STAT4CI3/6CI3 Computational Methods for Inference

Assignment 2 Solutions

R code for this solution in a plain text file is also available separately

Q.1 a) Since U; and U, are independent and identically distributed random variables and the
same transformation is made to both we see that X and Y are also independent and

identically distributed random variables. It therefore suffices to get the distribution of
X.

Fx(x) = P(X < x)

0 r <0
a l—e™ 2 >0
We recognize this as the cumulative distribution function of the exponential(1) distri-
bution.

Hence X and Y are independent exp(1) random variables. [3/2 marks|

b) For y > 0 we have

X s -1 = —LCXZO =DV =y}({)
>

/0 TPRX (Y 12| Y = y)fy(y)dy

x P (X 250 10) Al

[4/3 marks|
For y <0, fy(y) =0so0 fy(y|2X > (Y — 1)) = 0 also. [0/1 marks]

c) Consider the transformation

2

r=L
2

Hence the required integral is

/ eV dy =
0

using the fact that I'(0.5) = /7.

dzx

= y=V2r = dy= .
V 4T

/ < . dx
e —_—
0 \/%
1 o0
= x %%e™ dx

3
o

[5/4 marks|

Since we saw in part (b) that the density of the accepted observations is

fy(y | Y accepted) oc e ¥°/?

we have that

fy(y | Y accepted) =

/ o v/ dy
0

e_y2/2

2 2
\/ie y'/2 fory >0
T

[2/1 marks]|

d) The easiest way to show this is to show that F,(z) = P(Z < z) is the cdf of the standard

normal ®(z).

Suppose that z < 0 then Z < z
independent so we have

F,(2)

if, and only if, U3 < 0.5 and =Y < z. Us and Y are

[3/2 marks]|

Now if z > 0 then Z < z if U < 0.5 (because in that case Z < 0 < z) or if U3 > 0.5
and Y < z. So we have

Fy(z) = P(Us <0.5)+P(U; > 05)P(Y < 2)

1
2
1
2
0 z
1 2 1 2
_ V12 g +/ 12 g
/oo V2T 4 0o V2r Y
/f 1

Hence we have F,(z) = ®(z) for every x € IR and so Z ~ N(0, 1). [3/3 marks|

Here is a function to generate standard normals using this method

rnorm.ar <- function(n) {
#
Function to use accept-reject method to generate n
standard normal random variates.
#
nl <- n #nl will count how many observations we still need.
Z <- rep(NA, n)
while (n1>0) {
X <- -log(runif(nl))
Y <- -log(runif(nl))
accept <- 2*X >= (Y-1)"2
n2 <- sum(accept)
Y <- Y[accept]
U3 <- runif(n2)
Z[(n-n1+1): (n-n1+n2)] <- ifelse(U3<0.5, -Y, Y)
nl <- nl-n2

[5/4 marks|

Q. 2 a) Suppose that U ~ Unif[0, 1] and let X = —InU. Then from Question 1 we know that
X ~ exp(1) and this is a distribution which has all of its moments so we can safely
apply the Monte Carlo technique.

Thus we have

MNa) = / e do
0

Thus a Monte Carlo estimate of I'(«) is

I'(a) = %Z(—lnui)al

where uy, ..., uy are generated from the Unif]0, 1] distribution. [6/4 marks|
b)
. 1 .
Var (F(a)) = N\/ar [(—InU)*"]

It is important to note that this works only for o > 0.5 since we require 2a — 1 > 0 for
the variance to exist. [6/4 marks|

c) An R function to estimate the gamma integral using Monte Carlo and return both the
estimate and its standard error is

gamma.est <- function(N, alpha) {
#
Function to estimate Gamma(alpha) by Monte Carlo using a
simulation size of N.
#
The function requires alpha>0.5 to get a finite variance.
#
if (alpha<=0.5)
stop("This method cannot be used with alpha<=0.5")
if (N<2)
stop("The number of Monte Carlo replicates must be greater than 1")
if (N'=ceiling(N)) {

warning ("N rounded up to ",ceiling(N))
N <- ceiling(N)

}
U <- runif (N)
X <= -log(W)

Xal <- X" (alpha-1)

gamma.hat <- mean(Xal)

temp <- mean(Xal~2)

se <- sqrt((temp-gamma.hat~2)/N)
c(gamma.hat, se)

Note that for o = 1 this algorithm will always give exactly the right answer I'(1) = 1.
[6/5 marks|

The following code will examine the performance of the algorithm for various values of
a > 0.5 and simulation sizes N. The results are presented in a table on the next page.

