Random Variables

Definition 2.1
A random variable is defined as a function X : S — X C R
mapping the sample space S to a subset of the real line.

The set X of possible values of the random variable is called the
support of the random variable.

* We use the notation (X € A) to denote the event (in S)
which is mapped to the set A by the function X.

(XeA)={seS:X(s) e A}

* Hence we can define a probability function Px on X as

Px(A) = P(X € A) = P({s €S:X(s)€ A})
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Cumulative Distribution Function

* We talk about the distribution of a random variable to de-
scribe the probability that it falls in certain subsets of the
real line.

* Of particular interest are right-closed intervals which define
the cumulative distribution function.

Definition 2.2

Suppose that X is a random variable defined on a sample space S,
then the cumulative distribution function (CDF) of X is defined
as

Fx(z) = P(X <z) = P({s € S: X(s) < x})

* Two random variables are said to be identically distributed
if, and only if, they have the same CDF.
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Properties of the CDF

Theorem 2.1

If a function F is a cumulative distribution function then it sat-
isfies the properties

(i) Iim F(x)=0 and Ilm F(x) =1,

T—r—00
(ii) F is a nondecreasing (monotone increasing) function
r1 <z = F(z1) < F(22),
(ii1) F is a right-continuous function

lim F'(x) = F(xg) for every zg € R.
xlxQ

* It can also be shown that any function F' satisfying these con-
ditions is a cumulative distribution function for some random
variable.
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Continuous and Discrete Random Variables

Definition 2.3

A random variable X is called a continuous random variable if
the cumulative distribution function Fx is a continuous function.
A continuous random variable has an uncountable support X.

X is said to be a discrete random variable if Fx is a step function.
A discrete random variable has finite or countable support X.
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Probability Mass and Density Functions

Definition 2.4

If X is a discrete random variable then the probability mass func-
tion of X is given by

fx(z) = P(X =x)

Definition 2.5

For a continuous random variable X with cumulative distribution
function Fx(x), the probability density function of X is the non-
negative function f which satisfies

Fx(z) = [ ‘”OO fx(t) dt
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Properties of Mass and Density Functions

Theorem 2.2
A function f is a probability density (or mass) function of a
random variable if, and only if, it satisfies

(i) fx(x) >0 for every z € R.

(i) ) fx@)=1 (mass function)
reX

©.@)
/ fx(z)dr =1 (density function)
©.@)
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Transformations

* Recall that a random variable X is a function mapping a
sample space S to X C R.

* Consider a real-valued function g defined on R. Then Y =
g(X) is a composition of functions mapping S to Y C IR and
SO is also a random variable.

* For a given random variable X and its associated distribution,
we wish to find the distribution of the random variable Y =
g(X) for some transformation g.
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Defining Probabilities for ¥ = g(X)
* For any set A C Y we can define an inverse mapping
g HA) ={z e X :g(z) € A}
* Then we define the event
(Y e A) = (g(X) e A) — (X e g_l(A)).
* Thus we can define a probability measure
P(Y e A) — P(X e g_l(A)) — P({s €S:X(s)c€ g_l(A)})

* This satisfies the Axioms of Probability and so is a valid
probability measure.

* The support Y of Y is given by

Y ={y:y=g(x) for some z € X}



Transformations of Discrete Random Variables

* For a discrete random variable we can find the probability
mass function of Y from that for X.

fr(y) = > fx(@)y= > fx(@) forye)y

{zeX:g(z)=y} zeg~1(y)

* The cumulative distribution function for Y is found by sum-
ming its probability mass function

Fy(y) => fr(t) = > fx(x)

iy {zeX g(x)<y}
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Transformations of Continuous Random Variables

* For a continuous random variable, it is generally easiest to
get the cdf first.

Fy(y) = / fx(x) dx

{zeX:g(x)<y}

* We can then find the probability density function using the

relation

d

fr(y) = d—yFy(y)
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Monotone Transformations

* ¢ is said to be monotone if u >v = g(u) > g(v)(increasing)
oru>v = g(u) < g(v) (decreasing).

* A monotone g is one-to-one and so g_l IS also single-valued
and monotone.

Theorem 2.3

Suppose that X has cdf Fx on support X and let Y = g(X) be
defined on'Y = g(X).

(i) If g is an increasing function then Fy(y) = Fx (g_l(y)) for
any yec)y.

