
STAT4CI3/6CI3 Computational Methods for Inference

Assignment 1 Solutions

R code for this solution in a plain text file is also available separately

Note that, Questions 1-4, the first number in the marks is for STATS 4CI students (25 marks
per question) whereas the second is for STATS 6CI students (20 marks per question). Question 5
is only for STATS 6CI students so there is only one mark out of a total of 20.

Q. 1 a) Using the formulae given for the various cases we get the following function. There was
one situation not covered in the question which is an infinite sum with r 6 −1 which
is undefined since the sum oscillates between increasing positive and negative numbers
without bound. Since I didn’t mention it, no marks will be deducted for omitting that
part but I do include it in my solution for completeness

sum.geom <- function(x,r,n) {

#

# Function to give finite or infinite sums of

# a geometric series.

# Arguments:

# x: the first term in the series

# r: the ratio between successive terms

# n: the number of terms can be a positive integer for

# finite sums or Inf for infinite sums.

#

if (n<=0) stop("n must be postive")

if (x==0) return(0)

if (r==0) return(x)

if (is.finite(n)) {

if (n!=floor(n)) {

n <- floor(n)

warning(paste("Non-integer n rounded down to",n))

}

if (r != 1) return(x*(1-r^n)/(1-r))

else return(n*x)

}

else {

if (r >= 1)

return(Inf)

else if (r <= -1)

return(NaN)

else

return(x/(1-r))

}

}

[15/10 marks]
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b) As explained in the question, a recursive function is one that calls itself unless some
condition is met. Such a function must have an if statement to end recursion. It is
not always very efficient but can be useful in some situations.

For the choose function we will stop recursion if n = r or if r = 0, both of which cases
give us a value of 1. Otherwise we call the function twice for the two parts on the
right-hand side of the equation in the question.

choose.rec <- function(n,r) {

#

# Recursive function to calculate the number of ways to

# choose r objects from n

#

if (n != floor(n)) {

warning("non-integer n rounded down")

n <- floor(n)

}

if (r != floor(r)) {

warning("non-integer r rounded down")

r <- floor(r)

}

if (n==0) stop("n must be greater than 0")

if (n<r) stop("n must be greater than or equal to r")

if ((n==r)||(r==0)) return(1)

else

choose.rec(n-1,r-1)+choose.rec(n-1,r)

}

[10/10 marks]
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Q. 2 a) Here is my code for the pooled t-test of equality of means. For full marks your code
needs to consider the three possible alternatives, allow for different size of test, print
out a summary of the test and return some of the important aspects of the test.

pooled.t.test <- function(x,y, alpha=0.05, alternative="two-sided") {

# Function to do a pooled t-test of equality of means based

# on two independent samples

# Arguments:

# x,y - two numeric vectors corresponding to the 2 samples

# alpha - significance level (default 0.05)

# alternative - alternative hypothesis, default is "two-sided"

# other possible values are "less" and "greater"

n1 <- length(x)

xbar <- mean(x)

s2x <- var(x)

n2 <- length(y)

ybar <- mean(y)

s2y <- var(y)

# Calculate the pooled estimate of the common variance and test statistic

s2p <- ((n1-1)*s2x+(n2-1)*s2y)/(n1+n2-2)

stat <- (xbar-ybar)/sqrt(s2p*(1/n1+1/n2))

# Next find the p-value (which depends on the alternative)

if (alternative=="two-sided")

pv <- 2*pt(abs(stat), n1+n2-2, lower=FALSE)

else if (alternative=="less") pv <- pt(stat, n1+n2-2)

else if (alternative=="greater") pv <- pt(stat, n1+n2-2, lower=FALSE)

else pv <- NA

reject <- pv<alpha

# Print out some results

cat(paste("Test Statistic =", round(stat,4), "\n"))

if (!is.na(pv)) {

if (alternative=="two-sided")

cat("Alternative hypothesis: mu(X) does not equal mu(Y)\n")

else if (alternative=="greater")

cat("Alternative hypothesis: mu(X) is greater than mu(Y)\n")

else cat("Alternative hypothesis: mu(X) is greater than mu(Y)\n")

cat(paste("P-value =", format(pv,digits=4), "\n"))

cat(paste(ifelse(reject, "Reject", "Do not reject"),

"the null hypothesis at the alpha =",alpha,"level\n"))