N <- 107(2:5)
al <- c¢(0.51, 0.6, 0.75, 0.95, 1.1, 1.25, 1.5, 2, 3, 4, 5)
set.seed(240219)
results <- matrix(NA, nrow=length(al), ncol=2xlength(N))
for (i in 1:length(al))

for (j in 1:length(N))

results[i, (2%j-1):(2%j)] <- gamma.est(N[j]l, all[il)

results <- cbind(gamma(al), results)
rownames (results) <- paste("alpha=",al, sep="")
colnames(results) <- c("Value", paste(c("est","se"), rep(N, each=2), sep="."))

Here is the table of results

N =100 N = 1000 N =10000 | N = 100000
« I'(a) | T(a) se | D(a se | D(a) se | D(a) se
0.51| 1.738|1.375 0.074| 1.679 0.058 | 1.714 0.023 | 1.733 0.009
0.6 1.489 | 1.283 0.060 | 1.451 0.035| 1.485 0.013| 1.498 0.005
0.75 | 1.225]1.292 0.059 | 1.227 0.016 | 1.230 0.005| 1.223 0.002
0.95| 1.031]1.029 0.006 | 1.032 0.002| 1.032 0.001 | 1.032 0.000
1.1 0.951 1 0.947 0.013 | 0.954 0.004 | 0.951 0.001| 0.951 0.000
1.25| 0.906 | 0.882 0.025| 0.914 0.008 | 0.906 0.003 | 0.904 0.001
1.5 0.886 | 0.918 0.051 | 0.880 0.015| 0.884 0.005| 0.886 0.001
2 1.000 | 1.014 0.105| 1.032 0.033 | 1.001 0.010| 0.999 0.003
3 2.000 | 2.708 0.522 | 1.906 0.143| 1.965 0.045| 1.982 0.014
4 6.000 | 5.940 1.430| 5.785 0.724 | 5.906 0.273| 5.838 0.081
> 24.000 | 8.121 2.406 | 19.900 3.798 | 22.747 1.613 | 23.993 0.607

From this table we see that the standard error goes down with increasing /N as expected.
For o < 1 the standard error goes down as « approaches 1 but then it increases quite
quickly for increasing o > 1. Even for values of o of 4 or 5 we need very large sample
sizes to get an estimate which we are confident is accurate to the first place of decimal.

[7/7 marks|

Q. 3 First we note that the true value of I can be found using numeric integration methods to
be I = 1.462652. Although this is not necessary for the question, it does provide us with a
good check on our methods. If the Monte Carlo estimates are not close to this value then it
is likely that there is something wrong with our derivation or coding.

a)

b)

For the regular Monte Carlo method we note that
I = E (ex2> where X ~ Uniform(0, 1)

Hence we have the estimator
1 N ..
L. = N ZZI X7 where X ..., Xy u Uniform(0, 1)

The variance of this estimator is

var() = Var (ex2> B E (e2x2> - <E (eX2>>2

N N

We can use Monte Carlo estimators of these two expectations to get the standard error

1 1
se fmc> = —— =) eXi 2
(TRV

[3/3 marks]|
The following code implements this in R.

