can get the bootstrap bias and stan-
dard error of the sample mean.

∗ Usually, however, the quantity of interest does not allow us
to use analytical calculations and so we use Monte Carlo
methods instead.
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Sampling From F̂

∗ Recall that F̂ corresponds to a probability mass function with

probability 1/n on each of the observed datapoints x1, . . ., xn.

∗ Sampling from this discrete distribution is done by generating

U ∼ uniform(0,1) and then setting

X∗ = x(i) if
i− 1

n
< U 6

i

n
; i = 1, . . . , n.

where x(1), x(2), . . . , x(n) are the ordered values of x1, . . ., xn.

∗ This is exactly the same as drawing one of the x1, . . ., xn at

random.

∗ Getting a sample from F̂ therefore is equivalent to sampling

from x1, . . ., xn with replacement.

7-20



Monte Carlo Nonparametric Bootstrap

∗ To implement the nonparametric bootstrap using Monte Carlo
we proceed as follows:
1. Let θ̂ = t(F̂ ) = h(X1, . . ., Xn) be the estimate of the quan-

tity of interest.
2. Generate X∗1, . . ., X

∗
n

iid∼ F̂ by sampling with replacement
from X1, . . ., Xn.

3. Calculate θ̂∗ = h(X∗1, . . ., X
∗
n).

4. Repeat Steps 2 and 3 R times to get θ̂∗1, . . . , θ̂
∗
R.

5. The bootstrap bias and variance estimates are then ex-
actly as for the parametric bootstrap.

bboot(θ̂) =
1

R

R∑
r=1

(θ̂∗r − θ̂) = θ̂∗ − θ̂

vboot(θ̂) =
1

R− 1

R∑
r=1

(θ̂∗r − θ̂∗)2
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Drawbacks of the nonparametric bootstrap

∗ The nonparametric bootstrap does not always work.

∗ One of the major problems is due to the discreteness of

bootstrap distribution.

∗ For the sample mean, there are only
(

2n−1
n−1

)
possible values

that X
∗ can take on. Fortunately as n → ∞ this number

increases quite rapidly and so the bootstrap distribution be-

comes like a continuous distribution.

∗ For some other estimators, such as the sample median, the

problem is even more severe.

∗ An estimator for which the nonparametric bootstrap does

not work at all is the sample maximum (or minimum).
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Other Nonparametric Estimates of F

∗ Although it is most commonly used and has some very nice

asymptotic properties, there is no reason why we have to use

the empirical distribution function to estimate F .

∗ Since discreteness causes problems, maybe using a continu-

ous estimate of F would be better.

∗ The most common continuous estimate of a density function

is the kernel density estimator

f̂(x) =
1

nh

n∑
i=1

w

(
x− xi
h

)
where w is a continuous pdf symmetric about 0 with variance

1.

7-23



Sampling From a Kernel Estimator

∗ The kernel density estimator can be written as a finite mix-
ture density

f̂(x) =
n∑
i=1

pigi(x)

where pi = 1/n and gi is a member of the location-scale
family with mean xi, variance h2 and standard density w.

∗ Sampling and observation X from gi is equivalent to sampling
Y ∼ w and setting X = xi + hY .

∗ Hence we can sample X∗ from f̂ by
1. Sample Z∗ from the pmf with probability 1/n on each of

x1, . . ., xn.
2. Sample Y ∗ ∼ w.
3. Set X∗ = Z∗+ hY ∗.
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Sampling From a Kernel Estimator

∗ If X∗ is sampled from the kernel estimator then

E∗
(
X∗

)
= x Var∗

(
X∗

)
=

1

n

n∑
i=1

(xi − x)2 + h2

∗ Hence the variance of the bootstrap observations is greater

than the variance of the original observations.

∗ This is not a big problem provided h→ 0 as n→∞.

∗ However, for any finite n, the variance of observations gen-

erated from the smoothed distribution will be greater than

those from F̂ and so standard error estimates will generally

also be larger.
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The Shrunken Smoothed Bootstrap

∗ One way to correct this is the shrunken smoothed bootstrap

which uses the continuous density estimator

f̂(x) =
1

nbh

n∑
i=1

w

(
x− a− bxi

hb

)
where the quantities a and b are

b =

[
1 +

nh2∑
(xi − x)2

]−1/2

a = (1− b)x

∗ Sampling from this distribution is also very easy and is

X∗ = a+ bZ∗+ hbY ∗

where Z∗ and Y ∗ are as before.
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Extension to Multiple Sample Problems

∗ In many situations, we actually have 2 or more samples from

different populations

Xk,1, . . . , Xk,nk
iid∼ Fk k = 1, . . . ,K

∗ The jackknife and bootstrap extend easily to such situations.