}

else cat(paste("Cannot calculate p-value, alternative was",

alternative, "but should be \"two-sided\",

\"less\" or \"greater\"\n"))

# Return results invisibly because we have already printed out a summary.

output <- list(means=c(xbar,ybar), vars=c(s2x,s2y),

pooled.s2=s2p, stat=stat, pv=pv)

invisible(output)

}

[10/8 marks]
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Now we test the code with the given data

> x <- c(6.35, 3.47, 6.54, 6.21, 8.72, 10.43)

> y <- c(8.99, 10.94, 9.88, 11.50, 9.90, 11.89, 12.10, 9.33)

> pooled.t.test(x,y)

Test Statistic = -3.7362

Alternative hypothesis: mu(X) does not equal mu(Y)

P-value = 0.002842

Reject the null hypothesis at the alpha = 0.05 level

[2/2 marks]

b) To do forward selection we need to loop over the possible models at each stage of the
analysis. There are a number of ways to do this and all are equally acceptable. I find
it easiest to deal with the first stage separately and then loop over subsequent stages
but that is not necessary. In my output I returned a summary of the variables added
at each stage plus a list of all the results at each stage. You will get full marks as long
as you return something along the lines of one of these as well as the final fitted model
from lm. Here is my code:

forward.select <- function(y, X, alpha=0.05) {

# Function to do forward selection

# Arguments:

# y - a quantitative response vector

# X - a matrix (or data.frame) of covariates

# alpha - a maximum significance level for inclusion

Stage <- 1

p <- ncol(X)

Vars <- 1:p

if (is.null(names(X)))

names <- paste("X",1:p,sep="")

else

names <- names(X)

names.all <- names

Data.model <- data.frame(y=y)

Results <- list(Stage1=matrix(NA, ncol=5, nrow=p))

# The first Stage; Examine each column of X

for (i in 1:p){

fit <- coef(summary(lm(y~X[,i])))

Results$Stage1[i,] <- c(i,fit[2,])

}

# Sort the Results by p-value

Results$Stage1 <- Results$Stage1[order(Results$Stage1[,5]),]

if (Results$Stage1[1,5]>=alpha)

return(model=lm(y~1), Results=Results$Stage1)

# Now the first is the added variable provided we did

# not exit the function at the last line.

v.add <- Results$Stage1[1,1]

k <- 1
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continue <- T

# Now we use a while loop for the remaining stages

while(continue){

# The current data for the model is set up

# Also we update the potential variables to be added

names.mod <- c(names(Data.model), names.all[v.add])

Data.model <- cbind(Data.model,X[,v.add])

names(Data.model) <- names.mod

names <- names[Vars!=v.add]

Vars <- Vars[Vars!=v.add]

k <- k+1 # The Stage Number

j <- 0 # A counter for the variables tried at this stage

Stage <- paste("Stage",k,sep="")

Results[[Stage]] <- matrix(NA, ncol=5,

nrow=length(Vars))

for (i in Vars){

# Loop over the potential variables

j <- j+1

Data.fit <- cbind(Data.model,X[,i])

fit <- coef(summary(lm(y~., data=Data.fit)))

Results[[Stage]][j,] <- c(i,fit[k+1,])

}

# Order the results for this stage and select

# the variable with the smallest p-value

Results[[Stage]] <- Results[[Stage]][order(Results[[Stage]][,5]),]

v.add <- Results[[Stage]][1,1]

# Decide if any variable will be added

continue <- Results[[Stage]][1,5] < alpha

}

# Now summarize all of the results

Res <- t(sapply(Results, function(x) x[1,])[,-k])

v.add <- names.all[Res[,1]]

Summary <- data.frame(v.add, Res)

names(Summary) <- c("Variable", "Index", "Estimate",

"Std Error", "t stat", "p-value")

row.names(Summary) <- paste("Stage",1:nrow(Res))