> N <- 100000

> set.seed(24022019)

> X <= runif (N)

> That.mc <- mean(exp(X~2))

> se.That.mc <- sqrt((mean(exp(2*X~2))-Ihat.mc"2)/N)
> round(c(Ihat.mc, se.Ihat.mc),6)

[1] 1.461395 0.001496

[2/1 marks]|

For the control variable method with

1 N

and we note that if X ~ Uniform(0, 1) then

E(X?%) = 3

which gives us the value of u for the control variable.
To get the best variance reduction we should estimate the optimal

COV(fmC,C) B Cov (eX ,X2>
Var(C) Var(X?)

b =

6

Now

Var(X?) = E(X') - (E(X?)" = - - (%) - %

We can use the known value of the variance in the denominator but we will need to
estimate the covariance using the simulated X, ..., Xy so we get

3 = 11.25Cov (eXQ,X2>

For my data I estimate the optimal 3 to be B = 1.56951 using the code below.
[3/2 marks|

The estimator is then N

R N ~ (1 1
ICQ -]mc_/B<NZX12_§)
i=1

and the standard error is

se <f01> = \/se2 (fmc> + 432/(45]\[) — QBC/(;/ (Xf,eXz‘Q) /N
[2/1 marks]|

In R we have

> C <- mean(X~2)

> mu <- 1/3

> cov <- cov(exp(X~2), X°2)
> beta <- 11.2b5%cov

> beta

[1] 1.56951

> That.C <- That.mc-beta*(C-mu)

> se.That.C <- sqrt(se.Ihat.mc"2+beta”2/(11.25*N)-2%beta*cov/N)
> round(c(Ihat.C, se.Ihat.C),6)

[1] 1.462402 0.000219

Use of the control variable reduces the standard error so now it is more than a factor
of 7 lower than for the basic Monte Carlo estimator. [2/2 marks]

For the antithetic variable method we have the two estimators
. . AR . 1 2
L = Ine = z_; L= z_; e(1=%4)
and the antithetic variable estimator
Ia = 05(1, + L)

[2/1 marks]|

d)

From class notes we have

Vaz(fl) i Vaz(2) i COV(j17 2)

2
Var (ex2> Var (e(1*X)2>

- N AN ON

Var(l,) =

We can use the simulated Xi,..., Xy to estimate these variances and the covariance
and then take the square root to get the standard error. [2/2 marks]

In R we have

Thatl <- That.mc

That2 <- mean(exp((1-X)"2))

That.A <- (Thati+Ihat2)/2

vI1 <- var(exp(X~"2))/N

vI2 <- var(exp((1-X)~2))/N

covIlI2 <- cov(exp(X~2), exp((1-X)"2))/N
se.That.A <- sqrt(vI1/4+vI2/4+covIl1I2/2)
round(c(Ihat.A, se.Ihat.A),6)

[1] 1.461845 0.000527

V V V V V V V V

The antithetic variable method in this case has reduced variability relative to the basic
Monte Carlo method but it is not as good as the control variate method from part (b).
[2/2 marks]

The crucial thing here is estimation of the a parameter to use. Clearly we need o > 1
so that the beta density is increasing in x as is the integrand. The simplest method is
to use a range of possible values of o and see which one gives closest to a constant ratio
between the integrand and the beta density. There are a number of ways to evaluate
this. In this solution I will evaluate both functions at an evenly spaced grid of x points
and examine the variance of the ratio.

xx <- seq(0,1,by=0.01) [-1]
alpha <- seq(1,2, by=0.1)
vars <- rep(NA, 10)
for (i in 1:10)
vars[i] <- var(exp(xx~2)/dbeta(xx,alphalil,1))
al <- alpha[which.min(vars)]
alpha <- seq(al-0.1, al+0.1, by=0.01)[-1]
vars <- rep(NA, 20)
for (i in 1:20)
vars[i] <- var(exp(xx~2)/dbeta(xx,alphali],1))
alpha[which.min(vars)]
[1] 1.24

vV + VV VYV 4+ V V V.YV

In my code I found a good value in two stages but this is not necessary. Any well-
justified method which results in a value of o around 1.2-1.3 is acceptable.
[4/4 marks|

We now generate from this beta distribution, calculate the appropriate weights and
construct our estimate and its standard error. For the standard error we can use the
result on Page 3-23 of my notes.

set.seed(24022019)

X.beta <- rbeta(N, 1.24, 1)

W <- 1/dbeta(X.beta, 1.24, 1)

hX <- exp(X.beta"2)

That.IS <- mean(hX*W)

se.Ihat.IS <- sqrt((mean((hX*W)~2)-Ihat.IS"2)/N)
round(c(Ihat.IS, se.Ihat.IS),6)

[1] 1.460748 0.000956

V V V V V V V

Again this method improves the standard error relative to the basic Monte Carlo method
but only by a factor of about 1.5. For this example it is not as good as either the control
variable or antithetic variable method. [3/2 marks]|

Q.4 a) IfXy, ..., X, w normal(y, 0%) then we can write X; = u+0Z; where 7y, . ..

