Random Variables

Definition 2.1
A random variable is defined as a function $X: S \rightarrow \mathcal{X} \subseteq \mathbb{R}$ mapping the sample space S to a subset of the real line.

The set \mathcal{X} of possible values of the random variable is called the support of the random variable.

* We use the notation ($X \in A$) to denote the event (in S) which is mapped to the set A by the function X.

$$
(X \in A) \equiv\{s \in S: X(s) \in A\}
$$

* Hence we can define a probability function P_{X} on \mathcal{X} as

$$
P_{X}(A)=P(X \in A)=P(\{s \in S: X(s) \in A\})
$$

Cumulative Distribution Function

* We talk about the distribution of a random variable to describe the probability that it falls in certain subsets of the real line.
* Of particular interest are right-closed intervals which define the cumulative distribution function.

Definition 2.2

Suppose that X is a random variable defined on a sample space S, then the cumulative distribution function (CDF) of X is defined as

$$
F_{X}(x)=P(X \leqslant x)=P(\{s \in S: X(s) \leqslant x\})
$$

* Two random variables are said to be identically distributed if, and only if, they have the same CDF.

Properties of the CDF

Theorem 2.1

If a function F is a cumulative distribution function then it satisfies the properties
(i) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$,
(ii) F is a nondecreasing (monotone increasing) function

$$
x_{1}<x_{2} \Rightarrow F\left(x_{1}\right) \leqslant F\left(x_{2}\right)
$$

(iii) F is a right-continuous function

$$
\lim _{x \downarrow x_{0}} F(x)=F\left(x_{0}\right) \quad \text { for every } x_{0} \in \mathbb{R}
$$

* It can also be shown that any function F satisfying these conditions is a cumulative distribution function for some random variable.

Continuous and Discrete Random Variables

Definition 2.3
A random variable X is called a continuous random variable if the cumulative distribution function F_{X} is a continuous function. A continuous random variable has an uncountable support \mathcal{X}.
X is said to be a discrete random variable if F_{X} is a step function. A discrete random variable has finite or countable support \mathcal{X}.

Probability Mass and Density Functions

Definition 2.4

If X is a discrete random variable then the probability mass function of X is given by

$$
f_{X}(x)=P(X=x)
$$

Definition 2.5

For a continuous random variable X with cumulative distribution function $F_{X}(x)$, the probability density function of X is the nonnegative function f which satisfies

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

Properties of Mass and Density Functions

Theorem 2.2
A function f is a probability density (or mass) function of a random variable if, and only if, it satisfies
(i) $f_{X}(x) \geqslant 0$ for every $x \in \mathbb{R}$.
(ii) $\sum_{x \in \mathcal{X}} f_{X}(x)=1 \quad$ (mass function)

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1 \quad \text { (density function) }
$$

Transformations

* Recall that a random variable X is a function mapping a sample space S to $\mathcal{X} \subseteq \mathbb{R}$.
* Consider a real-valued function g defined on \mathbb{R}. Then $Y=$ $g(X)$ is a composition of functions mapping S to $\mathcal{Y} \subseteq \mathbb{R}$ and so is also a random variable.
* For a given random variable X and its associated distribution, we wish to find the distribution of the random variable $Y=$ $g(X)$ for some transformation g.

Defining Probabilities for $Y=\boldsymbol{g}(\boldsymbol{X})$

* For any set $A \subseteq \mathcal{Y}$ we can define an inverse mapping

$$
g^{-1}(A)=\{x \in \mathcal{X}: g(x) \in A\}
$$

* Then we define the event

$$
(Y \in A)=(g(X) \in A)=\left(X \in g^{-1}(A)\right)
$$

* Thus we can define a probability measure

$$
P(Y \in A)=P\left(X \in g^{-1}(A)\right)=P\left(\left\{s \in S: X(s) \in g^{-1}(A)\right\}\right)
$$

* This satisfies the Axioms of Probability and so is a valid probability measure.
* The support \mathcal{Y} of Y is given by

$$
\mathcal{Y}=\{y: y=g(x) \text { for some } x \in \mathcal{X}\}
$$

Transformations of Discrete Random Variables

* For a discrete random variable we can find the probability mass function of Y from that for X.

