
STAT4CI3/6CI3 Computational Methods for Inference

Assignment 3 Due at 1:30pm on Monday, March 18, 2019

Instructions:

1. Ensure that all R code is properly commented and attach a print out with your written
solution. Also mail your R code as a single plain text file to cantya@mcmaster.ca using
the subject
S4CI3 Assignment 3: <Name> <Student ID>

2. Start each question on a new page and submit questions in the same order as given below.

3. You are expected to show all details of your solution and any results taken from my notes or
the textbook must be clearly and properly referenced.

4. No extensions to the due date and time will be given except in extreme circumstances and
late assignments will not be accepted.

5. Students are reminded that submitted assignments must be their own work. Submission of
someone else’s solution (including solutions from the internet or other sources) under your
name is academic misconduct and will be dealt with as such. Penalties for academic mis-
conduct can include a 0 for the assignment, an F for the course with an annotation on your
transcript and/or dismissal from your program of study.

Q. 1 Suppose we wish to simulate from a gamma distribution with parameters α > 1 and β > 0.

a) Show that if α = k, where k > 1 is an integer, then the required random variable can be
written as a sum of k exponential random variables and hence derive a way to generate
from the gamma(k, β) distribution.

b) If α is not an integer, we can use the accept-reject method generating from the can-
didate gamma(k, b) distribution where k is taken to be the largest integer less than α.
Show that the optimum value of b to use is b = αβ/k. Generate 10, 000 independent
observations from the appropriate candidate density and 10, 000 uniform(0, 1) random
variates and use these in an accept-reject algorithm to generate a sample from a Gamma
distribution with shape parameter α = 3.2 and scale parameter β = 2.

c) Using the same set of candidate gamma variables and the same set of uniforms, run an
independence Metropolis-Hastings algorithm to generate a chain of 10, 000 observations
from the Gamma distribution with α = 3.2 and β = 2.
Generate the initial value x0 from the correct target distribution using the rgamma func-
tion in R so that the chain is guaranteed to be sampling from the correct target distri-
bution at all iterations.

d) Compare the two samples in terms of their acceptance probabilities and how well the
resulting samples estimate the mean and variance of the Gamma(α = 3.2, β = 2)
distribution using Monte Carlo.
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Q. 2 In his important 1970 Biometrika paper, W. K. Hastings considered the problem of simulating
from a standard normal distribution using a random walk Metropolis algorithm with a
Uniform(−δ, δ) error distribution.

a) Write an R function to return the observed chain for a given initial value x(0) and value
of δ.

b) Starting at x(0) = 0, take δ = 1 and run the chain for 15, 000 iterations and discard
the first 5, 000 iterations. Plot the rest of the chain in order, draw a histogram of
the generated values superimposed with the standard normal density and examine the
auto-correlation function of the chain.

c) Repeat part (b) for each value of δ ∈ {0.1, 0.5, 2, 10} and comment on how the
performance of the algorithm changes with δ. Which of the 5 values of δ in this question
would you suggest using?

Q. 3 The bivariate normal distribution has probability density function f(x, y | µ1, µ2, σ
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for any (x, y) ∈ IR2.

a) Write an R function to generate from the bivariate normal distribution using a random
walk Metropolis-Hastings algorithm where, at each iteration, the candidate vector is
generated as two independent normal random variables with means given by current
value of the bivariate chain and with variances given by σ2

1 and σ2
2.

b) Prove that

X | Y = y ∼ normal

(
µX|Y=y = µ1 +

ρσ1
σ2

(y − µ2), σ
2
X|Y=y = (1− ρ2)σ2

1

)
and deduce the distribution of Y | X = x.

c) Write an R function to implement the Gibbs sampler for simulating bivariate normal
observations.

d) Implement both the Metropolis–Hastings and Gibbs Sampling algorithms to simulate
samples of N = 10, 000 random vectors from the bivariate normal with parameters

µ1 = −1, µ2 = 1, σ2
1 = 1, σ2

2 = 4, ρ = −0.5

Calculate the means, variances and correlation from each sample and compare them
to the true values. Plot the marginal histograms and superimpose the true marginal
densities.
You may assume without proof that marginally X ∼ normal(µ1, σ

2
1) and Y ∼ normal(µ2, σ

2
2)
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Q. 4 Suppose that the random variable X comes from a binomial distribution with parameters n
and θ, both unknown. We will conduct Bayesian inference with the following prior specifi-
cations

n ∼ Poisson(µ) independent of θ ∼ Beta(α, β)

where µ, α and β are known.

a) Show that for a given value X = x the posterior distribution satisfies

π(n, θ | x) ∝ µn

(n− x)!
θx+α−1(1− θ)n−x+β−1

b) Show that, for given θ, the conditional posterior distribution for n is of the form x+ Y
where Y is a Poisson random variable. Give the mean of the random variable Y .

c) Show that, for given n, the conditional posterior distribution for θ is a Beta distribution
and give the parameters of the distribution.

d) Write an R function to implement a Gibbs Sampler in this case and run your sampler
for 10,000 iterations after an initial burn-in of 2000 iterations if we have a prior mean
for n of µ = 16 and α = 2 β = 4 in the prior for θ and we observe x = 2. Plot the
iterations of the Markov Chain and give the Monte Carlo estimates of the posterior
means and variances as well as the posterior correlation between n and θ.

e) Now suppose that we do not actually observe X but are interested in its marginal
distribution. The binomial model gives the full conditional for X given n and θ. Write
and implement the Gibbs sampler with the same prior values of the distributions of n
and θ but now considering the random vector (X,n, θ). Use the results of your chain
to estimate the mean, median and variance of the random variable X. Have marginal
means and variances and the correlation for n and θ changed when x is not observed?
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