Hence for any sample we have

T = p+oz Sy = 08,
Hence we can write
_ Sg _ oS,
.T—Za/gﬁ < p o= (u—l—az)—za/gﬁ < i
_ 08,
= 0Z—Zap— < 0
/2 \/ﬁ
= T zapt < 0
a/2\/ﬁ
and similarly
T+z S—’”>u = Thzapai >0
a/2\/ﬁ a/2\/ﬁ
Hence the interval based on the sample x4, ..., x, contains the true mean y if, and only
if, the interval based on zq, ..., z, contains 0 and this is true for any p and ¢ > 0 so

we need only consider sampling from the standard normal. We shall examine a range
of values of n and for each one calculate the empirical coverage probabilities based on
R = 10000 samples and give the standard error of the estimate. [5/2 marks|

Here is the R code to run this simulation study.

n <- c(5%(1:10),10%(6:10),200,500,1000,5000,10000)

maxn <- max(n)

N <- 10000

I will generate all of the random variables in one go and store them in a matrix.
set.seed(220214)

Zmat <- matrix(rnorm(N*maxn), nrow=N)

alpha <- 0.05

z.alpha <- gnorm(l-alpha/2)

results.4a <- matrix(NA,ncol=3,nrow=length(n))

colnames(results.4a) <- c("n", "Cover", "se(Cover)")

for (i in 1:length(n)) {
ni <- n[i]
the first n[i] observations in each row can be considered the sample.
zbar <- rowMeans(Zmat[,1:nil)
sez <- apply(Zmat[,1:nil,1,sd)/sqrt(ni)
lower <- zbar-z.alpha*sez
upper <- zbar+z.alpha*sez
p <- mean(lower<0 & upper >0)
sep <- sqrt(p*(1-p)/R)
results.4ali,] <- c(ulil,p,sep)

[4/2 marks|

10

2, X normal(0, 1).

The code above produces the following results

n | Cover se(Cover)

5| 0.8784 0.0033

10 | 0.9235 0.0027
15| 0.9322 0.0025
20 | 0.9346 0.0025
251 0.9373 0.0024
30 | 0.9407 0.0024
35 | 0.9463 0.0023
40 | 0.9445 0.0023
45 | 0.9425 0.0023
20 | 0.9437 0.0023
60 | 0.9426 0.0023
70 | 0.9452 0.0023
80 | 0.9443 0.0023
90 | 0.9471 0.0022
100 | 0.9481 0.0022
200 | 0.9476 0.0022
200 | 0.9493 0.0022
1000 | 0.9518 0.0021
5000 | 0.9493 0.0022
10000 | 0.9515 0.0021

The coverage is generally increasing as n increases although there is some simulation
variability so for some sample sizes it appears to go down slightly. This is just simu-
lation variability and does not reflect a true drop in the coverage. The first time the
estimated coverage exceeds 94% is when n = 30 and it never goes below this value
again so we would be comfortable in saying that a sample size of n = 30 or more will
give coverage within 1 percentage point of the nominal 95%. [3/2 marks|

An alternative method which is also valid is to note that the coverage can be written

as
<_
_ P(_Za/2< \/H(S 1) <Za/2)

=P (—Za/g <T,1< Za/g)

— S — S
P <X - Zoé/gﬁ < pu< X + Za/Q%)

where 7;,_1 is a Student’s ¢t random variable with n — 1 degrees of freedom. Then we
could estimate the coverage using Monte Carlo as follows

results.4al <- results.4a
set.seed(24022019)
for (i in 1:length(n)) {
ni <- n[il
T <- rt(N, n[i]-1)
pl <- mean(T<z.alpha & T > -z.alpha)
sepl <- sqrt(plx(1-p1)/R)
results.4alli,] <- c(n[i],pl,sepl)

11

b)

which gives very similar results to the earlier method. The problem is that it does not
generalize to other location-scale families and so this method does not work for part
(b). Nevertheless it is a valid solution for part (a).

