
STAT4CI3/6CI3 Computational Methods for Inference

Assignment 4 Solutions

R code for this solution in a plain text file is also available separately

Q. 1 a) The joint density of the data conditional on the rates and the observation times is

fX(x | λ, t) =
n∏
i=1

P(Xi = xi | λi, ti) =
n∏
i=1

e−λiti(λiti)
xi

xi!

The joint prior for λ = (λ1, . . . , λn) is

πλ(λ | α, β) =
n∏
i=1

πλi(λi | α, β) =
n∏
i=1

(
1

Γ(α)βα
λα−1i e−λi/β

)
And we are given that the prior for β is πβ(β) ∝ β−1.

Hence the joint posterior for the parameter vector θ = (λ1, . . . , λn, β) is

π(θ | x, t) ∝ fX(x | λ, t)πλ(λ | α, β)π(β)

=
n∏
i=1

e−λiti(λiti)
xi

xi!

n∏
i=1

{
1

Γ(α)βα
λα−1i e−λi/β

}
1

β

∝
n∏
i=1

{
e−λiti λxii

} n∏
i=1

{
1

βα
λα−1i e−λi/β

}
1

β

∝
n∏
i=1

{
λxi+α−1i e−(ti+1/β)λi

} 1

βnα+1

[5/4 marks]

b) The conditional posterior distribution for λ given the data and β can be found by just
taking any parts of the joint posterior that depend on a λi. Hence we get

πλ ∝
n∏
i=1

{
λxi+α−1i e−(ti+1/β)λi

}

∝
n∏
i=1

{
1

Γ(xi + α
)

(
β

βti + 1

)xi+α
λxi+α−1i e

−λi/
(

β
βti+1

)}

=
n∏
i=1

πλi(λi | β,x, t)

1

Since the joint conditional posterior can be written as a product of univariate condi-
tional posterior distributions we have that λ1, . . . , λn are independent and that

πλi(λi | β,x, t) =
1

Γ(xi + α
)

(
β

βti + 1

)xi+α
λxi+α−1i e

−λi/
(

β
βti+1

)

Hence we have that

λi | β,x, t ∼ Gamma (xi + α, β/(βti + 1))

[5/4 marks]

c) Similarly when looking for the conditional posterior of β given the values of λ1, . . . , λn
and the data we can just take the parts of the joint posterior density which depend on
β so we get

πβ(β | λ,x, t) ∝
n∏
i=1

{
e−λi/β

} 1

βnα+1
=

1

βnα+1
e−
∑
λi/β

Now suppose that τ = 1/β then the conditional posterior of τ given the rates and the
data is

πτ(τ | λ,x, t) = πβτ
−1 | λ,x, t)

∣∣−τ−2∣∣
∝ τnα+1 e−τ

∑
λi τ−2

∝ (
∑
λi)

nα

Γ(nα)
τnα−1 e−τ

∑
λi

Hence we see that

τ | λ,x, t ∼ gamma

(
nα,

(∑
λi

)−1)
and so we have

β | λ,x, t ∼ inverse-gamma

(
nα,

(∑
λi

)−1)
[5/4 marks]

d) To run a Gibbs sampler we need to get an initial value for the chain. It is simplest to
initialize beta but we cannot generate from the prior distribution of beta. There are a
few reasonable approaches such as

1. Generate log β from a uniform on some finite range and then take exponents to get
a β.

2. Generate β from an invers-gamma with parameters nα and
(∑

λ̂i

)−1
where λ̂i =

xi/ti are the mle’s of the the λi from the Poisson model. This is equivalent to
initializing the λi to the fixed value λ̂i.

3. Since E(λi) = αβ we can use a similar strategy to the above to initialize β to
β0 = α/λ which is the mean of the distribution generated from in option 2.

2

Provided that the chain mixes well and we use some reasonable burn-in period, it should
not matter what value we use to initialize the chain.

Here is my code to run this chain.

gibbs.pumps <- function(N, x, t, alpha, beta) {

A function to run a Gibbs Sampler for the

Pumps problem.

#

The arguments are the total chain length,

the data x and t and the hyperparameter alpha

I will also allow inputting an initial value

for beta if desired.