# Get the final fitted model and print it out.

fit <- lm(y~., data=Data.model)

cat("Final Fitted Model is:\n")

print(fit)

# Return the model summary of stages and full results.

invisible(list(model=fit, Summary=Summary,

Results=Results))

}

[10/8 marks]
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When I fit this to the nuclear data I get the following

> nuclear.forward <- forward.select(nuclear$cost, nuclear[,-1])

Final Fitted Model is:

Call:

lm(formula = y ~ ., data = Data.model)

Coefficients:

(Intercept) date cap pt ne

-4756.2145 71.0193 0.4198 -128.9438 99.3988

A summary of the fitting is as follows:

> nuclear.forward$Summary

Variable Index Estimate Std Error t stat

Stage 1 date 1 102.289283 24.2309152 4.221437

Stage 2 cap 4 0.413225 0.1076052 3.840195

Stage 3 pt 10 -162.763622 52.2900431 -3.112708

Stage 4 ne 6 99.398780 38.6361959 2.572685

p-value

Stage 1 0.0002070933

Stage 2 0.0006163248

Stage 3 0.0042425132

Stage 4 0.0159076839

[3/2 marks]

6



Q. 3 a) First we need to find the values of f(x) and hence the cumulative distribution function
F (x).

From the question we see that the probability mass function is

x 1 2 3 4 5
f(x) 0.10 0.05 0.10 0.25 0.50

Thus the cumulative distribution function is

F (x) =



0 x < 1
0.10 1 6 x < 2
0.15 2 6 x < 3
0.25 3 6 x < 4
0.50 4 6 x < 5
1.00 x > 5

[5/4 marks]

Using the method described in class we get the following algorithm

1. Generate U ∼ Uniform(0, 1).

2. If U 6 0.1 then return X = 1
If 0.10 < U 6 0.15 then return X = 2
If 0.15 < U 6 0.25 then return X = 3
If 0.25 < U 6 0.50 then return X = 4
If U > 0.50 then return X = 5.

I will accept this but it is actually more efficient to consider the reverse order of com-
parisons in Step 2. so we return faster as in

2. If U > 0.5 then return X = 5
If 0.25 < U 6 0.5 then return X = 4
If 0.15 < U 6 0.25 then return X = 3
If 0.10 < U 6 0.15 then return X = 2
If U 6 0.10 then return X = 1.

[5/4 marks]

Applying this algorithm to the given uniform values we get

U 0.5197 0.1790 0.9994 0.6873 0.7294 0.5791 0.0361 0.2581 0.0026 0.8213
X 5 3 5 5 5 5 1 4 1 5

[2/2 marks]

b) The probability mass function for the sum of the numbers shown on a pair of indepen-
dent dice is

x 2 3 4 5 6 7 8 9 10 11 12

p(x)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36
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Hence the cumulative distribution function for this random variable is

F (x) =



0 x < 2

1
36

2 6 x < 3

3
36

3 6 x < 4

6
36

4 6 x < 5

10
36

5 6 x < 6

15
36

6 6 x < 7

21
36

7 6 x < 8

26
36

8 6 x < 9

30
36

9 6 x < 10

33
36

10 6 x < 11

35
36

11 6 x < 12

1 x > 12

[5/4 marks]

Hence we can generate a Uniform(0,1) random variable and compare it to this cumu-
lative distribution function. Here is an efficient way to do this.

dice.gen <- function(n) {

# Function to generate n random observations of the total in a

# roll of two fair dice.

u <- runif(n)

x <- rep(7,n)

x[u<=15/36] <- 6

x[u<=10/36] <- 5

x[u<=6/36] <- 4

x[u<=3/36] <- 3

x[u<=1/36] <- 2

x[u>21/36] <- 8

x[u>26/36] <- 9

x[u>30/36] <- 10

x[u>33/36] <- 11

x[u>35/36] <- 12

x

}

[5/4 marks]
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In the following code I will generate 360, 000 random numbers from using this function
and compare the theoretical expected counts at each outcome with the observed counts.
I have set the seed so that you can exactly reproduce this if desired.