For the exponential distribution we can also take advantage of the fact that
X ~ exp(p) <= X =pZ where Z ~ exp(l).

Hence we have

T = pz Sy = S
and so
— Sz _ S,
x—za/zﬁ < p = ,uz—za/zﬁ < i
= 7Z- za/g% <1
n
and similarly for the upper limit so that the interval based on a sample X;,..., X,

from and exponential distribution with mean p covers the true pu if, and only if, the
corresponding sample from the exponential distribution with mean 1 covers the value 1.
Hence we need only concern ourselves with the standard exponential distribution. The
code is identical to that for the normal case except that the data is now generated from
an exponential distribution with mean 1 and we look at coverage of © = 1. Since the
mean g is known to be positive for this type of data, we shall also find the proportion
of times that the lower endpoint of the interval is actually negative. [5/2 marks|

Here is the R code I used

set.seed(220214)

Zmat.exp <- matrix(rexp(N*maxn), nrow=N)

alpha <- 0.05

z.alpha <- gnorm(l-alpha/2)

results.4b <- matrix(NA,ncol=5,nrow=length(n))

colnames(results.4b) <- c("n", "P(lo<0)","se(P(lo<0))", "Cover", "se(Cover)")

for (i in 1:length(n)) {
ni <- n[i]
zbar <- rowMeans(Zmat.expl[,1:ni])
sez <- apply(Zmat.exp[,1:ni],1,sd)/sqrt(ni)
lower <- zbar-z.alpha*sez
upper <- zbar+z.alpha*sez
pO <- mean(lower<0)
se0 <- sqrt(pO*(1-p0)/R)
pl <- mean(lower<l & upper>1)
sel <- sqrt(pix(1-p1)/R)
results.4b[i,] <- c(ni,p0,se0,pl,sel)

[4/2 marks]

12

Here are the results that I found.

n | P(lo<0) se(P(lo<0)) | Cover se(Cover)

) 0.1623 0.0037 | 0.8097 0.0039

10 0.0092 0.0010 | 0.8687 0.0034
15 0.0001 0.0002 | 0.8897 0.0031
20 | 0.0000 0.0000 | 0.9010 0.0030
25 0.0000 0.0000 | 0.9115 0.0028
30 0.0000 0.0000 | 0.9134 0.0028
35 0.0000 0.0000 | 0.9171 0.0028
40 0.0000 0.0000 | 0.9203 0.0027
45| 0.0000 0.0000 | 0.9213 0.0027
20 0.0000 0.0000 | 0.9254 0.0026
60 0.0000 0.0000 | 0.9264 0.0026
70 0.0000 0.0000 | 0.9306 0.0025
80 0.0000 0.0000 | 0.9327 0.0025
90 | 0.0000 0.0000 | 0.9354 0.0025
100 | 0.0000 0.0000 | 0.9383 0.0024
200 0.0000 0.0000 | 0.9414 0.0023
500 0.0000 0.0000 | 0.9460 0.0023
1000 0.0000 0.0000 | 0.9457 0.0023
5000 0.0000 0.0000 | 0.9520 0.0021
10000 | 0.0000 0.0000 | 0.9493 0.0022

From this we see that once the sample size is bigger than 20, there is essentially zero
probability that the interval will include negative values. However we have to have a
sample size of at least 200 before the estimated coverage probability gets above 94%
and stays there. [2/2 marks|

STAT6CI3 students only
The parameters p and o2 of the log-normal are not the mean and variance. The mean

of the distribution is
E(X) = E(e") = My(1) = exp{p+0.50"}

where Y ~ normal(p,0?) and M, (t) is the moment generating function of Y. The
given confidence interval is for this mean. [1 mark]

Furthermore we notice that
X ~ log-normal(y,0?) <= X = €'Y whereY ~ log-normal(0,o?)