Check to ensure valid data x and t

if (any((x<0)|(x%%1!=0)))

stop("Invalid data in x")

if (any (t<0)) stop("Invalid Observation Times")

n <- length(x)

if (length(t)!=n)

stop("x and t must be the same length")

Initial value for beta using option 3 in

the solution if no value is given

if (missing(beta))

beta <- alpha/mean(x/t)

chain <- matrix(NA, ncol=n+1, nrow=N)

for (i in 1:N){

lambda <- rgamma(n, x+alpha, scale=1/(t+1/beta))

beta <- 1/rgamma(1, n*alpha, scale=1/sum(lambda))

chain[i,] <- c(lambda, beta)

}

chain

}

pumps <- data.frame(Fails=c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22),

Times=c(94.32, 15.72, 62.88, 125.76, 5.24, 31.44,

1.05, 1.05, 2.1, 10.48))

set.seed(20190408)

pumps.out <- gibbs.pumps(15000, pumps$Fails, pumps$Times, 1.8)

[7/6 marks]

e) Here is my code to do this and the results

mcmc.interval <- function(x, prob=0.95)

quantile(x, c((1-prob)/2, 1-(1-prob)/2))

t(round(apply(pumps.out[-(1:5000),], 2, mcmc.interval),4))

2.5% 97.5%

[1,] 0.0278 0.1319

[2,] 0.0278 0.3764

[3,] 0.0400 0.1925

3

[4,] 0.0700 0.1902

[5,] 0.1807 1.2319

[6,] 0.3723 0.8905

[7,] 0.1214 1.8526

[8,] 0.1235 1.9248

[9,] 0.3851 2.3991

[10,] 1.1006 2.5601

[11,] 0.1856 0.6170

The first 10 of these intervals are for the individual failure rates. Looking at these
we can see that the final few pumps are less reliable (higher failure rates). Three of
these were only observed for a short time resulting in wide intervals but the final pump
certainly seems problematic. [3/2 marks]

4

Q. 2 a) (i) For the parametric we first estimate θ by θ̂ and then generate samples from the

Beta(1, θ̂) distribution.

q2.x <- c(0.580, 0.730, 0.986, 0.691, 0.532, 0.819, 0.382, 0.706,

0.310, 0.791, 0.462, 0.653, 0.589, 0.664, 0.750, 0.786,

0.590, 0.892, 0.712, 0.713)

q2.n <- length(q2.x)

q2.xbar <- mean(q2.x)

q2.theta.hat <- q2.xbar/(1-q2.xbar)

R <- 100000

set.seed(20190408)

q2.xstar.1 <- matrix(rbeta(R*q2.n, q2.theta.hat, 1), ncol=q2.n)

q2.xbar.star.1 <- rowMeans(q2.xstar.1)

q2.theta.star.1 <- q2.xbar.star.1/(1-q2.xbar.star.1)

q2.bias.1 <- mean(q2.theta.star.1)-q2.theta.hat

q2.se.1 <- sd(q2.theta.star.1)

Hence we get b̂boot(θ̂) = 0.0831 and seboot(θ̂) = 0.5189. [7/5 marks]

(ii) For the nonparametric bootstrap we simply change from generating samples from
the fitted beta distribution to sampling with replacement from the observed data.

set.seed(20190408)

q2.xstar.2 <- matrix(sample(q2.x, R*q2.n, replace=T), ncol=q2.n)

q2.xbar.star.2 <- rowMeans(q2.xstar.2)

q2.theta.star.2 <- q2.xbar.star.2/(1-q2.xbar.star.2)

q2.bias.2 <- mean(q2.theta.star.2)-q2.theta.hat

q2.se.2 <- sd(q2.theta.star.2)

Hence we get b̂boot(θ̂) = 0.0345 and seboot(θ̂) = 0.3355 so there is a smaller
estimated bias and smaller standard error if we do not assume the data comes from
a beta(θ) distribution. Note that since I actually generated the original data from
the beta(1, θ) distribution, it is likely that the parametric bootstrap is closer to be-
ing correct and so it is likely that the nonparametric bootstrap is underestimating
both the bias and standard error in this case. [6/5 marks]

b) The following code will give the two normal confidence intervals.

q2.CI.norm.1 <- q2.theta.hat-q2.bias.1-qnorm(c(0.975,0.025))*q2.se.1

q2.CI.norm.2 <- q2.theta.hat-q2.bias.2-qnorm(c(0.975,0.025))*q2.se.2

This results in the intervals

Parametric: [0.9020 2.9359]