$$
f_{Y}(y)=\sum_{\{x \in \mathcal{X}: g(x)=y\}} f_{X}(x)=\sum_{x \in g^{-1}(y)} f_{X}(x) \quad \text { for } y \in \mathcal{Y}
$$

* The cumulative distribution function for Y is found by summing its probability mass function

$$
F_{Y}(y)=\sum_{t \leqslant y} f_{Y}(t)=\sum_{\{x \in \mathcal{X}: g(x) \leqslant y\}} f_{X}(x)
$$

Transformations of Continuous Random Variables

* For a continuous random variable, it is generally easiest to get the cdf first.

$$
F_{Y}(y)=\int_{\{x \in \mathcal{X}: g(x) \leqslant y\}} f_{X}(x) d x
$$

* We can then find the probability density function using the relation

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)
$$

Monotone Transformations

* g is said to be monotone if $u>v \Rightarrow g(u)>g(v)$ (increasing) or $u>v \Rightarrow g(u)<g(v)$ (decreasing).
* A monotone g is one-to-one and so g^{-1} is also single-valued and monotone.

Theorem 2.3

Suppose that X has cdf F_{X} on support \mathcal{X} and let $Y=g(X)$ be defined on $\mathcal{Y}=g(\mathcal{X})$.
(i) If g is an increasing function then $F_{Y}(y)=F_{X}\left(g^{-1}(y)\right)$ for any $y \in \mathcal{Y}$.
(ii) If g is a decreasing function and X is a continuous random variable then $F_{Y}(y)=1-F_{X}\left(g^{-1}(y)\right)$ for any $y \in \mathcal{Y}$.

Monotone Transformations of Continuous Random Variables

Theorem 2.4

Let X be a continuous random variable with continuous pdf f_{X} on a support \mathcal{X} and let $Y=g(X)$ where g is a monotone function on \mathcal{X}. Let $\mathcal{Y}=g(\mathcal{X})$ and suppose that g^{-1} has a continuous derivative on \mathcal{Y}. Then the pdf of Y is

$$
f_{Y}(y)= \begin{cases}f_{X}\left(g^{-1}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right| & \text { for } y \in \mathcal{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Extension for Piecewise Monotone Transformations

Theorem 2.5

Let X be a continuous random variable with pdf f_{X} on the support \mathcal{X} and let $Y=g(X)$. Let $A_{0}, A_{1}, \ldots, A_{k}$ be a partition of \mathcal{X} such that $P\left(X \in A_{0}\right)=0$ and f_{X} is continuous on each A_{i}. If there exist functions g_{1}, \ldots, g_{k} defined on A_{1}, \ldots, A_{k} such that
(i) $g(x)=g_{i}(x)$ for every $x \in A_{i}$;
(ii) g_{i} is monotone on A_{i} for each $i=1, \ldots, k$,
(iii) the set $\mathcal{Y}=\left\{y: y=g_{i}(x)\right.$ for some $\left.x \in A_{i}\right\}$ is the same for each $i=1, \ldots, k$,
(iv) g_{i}^{-1} has continuous derivative on \mathcal{Y} for each $i=1, \ldots, k$, then the pdf of Y is

$$
f_{Y}(y)= \begin{cases}\sum_{i=1}^{k} f_{X}\left(g_{i}^{-1}(y)\right)\left|\frac{d g_{i}^{-1}(y)}{d y}\right| & \text { for } y \in \mathcal{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Probability Integral Transform

Theorem 2.6
Let X have continuous cdf F_{X} and define the random variable $Y=F_{X}(X)$. Then Y is distributed as a uniform random variable on the interval $(0,1)$.

That is the pdf of Y is

$$
f_{Y}(y)= \begin{cases}1 & 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Expectations

Definition 2.6

If X is a discrete random variable with probability mass function $f_{\text {sss } X}$ on support \mathcal{X} then the expected value or mean of $g(X)$ for any real-valued function g is

$$
\mathrm{E}(g(X))=\sum_{x \in \mathcal{X}} g(x) f_{X}(x)
$$

provided that $\sum|g(x)| f_{X}(x)<\infty$, otherwise we say that the mean does not exist.

If X is a continuous random variable with probability density function $f_{X}(x)$ the expected value of $g(X)$ is

$$
\mathrm{E}(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

provided that $\int|g(x)| f_{X}(x) d x<\infty$, otherwise we say that the mean does not exist.