[1 mark]

Hence we can write

o 5y < exp {,u + 0.502}

Jn

Sz _
T— Zajp—— < exp{,u+0.502} — 'Y —z24p

vn

1y — Za/g% < exp {0.502}

13

and so we need not consider the value of u but do need to consider different values of
o2 > 0. [1 mark]

In the code below I will consider o2 € {0.5,1,2,4} which are sufficient to give a reason-
able picture of how the coverage varies with o2. As before the true mean is guaranteed
to be positive so it is also of interest to examine how often the interval contains nega-
tive values. I will only examine values of n < 1000 in this solution but more would be
preferable.

Here is the R code for the simulation study.

n <- c(5*%(1:6),10%(4:10),200,500,1000)

maxn <- max(n)

sigma <- ¢(0.5,1,2,4)

z.alpha <- gnorm(l-alpha/2)

out <- matrix(NA,ncol=5,nrow=length(n))

colnames(out) <- c("n", "P(lo<0)","se(P(lo<0))", "Cover", "se(Cover)")

results.4c <- list("sigma=0.5"=out, "sigma=1"=out, "sigma=2"=out,
"sigma=4"=out)

set.seed(24022019)
Zmat.norm <- matrix(rnorm(N*maxn), nrow=N)
for (j in 1:length(sigma)) {
Ymat <- exp(sigmalj]*Zmat.norm)
true.mean <- exp(sigmaljl~2/2)
for (i in 1:length(n)) {
ni <- n[i]
ybar <- rowMeans(Ymat[,1:ni])
sey <- apply(Ymat[,1:ni],1,sd)/sqrt(ni)
lower <- ybar-z.alpha*sey
upper <- ybar+z.alpha*sey
pO <- mean(lower<0)
se0 <- sqrt(pO*(1-p0)/R)
pl <- mean(lower<true.mean & upper>true.mean)
sel <- sqrt(pi*(1-p1)/R)
results.4c[[jl][i,] <- c(ni,p0,se0,pl,sel)

[2 marks]

14

Here are the four tables

oc=20.5
n|P(lo < 0) se(P(lo<0))| Cover se(Cover)
5 0.0018 0.0004 | 0.8403 0.0037
10 0.0000 0.0000 | 0.8889 0.0031
15 0.0000 0.0000 | 0.9050 0.0029
20 0.0000 0.0000 | 0.9151 0.0028
25 0.0000 0.0000 | 0.9221 0.0027
30 0.0000 0.0000 | 0.9260 0.0026
40 0.0000 0.0000 | 0.9306 0.0025
20 0.0000 0.0000 | 0.9337 0.0025
60 0.0000 0.0000 | 0.9370 0.0024
70 0.0000 0.0000 | 0.9379 0.0024
80 0.0000 0.0000 | 0.9390 0.0024
90 0.0000 0.0000 | 0.9399 0.0024
100 0.0000 0.0000 | 0.9413 0.0024
200 0.0000 0.0000 | 0.9454 0.0023
200 0.0000 0.0000 | 0.9450 0.0022
1000 0.0000 0.0000 | 0.9490 0.0022

oc=1

n|P(lo <0) se(P(lo<0))| Cover se(Cover)
5 0.1774 0.0038 | 0.7431 0.0044
10 0.0479 0.0021 | 0.8049 0.0040
15 0.0176 0.0013 | 0.8340 0.0037
20 0.0077 0.0009 | 0.8523 0.0035
25 0.0040 0.0006 | 0.8644 0.0034
30 0.0022 0.0005 | 0.8734 0.0033
40 0.0008 0.0003 | 0.8872 0.0032
50 0.0003 0.0002 | 0.8938 0.0031
60 0.0002 0.0001 | 0.9007 0.0030
70 0.0001 0.0001 | 0.9054 0.0029
80 0.0001 0.0001 | 0.9087 0.0029
90 0.0000 0.0001 | 0.9111 0.0028
100 0.0000 0.0000 | 0.9140 0.0028
200 0.0000 0.0000 | 0.9273 0.0026
200 0.0000 0.0000 | 0.9399 0.0024
1000 0.0000 0.0000 | 0.9439 0.0023