Nonparametric: [1.3100 2.6253] [4/4 marks]

c) For the other bootstrap intervals we have the following code

q2.ahat.1 <- sort(q2.theta.star.1)[c(0.025*R, 0.975*R)]

q2.CI.basic.1 <- 2*q2.theta.hat-rev(q2.ahat.1)

q2.CI.perc.1 <- q2.ahat.1

5

q2.ahat.2 <- sort(q2.theta.star.2)[c(0.025*R, 0.975*R)]

q2.CI.basic.2 <- 2*q2.theta.hat-rev(q2.ahat.2)

q2.CI.perc.2 <- q2.ahat.2

This results in the intervals

Basic Parametric: [0.7093 2.7268]

Basic Nonparametric: [1.2242 2.5345]

Percentile Parametric: [1.2774 3.2949]

Percentile Nonparametric: [1.4697 2.7800]

We see that these bootstrap intervals are much wider than the normal bootstrap inter-
vals above and that the parametric intervals are wider than the nonparametric intervals.
There is much less of a difference between the basic and percentile intervals for the non-
parametric bootstrap than there is for the parametric bootstrap for which there is a
very marked difference between the two intervals with the basic being much closer to
the normal bootstrap interval. [8/6 marks]

Although it was not asked we can examine the distributions of the bootstrap replicates
under the two sampling schemes. The following are the two histograms. Clearly we
see that the distribution of θ̂∗ is much more variable and skewed when sampling from
a fitted beta distribution than when sampling from the empirical distribution.

Parametric

θ*

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

Non−parametric

θ*

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

6

Q. 3 a) A non-parametric bootstrap sample consists of sampling with replacement from the
observed n data points. Since ordering of the random sample does not matter, we can
think of a bootstrap sample as being a collection of frequencies (f1, . . . , fn) such that∑
fi = n and each fi corresponds to the number of times that xi appears in the sample.

Thus the number of bootstrap samples is the same as the number of ways that we can
find n non-negative integers which sum up to n.

Now suppose that we have n balls in a line. Consider a fixed stick at the start of the
row of balls and another fixed stick at the end of the the row of balls. The number
of ways that we can find n non-negative integers which sum to n is then the same as
the number of ways that we can partition the n balls into n sets without changing the
ordering of the balls. To get n sets we need n − 1 boundaries. If we define fi to be
the number of balls between stick i − 1 and stick i (allowing these two sticks to be
side-by-side with no balls between them also which corresponds to fi = 0) then it is
clear that the number of distinct partitions of the n balls is the number of ways that
we can insert the n − 1 sticks into the sequence of n balls. We can therefore think of
having 2n − 1 slots each of which can contain a ball or a stick and we need to select
n− 1 of these to contain the sticks. From elementary combinatorics, we know that the
number of distinct ways we can do this is

mn =

(
2n− 1

n− 1

)
.

From the above argument, this must also be the number of ways that we can find n
non-negative integers which sum to n and so is the number of possible distinct boot-
strap samples for the non-parametric bootstrap with iid data. [5/4 marks]

b) We know that the number of distinct bootstrap samples is m3 = 10 but it is important
to note that they are not equally likely since the number of orderings that give rise
to each sample may be different. The distinct bootstrap samples and the consequent
bootstrap distribution of X

∗
are given in the table on the next page.

In this case all 10 distinct samples result in distinct values of X
∗

but that is not
necessarily the case.

7

number of
f1 f2 f3 X∗ orderings P(X∗) x∗

3 0 0 {2, 2, 2} 1
1

27
2

2 1 0 {2, 2, 3} 3
1

9

7

3

2 0 1 {2, 2, 7} 3
1

9

11

3

1 2 0 {2, 3, 3} 3
1

9

8

3

1 1 1 {2, 3, 7} 6
2

9
4

1 0 2 {2, 7, 7} 3
1

9

16

3

0 3 0 {3, 3, 3} 1
1

27
3

0 2 1 {3, 3, 7} 3
1

9

13

3

0 1 2 {3, 7, 7} 3
1

9

17

3

0 0 3 {7, 7, 7} 1
1

27
7

[8/6 marks]