Some Properties of Expectations

Theorem 2.7
Let X be a random variable with support \mathcal{X}. Then for any realvalued functions g_{1} and g_{2} whose expectations exist and any real constants a, b and c
(i) $\mathrm{E}\left(a g_{1}(X)+b g_{2}(X)+c\right)=a \mathrm{E}\left(g_{1}(X)\right)+b \mathrm{E}\left(g_{2}(X)\right)+c$.
(ii) If $g_{1}(x) \geqslant 0$ for all $x \in \mathcal{X}$ then $\mathrm{E}\left(g_{1}(X)\right) \geqslant 0$
(iii) If $g_{1}(x) \geqslant g_{2}(x)$ for all $x \in \mathcal{X}$ then $\mathrm{E}\left(g_{1}(X)\right) \geqslant \mathrm{E}\left(g_{2}(X)\right)$
(iv) If $\leqslant g_{1}(x) \leqslant b$ for all $x \in \mathcal{X}$ then $a \leqslant E\left(g_{1}(X)\right) \leqslant b$

Moments

Definition 2.7
Suppose that X is a random variable with cdf F_{X}. For any positive integer r, the $r^{\text {th }}$ moment of X (more accurately of F_{X}) is $\mu_{r}^{\prime}=\mathrm{E}\left(X^{r}\right)$

The $r^{\text {th }}$ central moment of X is $\mu_{r}=\mathrm{E}\left((X-\mu)^{r}\right)$ where $\mu=$ $\mu_{1}^{\prime}=\mathrm{E}(X)$.

Definition 2.8

The second central moment is called the variance of X

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)=E\left(X^{2}\right)-(E(X))^{2}
$$

The positive square root of the variance is called the standard deviation of X.

Moment Generating Functions

Definition 2.9
Let X be a random variable with cdf F_{X}. The moment generating function of X (or of F_{X}) is

$$
M_{X}(t)=\mathrm{E}\left(\mathrm{e}^{t X}\right)
$$

provided this expectation exists for t in some neighbourhood of 0 .

Theorem 2.8

If X has moment generating function $M_{X}(t)$ then for any integer r

$$
\mu_{r}^{\prime}=\mathrm{E}\left(X^{r}\right)=\left.\frac{d^{r}}{d t^{r}} M_{X}(t)\right|_{t=0}
$$

Properties of the Moment Generating Function

Theorem 2.9
Let X be a random variable with moment generating function $M_{X}(t)$ which exists in a neighbourhood of 0 and let a and b be two real constants. The the moment generating function of the random variable $a X+b$ is

$$
M_{a X+b}(t)=\mathrm{e}^{b t} M_{X}(a t)
$$

* If the moment generating function of a random variable exists then all moments of that random variable exist.
* The reverse is not true (e.g. the log-normal distribution).

Equality of Distributions

Theorem 2.10

Let X and Y be two random variables with cdfs F_{X} and F_{Y} respectively, all of whose moments exist.
(i) If X and Y have bounded support then $F_{X}(u)=F_{Y}(u)$ for all u if, and only if $\mathrm{E}\left(X^{r}\right)=\mathrm{E}\left(Y^{r}\right)$ for all positive integers r.
(ii) If the moment generating functions $M_{X}(t)$ and $M_{Y}(t)$ exist in a neighbourhood of 0 and $M_{X}(t)=M_{Y}(t)$ for all t in that neighbourhood then $F_{X}(u)=F_{Y}(u)$ for all u.

Convergence of Distribution and Moment Generating Functions

Theorem 2.11

Let X_{1}, X_{2}, \ldots be a sequence of random variables each with moment generating function $M_{X_{n}}(t)$, and cumulative distribution function $F_{X_{n}}$ for $i=1,2, \ldots$ Suppose that

$$
\lim _{n \rightarrow \infty} M_{X_{n}}(t) \rightarrow M_{X}(t) \quad \text { for all } t \text { in a neighbourhood of } 0
$$

where $M_{X}(t)$ is a moment generating function for some random variable X. Then there exists a unique cumulative distribution function F_{X} whose moments are determined by $M_{X}(t)$ and

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x) \rightarrow F_{X}(x)
$$

at every x where F_{X} is continuous.

