
STATISTICS 743 (Part I)

The following definitions of common probability distributions, their means and variances may be

used without proof in your solutions.

The probability mass or density functions are 0 outside of the values or ranges of values specified

below.

• The binomial(n, p) probability mass function is

f(x | p) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n

where n is a positive integer and 0 < p < 1.

If X ∼ binomial(n, p) then E(X) = np and Var(X) = np(1− p).

• The Poisson(λ) probability mass function is

f(x | λ) =
λxe−λ

x!
x = 0, 1, . . .

where λ > 0

If X ∼ Poisson(λ) then E(X) = λ and Var(X) = λ.

• The Geometric(p) probability mass function is

f(x | p) = p(1− p)x−1 x = 1, 2, . . .

where 0 < p < 1.

If X ∼ geometric(p) then E(X) = 1/p and Var(X) = (1− p)/p2.

• The Negative Binomial(r, p) probability mass function is

f(x | r, p) =

(
r + x− 1

x

)
pr(1− p)x x = 0, 1, . . .

where r is a positive integer and 0 < p < 1.

If X ∼ negative binomial(r, p) then E(X) = r(1− p)/p and Var(X) = r(1− p)/p2.
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• The uniform(a, b) probability density function is

f(x | a, b) =
1

b− a
a < x < b.

where a and b are real numbers with b > a.

If X ∼ uniform(a, b) then E(X) = (a+ b)/2 and Var(X) = (b− a)2/12.

• The univariate normal(µ, σ2) probability density function is

f(x | µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
x ∈ IR

where µ ∈ IR and σ2 > 0.

If X ∼ normal(µ, σ2) then E(X) = µ and Var(X) = σ2.

• The exponential(µ) probability density function is

f(x;µ) =
1

µ
e−x/µ x > 0.

where µ > 0.

If X ∼ exponential(µ) then E(X) = µ and Var(X) = µ2.

• The gamma(α, β) probability density function is

f(x;α, β) =
1

Γ(α)βα
xα−1e−x/β x > 0.

where α > 0 and β > 0 and the gamma function is defined as

Γ(α) =

∫ ∞
0

xα−1e−x dx

If X ∼ gamma(α, β) then E(X) = αβ and Var(X) = αβ2.

• If a random variable X has a gamma distribution with β = 2 and α = p/2 then we say that

X has a chi-squared distribution with p degrees of freedom.

• The beta(α, β) probability density function is

f(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 0 < x < 1.

where α > 0 and β > 0.

If X ∼ beta(α, β) then E(X) = α/(α + β) and Var(X) = αβ/
(
(α + β)2(α + β + 1)

)
.
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The following results may be used without proof in your solutions

• If A and B are any two events then Pr(A
⋃
B) = Pr(A) + Pr(B)− Pr(A

⋂
B).

• If A1, A2, . . . is a partition of a sample space and B is any event in the same sample space

then

P (Ai | B) =
P (B | Ai)P (Ai)
∞∑
j=1

P (B | Aj)P (Aj)

• If X is a random variable then the moment generating function of X is defined to be MX(t) =

E
(
etX
)

provided this expectation exists for t in a neighbourhood of 0.

• lim
n→∞

(
1 +

an
n

)n
= exp

{
lim
n→∞

an

}
.

• A distribution is said to be in the exponential family if its probability density or mass function

can be written as

f(x | θ) = h(x)c(θ) exp

{
k∑
i=1

wi(θ)ti(x)

}
for positive function h(x) and c(θ).

• A distribution is said to be in a location-scale family if its probability density function can be

written as

f(| µ, σ) =
1

σ
g

(
x− µ
σ

)
for some density function g.

• If X and Y are two random variables with joint density (or mass) function fX,Y then the

conditional density (or mass) function is defined to be

fY |X(y | X = x) =
fX,Y (x, y)

fX(x)

where fX is the marginal pdf or pmf for X obtained by integrating or summing fX,Y over all

possible values of y.

• For any two random variables X and Y we can write E(X) = E
(
E(X | Y )

)
and

Var(X) = E
(
Var(X | Y )

)
+ Var

(
E(X | Y )

)
.

• The correlation coefficient between two random variables X and Y is

ρX,Y =
Cov(X, Y )√

Var(X)Var(Y )

where the covariance is Cov(X, Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y ).
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• The bivariate normal distribution has joint pdf

f(x1, x2) =
1

2πσ1σ2
√

1− ρ2

× exp

{
− 1

2(1− ρ2)

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

)}
where µ1 and µ2 are the marginal means, σ2

1 and σ2
2 are the marginal variances and −1 < ρ < 1

is the correlation between the two components of the random vector.

• If X1, . . . , Xn are random variables and a1, . . . , an are constants then

E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2iVar(Xi) + 2
∑
i>j

aiajCov(Xi, Xj)

• Xn
d−→ X if lim

n→∞
Pr(Xn 6 x) = Pr(X 6 x) at every point x at which the cumulative

distribution function of X is continuous.

• Xn
p−→ X if, for every ε > 0, lim

n→∞
Pr(|Xn −X| < ε) = 1.

• Xn
p−→ X ⇒ Xn

d−→ X.

• A sequence X1, X2, . . . , is bounded in probability if for every ε > 0 there exist constants Bε

and Nε such that n > Nε ⇒ Pr(|Xn| < Bε) > 1− ε.

• If U ∼ Uniform(0, 1) and F is a cumulative distribution function with inverse F−1 then

X = F−1(U) has cumulative distribution function F .

• A statistic T (X) is sufficient for the parameter θ if the joint pdf (or pmf) of X can be written

as f(x | θ) = g(T (x), θ)h(x) for every x.

• The family of sampling distributions of a statistic T is complete if

Eθ(g(T )) = 0⇒ Prθ(g(T ) = 0) = 1 for every possible θ
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