Now from the definition of the bootstrap bias and variance in my notes we have

bboot(X) = E(X
∗ | F̂)− x

=
∑
x∗

x∗P(x∗)− x

=
2

27
+

7

27
+

11

27
+

8

27
+

8

9
+

16

27
+

1

9
+

13

27
+

17

27
+

7

27
− 4

= 0

[3/2 marks]

8

vboot(X) = Var(X
∗ | F̂)

= E(X
∗2 | F̂)− 16

=
∑
x∗

x∗2P(x∗)−

(∑
x∗

x∗P(x∗)

)2

=
4

27
+

49

81
+

121

81
+

64

81
+

32

9
+

256

81
+

1

3
+

169

81
+

289

81
+

49

27
− 42

=
1422

81
− 16

=
14

9

[3/2 marks]

c) We know that sampling from the empirical distribution function means that a bootstrap
sample X∗1 , . . . , X

∗
n are iid with probability mass function

P (X∗ = x) =
1

n
x ∈ X = {x1, . . . , xn}

Hence we have that

E (X∗) =
∑
x∈X

xP (X∗ = x) =
n∑
i=1

xi ×
1

n
= x

Similarly we get

E
(
(X∗)2

)
=
∑
x∈X

x2P (X∗ = x) =
n∑
i=1

x2i ×
1

n

and so

Var (X∗) = E
(
(X∗)2

)
− (E (X∗))2 =

1

n

n∑
i=1

x2i − x2

=
1

n

(
n∑
i=1

x2i − nx2
)

=
1

n

n∑
i=1

(xi − x)2

[3/3 marks]

9

Now the bootstrap replicate of the sample mean is

X
∗

=
1

n

n∑
i=1

X∗i

and standard results for sample means tell us that

E
(
X
∗
)

= E (X∗) = x

Var
(
X
∗
)

=
Var (X∗)

n
=

1

n2

n∑
i=1

(xi − x)2

Hence from the definition of the bootstrap bias and variance given in my notes we have

bboot(X) = E
(
X
∗
)
− x = 0

vboot(X) = Var
(
X
∗
)

=
1

n2

n∑
i=1

(xi − x)2

[3/2 marks]

10

Q. 4 This is a one-sample problem with a sample of n bivariate vectors. We get the observed
value from the sample.

library(boot)

q3.n <- nrow(cd4)

q3.r <- cor(cd4$baseline, cd4$oneyear)

a) For the parametric bootstrap suppose that the data vectors are of the formXi = (Xi,0, Xi,1)
t

where Xi,0 is the baseline cd4 count (divided by 100) for patient i and Xi,1 is the cd4
count after a year of medication. We assume that this is an observation from the
bivariate normal distribution with parameters

µ =

(
µ0

µ1

)
Σ =

(
σ2
0 σ0,1

σ0,1 σ2
1

)
We need to estimate these parameters. We can do so using maximum likelihood or
standard unbiased estimation (they are the same for the means and only differ by a
factor of (n− 1)/n for the variances). I will do the latter in my solution but accepted
either in yours.

mu.hat <- colMeans(cd4)

Sigma.hat <- var(cd4) # cov(cd4) gives the same result!

This results in

µ̂ =

(
3.288
4.093

)
Σ =

(
0.6571 0.6800
0.6800 1.3455

)
[4/3 marks]

We now simulate from the bivariate normal distribution with these parameter values
using the mvrnorm function written by Brian Ripley (there is also a function rmvnorm in
the mvtnorm package written by Friedrich Leisch and Fabian Scheipl, either is fine for
this question) and for each simulated dataset we calculate the correlation coefficient.

library(MASS)

set.seed(20190408)

R <- 100000

q4.r.star.norm <- rep(NA, R)

for (j in 1:R) {

cd4.star <- mvrnorm(q4.n, mu.hat, Sigma.hat)

q4.r.star.norm[j] <- cor(cd4.star[,1], cd4.star[,2])

}

Finally we calculate the bootstrap bias estimate, standard error and hence the bootstrap
normal interval for the true correlation coefficient ρ.

q4.b.boot.norm <- mean(q4.r.star.norm)-q4.r

q4.se.boot.norm <- sd(q4.r.star.norm)

q4.CI.boot.norm <- q4.r-q4.b.boot.norm-qnorm(c(0.975,0.025))*q4.se.boot.norm

This gives us
b̂boot(r) = − 0.0092 seboot(r) = 0.1172

and the 95% confidence interval
(
0.5025, 0.9621

)
. [6/5 marks]

11

b) To use the Fisher’s transformation we simply need to define the transformation and
apply it to all of our bootstrap replicates r∗. We then define the inverse of this trans-
formation and apply it to the endpoints of the interval for ψ.