(ii) If g is a decreasing function and X is a continuous random
variable then Fy(y) =1 — Fyx (g_l(y)) for any y € ).
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Monotone Transformations of Continuous Random Vari-
ables

Theorem 2.4

Let X be a continuous random variable with continuous pdf fx on
a support X and let' Y = g(X) where g is a monotone function
on X. Let Y = g(X) and suppose that ¢g—1 has a continuous
derivative on Y. Then the pdf of Y is

_ dg~1(y)
fy(y) = Ix (g 1(y)) | dy Y ‘ foryey

0 otherwise.
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Extension for Piecewise Monotone Transformations

T heorem 2.5

Let X be a continuous random variable with pdf fx on the sup-
port X and letY = g(X). Let Ag,Aq,...,A, be a partition of X
such that P(X € Ag) = 0 and fx is continuous on each A;. If
there exist functions g1,...,9; defined on Aq,..., A, such that

(i) g(x) = g;(x) for every x € A;;
(ii) g; is monotone on A; for eachi=1,...,k,

(lii) the set Y = {y : y = g;(x) for some x € A;} is the same for
each:=1,...,k,

(iv) gi_]L has continuous derivative on'Y for eachi=1,...,k,

then the pdf of Y is

[k B d 7—1( )
1 9; (Y
) = ; fx (97 W) i

. O otherwise.

foryey
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Probability Integral Transform

Theorem 2.6

Let X have continuous cdf Fx and define the random variable
Y = Fx(X). ThenY is distributed as a uniform random variable
on the interval (0,1).

That is the pdf of Y is

1 O<y<l1
0 otherwise.

fr(y) = {
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Expectations

Definition 2.6

If X is a discrete random variable with probability mass function
fsssx On support X then the expected value or mean of g(X) for
any real-valued function g is

E(9(X)) = > g(x) fx(x)
TEX

provided that Y |g(x)|fx(x) < oo, otherwise we say that the mean
does not exist.

If X is a continuous random variable with probability density
function fx(x) the expected value of g(X) is

E(90)) = | g@)fx(@)da

provided that [|g(x)|fx(x)dx < oo, otherwise we say that the
mean does not exist.
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Some Properties of Expectations

Theorem 2.7

Let X be a random variable with support X. Then for any real-
valued functions g1 and g> whose expectations exist and any real
constants a, b and c

(i) E(ag1(X) +bga(X) +¢) = aE(g2(X)) +bE (g2(X)) + ¢
(ii) If g1(x) > O for all x € X then E (gl(X))
(iii) If g1(z) > go(2) for all z € X then E (gl(X)> (gQ(X)>

(iv) If < g1(z) <b for all x € X then a < (gl(X)>
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Moments

Definition 2.7

Suppose that X is a random variable with cdf Fx. For any
positive integer r, the r'h moment of X (more accurately of Fyx)
is pp = E(X")

The rt" central moment of X is pur = E((X — p)") where p =
py = E(X).

Definition 2.8
T he second central moment is called the variance of X

Var(X) =E ((X — M)Q) =E (XQ) = (E(X))2

The positive square root of the variance is called the standard
deviation of X.
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Moment Generating Functions

Definition 2.9
Let X be a random variable with cdf Fx. The moment generating
function of X (or of Fx) is

Mx(t) = E (etX )

provided this expectation exists for t in some neighbourhood of
0.

Theorem 2.8
If X has moment generating function Mx(t) then for any integer

T
r

d
''— E(X™) = — Mx(t .
= EQ) = 0|
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Properties of the Moment Generating Function

Theorem 2.9

Let X be a random variable with moment generating function
Mx(t) which exists in a neighbourhood of O and let a and b be
two real constants. The the moment generating function of the
random variable aX + b is

MaX-l—b(t) = ethx(CLt).

* If the moment generating function of a random variable exists
then all moments of that random variable exist.

* The reverse is not true (e.g. the log-normal distribution).
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Equality of Distributions

T heorem 2.10

Let X and Y be two random variables with cdfs Fx and Fy
respectively, all of whose moments exist.

(i) If X and Y have bounded support then Fx(u) = Fy(u) for all
u if, and only if E(X") = E (Y") for all positive integers r.

(ii) If the moment generating functions Mx(t) and My (t) exist
in a neighbourhood of 0 and Mx(t) = My (t) for all t in that
neighbourhood then Fx(u) = Fy(u) for all u.
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Convergence of Distribution and Moment Generating Func-
tions

Theorem 2.11
Let X1, X»>,... be a sequence of random variables each with mo-

ment generating function Mx,(t), and cumulative distribution
function Fx, fort=1,2,.... Suppose that

lim Mx, (t) — Mx(t) for all t in a neighbourhood of O

n—oo

where Mx(t) is a moment generating function for some random
variable X. Then there exists a unique cumulative distribution
function Fx whose moments are determined by Mx(t) and

lim Fx,(z) — Fx(z)

at every x where Fx is continuous.
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