> set.seed(1022019)

> dice.out <- dice.gen(360000)

> rbind(table(dice.out),10000*c(1:6,5:1))

2 3 4 5 6 7 8 9 10 11 12

[1,] 10062 20030 30055 39863 50022 59825 50056 39991 29947 20115 10034

[2,] 10000 20000 30000 40000 50000 60000 50000 40000 30000 20000 10000

We see that the observed counts are generally very close to the expected counts. The
biggest relative difference is only about 0.6% which is very close. [3/2 marks]
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Q. 4 a) U1 and U2 are independent Unif[0, 1] random variables.

Z1 =
√
−2 lnU1 cos(2πU2) Z2 =

√
−2 lnU1 sin(2πU2)

So the inverse transformation is

Z2
1 + Z2

2 = −2 lnU1 ⇒ U1 = exp

{
−1

2
(Z2

1 + Z2
2)

}
Z2

Z1

= tan(2πU2) ⇒ U2 =
1

2π
tan−1

(
Z2

Z1

)
[2/1 marks]

Hence the Jacobian of the transformation is

|J | =

∣∣∣∣∣∣∣∣∣∣∣
−z1 exp

{
−1

2
(z21 + z22)

}
−z2 exp

{
−1

2
(z21 + z22)

}
−z2/z21

1

2π

(
1 +

z22
z21

) 1/z21
1

2π

(
1 +

z22
z21

)
∣∣∣∣∣∣∣∣∣∣∣

=
1

2π
exp

{
−1

2
(z21 + z22)

}

[3/2 marks]

Now note that
√
−2 lnUi ∈ (0,∞) which in each case is multiplied by something which

lies in the interval [−1, 1] so Z1 and Z2 can both take on any real values. [3/2 marks]

Hence we have

fZ1,Z2
(z1, z2) =

1

2π
exp

{
−1

2
(z21 + z22)

}
=

(
1√
2π

e−z
2
1/2

)(
1√
2π

e−z
2
2/2

)
So Z1 and Z2 are independent N(0, 1) random variables. [3/2 marks]

Here is one possible implementation in R.

box.muller <- function(n, mu=0, sigma=1) {

# Implementation of the Box-Muller algorithm to

# generate normal random variates.

# Arguments:

# n - required sample size

# mu - mean (default 0)

# sigma - the standard deviation (default 1)

if ((n>0) && (n%%2==0)) m <- n/2

else if ((n>0) && (n%%2==1)) m <- (n+1)/2

else stop("n must be a positive integer")

U1 <- runif(m)

U2 <- runif(m)

temp <- sqrt(-2*log(U1))

Y1 <- temp*sin(2*pi*U2)

Y2 <- temp*cos(2*pi*U2)

mu + sigma*c(Y1,Y2)[1:n]

}

[4/3 marks]
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b) The easiest way to do this is to explicitly find P(Y = y) for any non-negative integer
y. For such y = 0, 1, . . . we have

P(Y = y) = P(bXc = y)

= P(y 6 X < y + 1)

=

∫ y+1

y

λe−λx dx

= −e−λx
∣∣x=y+1

x=y

= e−λy − e−λ(y+1)

=
(
1− e−λ

)
e−λy

= p(1− p)y for y = 0, 1, . . .

which is the probability mass function of the geometric random variable with success
probability p = 1− e−λ. [5/5 marks]

If we want to generate from a geometric distribution with given p then we need to find
λ in terms of p.

p = 1− e−λ ⇒ λ = − log(1− p)

[1/1 marks]

We saw in class that we can generate from the exponential(λ) distribution by setting
X = − log(U)/λ where U ∼ Uniform(0, 1). Hence we get the following algorithm to
generate from the geometric(p) distribution:

1. Generate U ∼ Uniform(0, 1).

2. Set X = log(U)/ log(1− p).
3. Return the integer part of X.

In R we get the following implementation of this algorithm

rand.geom <- function(n, p) {

#

# Function to generate a random sample from the geometric distribution.

# Arguments:

# n: the required sample size

# p: the success probability of the geometric distribution

#

if ((p<=0) | (p>=1))

stop("Success probability must be in the interval (0,1)")

if (n<1)

stop("n must be a positive integer")

