STATISTICS 743 (Part I)

The following definitions of common probability distributions, their means and variances may be used without proof in your solutions.

The probability mass or density functions are 0 outside of the values or ranges of values specified below.

- The $\operatorname{binomial}(n, p)$ probability mass function is

$$
f(x \mid p)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n
$$

where n is a positive integer and $0<p<1$.
If $X \sim \operatorname{binomial}(n, p)$ then $\mathrm{E}(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$.

- The $\operatorname{Poisson}(\lambda)$ probability mass function is

$$
f(x \mid \lambda)=\frac{\lambda^{x} \mathrm{e}^{-\lambda}}{x!} \quad x=0,1, \ldots
$$

where $\lambda>0$
If $X \sim \operatorname{Poisson}(\lambda)$ then $\mathrm{E}(X)=\lambda$ and $\operatorname{Var}(X)=\lambda$.

- The Geometric (p) probability mass function is

$$
f(x \mid p)=p(1-p)^{x-1} \quad x=1,2, \ldots
$$

where $0<p<1$.
If $X \sim \operatorname{geometric}(p)$ then $\mathrm{E}(X)=1 / p$ and $\operatorname{Var}(X)=(1-p) / p^{2}$.

- The Negative $\operatorname{Binomial}(r, p)$ probability mass function is

$$
f(x \mid r, p)=\binom{r+x-1}{x} p^{r}(1-p)^{x} \quad x=0,1, \ldots
$$

where r is a positive integer and $0<p<1$.
If $X \sim$ negative $\operatorname{binomial}(r, p)$ then $\mathrm{E}(X)=r(1-p) / p$ and $\operatorname{Var}(X)=r(1-p) / p^{2}$.

- The uniform (a, b) probability density function is

$$
f(x \mid a, b)=\frac{1}{b-a} \quad a<x<b
$$

where a and b are real numbers with $b>a$.
If $X \sim$ uniform (a, b) then $\mathrm{E}(X)=(a+b) / 2$ and $\operatorname{Var}(X)=(b-a)^{2} / 12$.

- The univariate normal $\left(\mu, \sigma^{2}\right)$ probability density function is

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \quad x \in \mathbb{R}
$$

where $\mu \in \mathbb{R}$ and $\sigma^{2}>0$.
If $X \sim \operatorname{normal}\left(\mu, \sigma^{2}\right)$ then $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

- The exponential (μ) probability density function is

$$
f(x ; \mu)=\frac{1}{\mu} \mathrm{e}^{-x / \mu} \quad x \geqslant 0
$$

where $\mu>0$.
If $X \sim \operatorname{exponential}(\mu)$ then $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\mu^{2}$.

- The gamma (α, β) probability density function is

$$
f(x ; \alpha, \beta)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \mathrm{e}^{-x / \beta} \quad x \geqslant 0 .
$$

where $\alpha>0$ and $\beta>0$ and the gamma function is defined as

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} \mathrm{e}^{-x} d x
$$

If $X \sim \operatorname{gamma}(\alpha, \beta)$ then $\mathrm{E}(X)=\alpha \beta$ and $\operatorname{Var}(X)=\alpha \beta^{2}$.

- If a random variable X has a gamma distribution with $\beta=2$ and $\alpha=p / 2$ then we say that X has a chi-squared distribution with p degrees of freedom.
- The beta (α, β) probability density function is

$$
f(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad 0<x<1
$$

where $\alpha>0$ and $\beta>0$.
If $X \sim \operatorname{beta}(\alpha, \beta)$ then $\mathrm{E}(X)=\alpha /(\alpha+\beta)$ and $\operatorname{Var}(X)=\alpha \beta /\left((\alpha+\beta)^{2}(\alpha+\beta+1)\right)$.