∗ For the bootstrap we estimate each of the Fk separately and

sample

X∗k,1, . . . , X
∗
k,nk

iid∼ F̂k k = 1, . . . ,K

∗ Estimates of bias and variance are as before.
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Bootstrap Confidence Intervals

∗ Suppose that θ̂ is an estimator of θ and Let aα/2 be the point

such that

P(θ̂ − θ < aα/2) = α/2

∗ A 100(1−α)% equi-tailed confidence interval for θ can then

be found from

P(aα/2 < θ̂ − θ < a1−α/2) = 1− α

to be the interval [
θ̂ − a1−α/2, θ̂ − aα/2

]
∗ To derive confidence intervals we need to find the quantiles

of the distribution of θ̂ − θ.
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Bootstrap Normal Intervals

∗ Assume that θ̂ − θ .∼ Normal(b, v)

∗ Approximate b and v using the bootstrap estimates b̂boot and

v̂boot

∗ 100(1− α)% confidence interval is then[
θ̂ − b̂boot − zα/2

√
v̂boot, θ̂ − b̂boot + zα/2

√
v̂boot

]
where zα/2 is the upper α/2 quantile of the standard normal.
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Basic Bootstrap Interval

∗ In a Monte Carlo bootstrap we can use a normal quantile-

quantile plot of the bootstrap replicates to assess approxi-

mate normality.

∗ If this plot is badly non-linear then we should not rely on the

intervals which assume normality.

∗ We can apply the bootstrap technique to say that

θ̂∗ − θ̂ d≈ θ̂ − θ

and so we can approximate aα/2 by aboot,α/2 such that

P∗(θ̂∗ − θ̂ < aboot,α/2) = α/2

∗ Typically we cannot do this analytically.
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Monte Carlo Basic Bootstrap Interval

∗ Use Monte Carlo methods to get the bootstrap replicates

θ̂∗1 − θ̂, . . . , θ̂
∗
R − θ̂

∗ Order the bootstrap replicates and use them to estimate the

correct bootstrap quantile

âboot,α/2 = θ̂∗(Rα/2) − θ̂

where θ̂∗(Rα/2) is the Rα/2 ordered bootstrap replicate.

∗ In that case the interval becomes[
2θ̂ − θ̂∗(R(1−α/2)), 2θ̂ − θ̂∗(Rα/2)

]

7-31



Monte Carlo Basic Bootstrap Interval

∗ Accurate Monte Carlo estimation of tail quantiles is more
challenging than Monte Carlo estimation of means.

∗ We generally need to take R to be quite large to get stable
confidence interval limits

∗ We should generally take R such that Rα/2 > 50.

∗ This means we need R > 2000 for 95% intervals and R >
5000 for 99% intervals.

∗ Of course increasing the simulation size will reduce simulation
variability and so improve the stability of the intervals.

∗ The actual coverage of the intervals, however, is determined
by the sample size n.
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Parameter Transformations

∗ Intervals are not transformation invariant.

∗ Performance can be improved using by working on an appro-

priate scale.

∗ Suppose that h is a one-to-one function and let us define

φ = h(θ).

∗ We will sometimes find it useful to construct a confidence

interval for φ and then apply the inverse transformation to

the endpoints to get a confidence interval for θ = h−1(φ).

∗ We can base our intervals on bootstrap replicates

φ̂∗r − φ̂ = h(θ̂∗r)− h(θ̂)

7-33



Percentile Intervals

∗ If we can assume that the distribution of θ̂ − θ is symmetric

about 0 then we have that −aα/2 = a1−α/2

∗ This results in the interval[
θ̂ + aα/2, θ̂ + a1−α/2

]
∗ Now suppose we use a Monte Carlo bootstrap so that

âboot,α/2 = θ̂∗(Rα/2) − θ̂ âboot,1−α/2 = θ̂∗(R(1−α/2)) − θ̂

∗ Then the bootstrap interval becomes[
θ̂∗(Rα/2), θ̂

∗
(R(1−α/2))

]
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Percentile Intervals on Transformed Scale

∗ Suppose that h is a one-to-one transformation and φ = h(θ).

∗ If we assume that the distribution of φ̂−φ is symmetric about

0 then we get the percentile interval for φ[
φ̂∗(Rα/2), φ̂

∗
(R(1−α/2))

]
∗ If we know apply h−1 to get an interval for θ we see it is[

θ̂∗(Rα/2), θ̂
∗
(R(1−α/2))

]
∗ The percentile interval is transformation invariant.

∗ The interval is valid as long as some h exists such that the

distribution of h(θ̂)− h(θ) is symmetric about 0.
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