U <- runif(n)

floor(log(U)/log(1-p))

}

[4/4 marks]
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Q. 5 Only required and marked for STATS 6CI3 students but it is recommended that
STATS 4CI3 students examine this solution also and ask me if there is anything
you do not understand

a) A χ2
2 random variable is a gamma random variable with α = 1 and β = 2. We recall

that Γ(1) = 1 by definition and so the density of the χ2
2 random variable is

f(x) =


1

2
e−x/2 x > 0

0 otherwise

We recognize that this is simply an exponential distribution with mean equal to 2 and
so we can generate such a random variable as

X = − 2 log(U) where U ∼ Uniform(0, 1)

[3 marks]

For any even degrees of freedom r we then generate r/2 independent χ2
2 random vari-

ables and sum them together

Y = − 2

r/2∑
k=1

log(Uk)

and return Y . Here is code to do this

rchi.1 <- function(n, r) {

# Function to generate chi-squared random variables with

# even degrees of freedom.

# The arguments are the required sample size and the

# degrees of freedom.

if (r%%2 != 0)

stop("Only even degrees of freedom allowed")

U <- matrix(runif(r/2*n), nrow=n)

X <- -2*log(U)

rowSums(X)

}

[4 marks]

b) Here is the required algorithm to generate a χ2
r random variable

1. Generate r standard normal random variables Z1, . . . , Zr using the Box-Muller al-
gorithm,

2. Return X =
r∑
i=i

Z2
i

[3 marks]

We can reuse the box.muller function from Exercise 4(a) to generate n standard normal
random variables. and then take sums of their squares. With this method we can
generate any degrees of freedom, not just even (although to generate an odd number of
random variables with an odd degrees of freedom we generate and discard one standard
normal).
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Here is the required code

rchi.2 <- function(n, r){

#Function to generate chi-squared random variables with

# any degrees of freedom.

# The arguments are the required sample size and the

# degrees of freedom.

Z <- matrix(box.muller(n*r), nrow=n)

rowSums(Z^2)

}

[2 marks]

The second algorithm will work for any degrees of freedom but it requires dnre trigono-
metric calculations. These calculations are not actually necessary since, from the proof
of the Box-Muller algorithm, we see that

Z2
1 + Z2

2 = − 2 log(U1) cos2(2πU2)− 2 log(U1) sin2(2πU2) = − 2 log(U1)

This is precisely the calculation we used in Part (a) to get a χ2
2 random variable.

Trigonometric functions can be time consuming so avoiding them as we did in Part
(a) can be more efficient. Of course the downside is that we cannot generate random
variates coming from distributions with odd degrees of freedom. An efficient compro-
mise would be to use the method in Part (a) to generate the n random variables with
2br/2c degrees of freedom. If r is even we are done and if r is odd we can then use the
Box-Muller algorithm to generate n standard normal random variables. We could then
square the standard normals and add them to the χ2 random variables to get random
variables with r degrees of freedom. [2 marks]

c) This is a case of a mixture distribution with an infinite number of components. The
probability of each component is given by a Poisson probability. Hence we can generalize
from my notes to say that we first generate the component based on a Poisson distri-
bution and then generate from the appropriate central chi-squared distribution whose
degrees of freedom will be k + 2Y where Y is the Poisson random variate generated.
Here is a function to do that

rchisq.nc <- function(n, k, lambda) {

#

# Function to generate from a non-central chi-squared

# distribution with degrees of freedom k and non-centrality

# parameter lambda.

#

# Arguments

# n: number of random variates to generate

# k: degrees of freedom

# lambda: non-centrality parameter

#

# Ensure that k is positive

if (k<=0) error("Degrees of Freedom must be positive")

# Make sure the non-centrality parameter is non-negative.

if (lambda < 0)
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error("Non-centrality parameter cannot be negative")

# Generate the Poisson random variates

Y <- rpois(n, lambda/2)

# Now generate from the appropriate central chi-squared

# distributions. Note that here we are using the fact that

# rchisq is vectorized in its parameters.

rchisq(n, k+2*Y)

}

[6 marks]
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