15

o=2

n|P(lo <0) se(P(lo<0))| Cover se(Cover)
D 0.6511 0.0048 | 0.4668 0.0050
10 0.5084 0.0050 | 0.5413 0.0050
15 0.4095 0.0049 | 0.5825 0.0049
20 0.3400 0.0047 | 0.6086 0.0049
25 0.2881 0.0045 | 0.6300 0.0048
30 0.2496 0.0043 | 0.6475 0.0048
40 0.1960 0.0040 | 0.6718 0.0047
20 0.1595 0.0037 | 0.6879 0.0046
60 0.1347 0.0034 | 0.7027 0.0046
70 0.1165 0.0032 | 0.7131 0.0045
80 0.1018 0.0030 | 0.7232 0.0045
90 0.0900 0.0029 | 0.7312 0.0044
100 0.0804 0.0027 | 0.7384 0.0044
200 0.0377 0.0019 | 0.7819 0.0041
500 0.0120 0.0011 | 0.8254 0.0038
1000 0.0047 0.0007 | 0.8536 0.0035
o=4
n|P(lo <0) se(P(lo<0))| Cover se(Cover)
5 0.9082 0.0029 | 0.0819 0.0027
10 0.8889 0.0031 | 0.1050 0.0031
15 0.8696 0.0034 | 0.1204 0.0033
20 0.8462 0.0036 | 0.1315 0.0034
25 0.8264 0.0038 | 0.1408 0.0035
30 0.8090 0.003 | 0.1486 0.0036
40 0.7766 0.0042 | 0.1616 0.0037
50 0.7496 0.0043 | 0.1709 0.0038
60 0.7269 0.0045 | 0.1791 0.0038
70 0.7074 0.0045 | 0.1861 0.0039
80 0.6917 0.0046 | 0.1921 0.0039
90 0.6758 0.0047 | 0.1968 0.0040
100 0.6624 0.0047 | 0.2029 0.0040
200 0.5714 0.0049 | 0.2380 0.0043
500 0.4527 0.0050 | 0.2866 0.0045
1000 0.3792 0.0049 | 0.3254 0.0047

For small values of o the interval performs reasonably well but the performance of the
interval gets very bad for large values of o. If 0 = 2 then even a sample of size 1000
only gives around 85% actual coverage. For the most extreme case examined (o = 4)
the coverage of the interval with a sample of size 1000 is under 33% and about 38%
of the time the intervals include negative values. Large values of o imply very heavy
population skewness making the interval inappropriate. [3 marks]

16

Q. 5 STAT6CI3 students only

a) Suppose we use importance sampling from the importance density g to estimate
I - / h(z) f(z)dz
where f is a density and f(z) >0 = g¢(z) > 0. Then we sample X;
and v
7 1 h(X
A oL

The sampling variability of this estimator is then

Py 1 hMX)f(X)
Var(I,;5) = N\/ar(o) >

e RIRCE)
J) worae= ([(557 o)}
[OB e ([riasoar) |
/

P) fP(x)
g9(x) o [}

[6 marks]

b) If we take g(z) o< |h(z)|f(z) then we have that

S

If we now plug this into the integral in Var(l,s) in part (a) we get

e)
flh)| f(x)d

,2(%) o [)l
- /) (a) dodo [|ba)|f(x) doda
- (/ rh<x>\f<x>dx)2

Hence we see that for this particular choice of g we have

Var(l) = {(/\h e dx)—Z}

[6 marks]

Now all that remains is to show that for any other choice of ¢

Var(l,s) = %{/%m—ﬂ} > %{(/\h(xﬂf(x)dx)z—ﬁ}

Clearly this is true if and only if

[> ([weron)

Now suppose that X is a random variable with pdf g and define the random variable

_RXO))f(X)
v 9(X)

Now we can write

Var(Y) = E(Y?) = [E(Y))’

))]
— /hz(ng d — (/Ih e dx)2

but Var(Y) > 0 for any random variable Y and so

/ %d > ([n@ise dx)2

Hence we have that for any arbitrary importance sampling function g

Var(l,s) > {(/m (@ da:)—z}

and that the right-hand side of this is the variance of I s when we have the particular
g(x) o< |h(z)|f(x). This proves the assertions of Theorem 10 in my notes. [8 marks]

18