The inverse of the transformation is

ψ =
1

2
log

(
1 + ρ

1− ρ

)
⇐⇒ ρ =

e2ψ−1

e2ψ +1
[3/2 marks]

fisher <- function(r) 0.5*log((1+r)/(1-r))

fisher.inv <- function(p) (exp(2*p)-1)/(exp(2*p)+1)

q4.psi.hat <- fisher(q4.r)

q4.psi.star.norm <- fisher(q4.r.star.norm)

q4.b.boot.psi.norm <- mean(q4.psi.star.norm)-q4.psi.hat

q4.se.boot.psi.norm <- sd(q4.psi.star.norm)

q4.CI.boot.psi.norm <- q4.psi.hat-q4.b.boot.psi.norm-

qnorm(c(0.975,0.025))*q4.se.boot.psi.norm

q4.CI.boot.rho.norm <- fisher.inv(q4.CI.boot.psi.norm)

From this we get the 95% interval for ρ to be
(
0.4000, 0.8771

)
which is wider than the

interval calculated on the original scale and is shifted towards 0. [4/3 marks]

c) For the non-parametric bootstrap we replace the calls to mvrnorm with resampling rows
of the cd4 data with replacement. The easiest way to do this is to resample the row
numbers from the set of possible row numbers {1, . . . , n}.
set.seed(20190408)

inds <- matrix(sample(1:q4.n, R*q4.n, replace=TRUE), ncol=q4.n)

q4.r.star.np <- rep(NA, R)

for (j in 1:R) {

i <- inds[j,]

q4.r.star.np[j] <- cor(cd4$baseline[i], cd4$oneyear[i])

}

q4.b.boot.np <- mean(q4.r.star.np)-q4.r

q4.se.boot.np <- sd(q4.r.star.np)

q4.CI.boot.np <- q4.r-q4.b.boot.np-qnorm(c(0.975,0.025))*q4.se.boot.np

I get b̂boot(r) = −0.0061, seboot(r) = 0.0914 and 95% confidence interval
(
0.5501, 0.9084

)
.

[5/4 marks]

Using the transformed scale we have
q4.psi.star.np <- fisher(q4.r.star.np)

q4.b.boot.psi.np <- mean(q4.psi.star.np)-q4.psi.hat

q4.se.boot.psi.np <- sd(q4.psi.star.np)

q4.CI.boot.psi.np <- q4.psi.hat-q4.b.boot.psi.np-

qnorm(c(0.975,0.025))*q4.se.boot.psi.np

q4.CI.boot.rho.np <- fisher.inv(q4.CI.boot.psi.np)

which gives us the interval for ρ to be
(
0.4873, 0.8542

)
.

Comparing with the results obtained using the normal model we see that the nonpara-
metric bias and standard error estimate are both smaller (in absolute value) and the
intervals are much narrower. [3/3 marks]

12

Q. 5 Required for STATS 6CI3 Students Only

a) First we note that the joint posterior distribution of µ and σ2 is given by

π(µ, σ2 | x) ∝ L(µ, σ2;x)π(µ, σ2)

∝
(

1

σ2

)n/2+1

exp

{
−
∑

(xi − µ)2

2σ2

}

=

(
1

σ2

)n/2+1

exp

{
−(n− 1)s2

2σ2

}
exp

{
−n(µ− x)2

2σ2

}
where s2 = (n− 1)−1

∑
(xi − x)2 is the sample variance. [2 marks]

The conditional posterior distribution of µ for a given σ2 will be proportional to the
joint posterior of µ and σ2 evaluated at the given value of σ2. Since the value of σ2 is
known we can omit parts which depend only on σ2 so we see that

π(µ | σ2,x) ∝ π(µ, σ2 | x) ∝ exp

{
−n(µ− x)2

2σ2

}
We now recognize this as the kernel of a normal pdf with mean x and variance σ2/n.
Thus we have

(µ | σ2 = v,x) ∼ Normal(x, v/n)

[3 marks]

b) To get the marginal posterior distribution of µ we need to integrate the joint posterior
distribution with respect to σ2. We only know that distribution up to a constant but
that is okay.