The following results may be used without proof in your solutions

- If A and B are any two events then $\operatorname{Pr}(A \bigcup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \bigcap B)$.
- If A_{1}, A_{2}, \ldots is a partition of a sample space and B is any event in the same sample space then

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{\infty} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

- If X is a random variable then the moment generating function of X is defined to be $M_{X}(t)=$ $\mathrm{E}\left(\mathrm{e}^{t X}\right)$ provided this expectation exists for t in a neighbourhood of 0 .
- $\lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{n}\right)^{n}=\exp \left\{\lim _{n \rightarrow \infty} a_{n}\right\}$.
- A distribution is said to be in the exponential family if its probability density or mass function can be written as

$$
f(x \mid \boldsymbol{\theta})=h(x) c(\boldsymbol{\theta}) \exp \left\{\sum_{i=1}^{k} w_{i}(\boldsymbol{\theta}) t_{i}(x)\right\}
$$

for positive function $h(x)$ and $c(\boldsymbol{\theta})$.

- A distribution is said to be in a location-scale family if its probability density function can be written as

$$
f(\mid \mu, \sigma)=\frac{1}{\sigma} g\left(\frac{x-\mu}{\sigma}\right)
$$

for some density function g.

- If X and Y are two random variables with joint density (or mass) function $f_{X, Y}$ then the conditional density (or mass) function is defined to be

$$
f_{Y \mid X}(y \mid X=x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

where f_{X} is the marginal pdf or pmf for X obtained by integrating or summing $f_{X, Y}$ over all possible values of y.

- For any two random variables X and Y we can write $\mathrm{E}(X)=\mathrm{E}(\mathrm{E}(X \mid Y))$ and $\operatorname{Var}(X)=\mathrm{E}(\operatorname{Var}(X \mid Y))+\operatorname{Var}(\mathrm{E}(X \mid Y))$.
- The correlation coefficient between two random variables X and Y is

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

where the covariance is $\operatorname{Cov}(X, Y)=\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y)))=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$.

- The bivariate normal distribution has joint pdf

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \\
& \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-2 \rho \frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right)\right\}
\end{aligned}
$$

where μ_{1} and μ_{2} are the marginal means, σ_{1}^{2} and σ_{2}^{2} are the marginal variances and $-1<\rho<1$ is the correlation between the two components of the random vector.

- If X_{1}, \ldots, X_{n} are random variables and a_{1}, \ldots, a_{n} are constants then

$$
\begin{aligned}
\mathrm{E}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i} \mathrm{E}\left(X_{i}\right) \\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i>j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

- $X_{n} \xrightarrow{d} X$ if $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n} \leqslant x\right)=\operatorname{Pr}(X \leqslant x)$ at every point x at which the cumulative distribution function of X is continuous.
- $X_{n} \xrightarrow{p} X$ if, for every $\varepsilon>0, \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|X_{n}-X\right|<\varepsilon\right)=1$.
- $X_{n} \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{d} X$.
- A sequence X_{1}, X_{2}, \ldots, is bounded in probability if for every $\varepsilon>0$ there exist constants B_{ε} and N_{ε} such that $n>N_{\varepsilon} \Rightarrow \operatorname{Pr}\left(\left|X_{n}\right|<B_{\varepsilon}\right) \geqslant 1-\varepsilon$.
- If $U \sim \operatorname{Uniform}(0,1)$ and F is a cumulative distribution function with inverse F^{-1} then $X=F^{-1}(U)$ has cumulative distribution function F.
- A statistic $T(\boldsymbol{X})$ is sufficient for the parameter θ if the joint pdf (or pmf) of \boldsymbol{X} can be written as $f(\boldsymbol{x} \mid \theta)=g(T(\boldsymbol{x}), \theta) h(\boldsymbol{x})$ for every \boldsymbol{x}.
- The family of sampling distributions of a statistic T is complete if $\mathrm{E}_{\theta}(g(T))=0 \Rightarrow \operatorname{Pr}_{\theta}(g(T)=0)=1$ for every possible θ