To complete the integration easily we recall from class that the inverse gamma pdf is
given by

f(x;α, β) =
1

Γ(α)βα
y−(α+1) exp

{
− 1

βy

}
and since this integrates to 1 we have that∫ ∞

0

y−(α+1) exp

{
− 1

βy

}
dy = Γ(α)βα

Thus the marginal posterior distribution for µ is

πµ(µ | x) ∝
∫ ∞
0

(
1

σ2

)n/2+1

exp

{
−(n− 1)s2 + n(µ− x)2

2σ2

}
dσ2

= Γ
(n

2

)(2

(n− 1)s2 + n(µ− x)2

)n/2

∝
(

2

(n− 1)s2 + n(µ− x)2

)n/2
∝

(
(n− 1)s2 + n(µ− x)2

)−n/2
µ ∈ IR [3 marks]

13

Now let us make the transformation from µ to the new random variable

T =

√
n(θ − x)

s
⇒ µ =

sT√
n

+ x

[Recall that in Bayesian inference x and s2 are considered to be fixed known quantities,
so this is a simple linear transformation.]

Thus we have

πT (t | x) = πµ

(
st√
n

+ x

)
s√
n

∝

(
(n− 1)s2 + n

(
st√
n

+ x− x
)2
)−n/2

=
(
(n− 1)s2 + s2t2

)−n/2
= (n− 1)−n/2s−n

(
1 +

t2

n− 1

)−n/2

∝
(

1 +
t2

n− 1

)−n/2
t ∈ IR

We now recognize this as being proportional to the density of a Student’s t distribution
with n − 1 degrees of freedom. (See, for example Page 625 of Statistical Inference by
Casella & Berger or Page 211 of Mathematical Statistics by Hogg, McKean & Craig for
the definition of tν density)

Hence we have that

T | x =

√
n(µ− x)

s

∣∣∣∣x, s ∼ tn−1 [3 marks]

c) Similarly, for the marginal posterior distribution for σ2 we integrate over µ and get

πσ2(σ
2 | x) =

∫ ∞
−∞

π(µ, σ2 | x) dµ

∝
(

1

σ2

)n/2+1

exp

{
−(n− 1)s2

2σ2

}∫ ∞
−∞

exp

{
−n(µ− x)2

2σ2

}
dµ

=

(
1

σ2

)n/2+1

exp

{
−(n− 1)s2

2σ2

}√
2πσ2

n

∝
(

1

σ2

)(n+1)/2

exp

{
−(n− 1)s2

2σ2

}
σ2 > 0

Comparing this to the density of the inverse gamma distribution we see that the
marginal posterior distribution of σ2 is such that

σ2 | x ∼ Inverse Gamma

(
α =

n− 1

2
, β =

2

(n− 1)s2

)
[4 marks]

14

Now let

W =
(n− 1)s2

σ2
⇒ σ2 =

(n− 1)s2

W

Hence we have that

πW (w | x) = πσ2

(
(n− 1)s2

w

) ∣∣∣∣−(n− 1)s2

w2

∣∣∣∣
=

1

Γ
(
n−1
2

) (
2

(n−1)s2

)(n−1)/2 (w

(n− 1)s2

)n−1
2

+1

exp
{
−w

2

}((n− 1)s2

w2

)

=
1

Γ
(
n−1
2

)
2(n−1)/2w

n−1
2
−1 exp

{
−w

2

}
w > 0

We see that this is the pdf of a gamma density with α = (n− 1)/2 and β = 2 which is
the density of the χ2

n−1 distribution and so we have

W | x =
(n− 1)s2

σ2

∣∣∣∣ s2 ∼ χ2
n−1.

[2 marks]

d) The results given above are for fixed x and s given by the dataset actually seen. They
give the posterior distributions of the parameters µ and σ2 for this single dataset. The
parameters µ and σ2 are considered the random variables in this Bayesian analysis.

In the usual frequentist results µ and σ2 are considered as fixed but unknown values
and the distributions are for the random variables X and S2 derived from repeated
samples of size n from the underlying normal(µ, σ2) distribution. [3 marks]

15

