
Random Variables

Definition 2.1

A random variable is defined as a function X : S → X ⊆ IR

mapping the sample space S to a subset of the real line.

The set X of possible values of the random variable is called the

support of the random variable.

∗ We use the notation (X ∈ A) to denote the event (in S)

which is mapped to the set A by the function X.

(X ∈ A) ≡ {s ∈ S : X(s) ∈ A}

∗ Hence we can define a probability function PX on X as

PX(A) = P (X ∈ A) = P
(
{s ∈ S : X(s) ∈ A}

)
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Cumulative Distribution Function

∗ We talk about the distribution of a random variable to de-

scribe the probability that it falls in certain subsets of the

real line.

∗ Of particular interest are right-closed intervals which define

the cumulative distribution function.

Definition 2.2

Suppose that X is a random variable defined on a sample space S,

then the cumulative distribution function (CDF) of X is defined

as

FX(x) = P (X 6 x) = P
(
{s ∈ S : X(s) 6 x}

)
∗ Two random variables are said to be identically distributed

if, and only if, they have the same CDF.
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Properties of the CDF

Theorem 2.1

If a function F is a cumulative distribution function then it sat-
isfies the properties

(i) lim
x→−∞

F (x) = 0 and lim
x→∞F (x) = 1,

(ii) F is a nondecreasing (monotone increasing) function

x1 < x2 ⇒ F (x1) 6 F (x2),

(iii) F is a right-continuous function

lim
x↓x0

F (x) = F (x0) for every x0 ∈ IR.

∗ It can also be shown that any function F satisfying these con-
ditions is a cumulative distribution function for some random
variable.
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Continuous and Discrete Random Variables

Definition 2.3

A random variable X is called a continuous random variable if

the cumulative distribution function FX is a continuous function.

A continuous random variable has an uncountable support X .

X is said to be a discrete random variable if FX is a step function.

A discrete random variable has finite or countable support X .
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Probability Mass and Density Functions

Definition 2.4

If X is a discrete random variable then the probability mass func-

tion of X is given by

fX(x) = P (X = x)

Definition 2.5

For a continuous random variable X with cumulative distribution

function FX(x), the probability density function of X is the non-

negative function f which satisfies

FX(x) =
∫ x
−∞

fX(t) dt
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Properties of Mass and Density Functions

Theorem 2.2

A function f is a probability density (or mass) function of a

random variable if, and only if, it satisfies

(i) fX(x) > 0 for every x ∈ IR.

(ii)
∑
x∈X

fX(x) = 1 (mass function)

∫ ∞
−∞

fX(x) dx = 1 (density function)
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Transformations

∗ Recall that a random variable X is a function mapping a

sample space S to X ⊆ IR.

∗ Consider a real-valued function g defined on IR. Then Y =

g(X) is a composition of functions mapping S to Y ⊆ IR and

so is also a random variable.

∗ For a given random variable X and its associated distribution,

we wish to find the distribution of the random variable Y =

g(X) for some transformation g.
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Defining Probabilities for Y = g(X)

∗ For any set A ⊆ Y we can define an inverse mapping

g−1(A) = {x ∈ X : g(x) ∈ A}

∗ Then we define the event(
Y ∈ A

)
=
(
g(X) ∈ A

)
=
(
X ∈ g−1(A)

)
.

∗ Thus we can define a probability measure

P
(
Y ∈ A

)
= P

(
X ∈ g−1(A)

)
= P

(
{s ∈ S : X(s) ∈ g−1(A)}

)
∗ This satisfies the Axioms of Probability and so is a valid

probability measure.

∗ The support Y of Y is given by

Y = {y : y = g(x) for some x ∈ X}
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Transformations of Discrete Random Variables

∗ For a discrete random variable we can find the probability

mass function of Y from that for X.

fY (y) =
∑

{x∈X :g(x)=y}
fX(x) =

∑
x∈g−1(y)

fX(x) for y ∈ Y

∗ The cumulative distribution function for Y is found by sum-

ming its probability mass function

FY (y) =
∑
t6y

fY (t) =
∑

{x∈X :g(x)6y}
fX(x)
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Transformations of Continuous Random Variables

∗ For a continuous random variable, it is generally easiest to

get the cdf first.

FY (y) =
∫
{x∈X :g(x)6y}

fX(x) dx

∗ We can then find the probability density function using the

relation

fY (y) =
d

dy
FY (y)
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Monotone Transformations

∗ g is said to be monotone if u > v ⇒ g(u) > g(v)(increasing)
or u > v ⇒ g(u) < g(v) (decreasing).

∗ A monotone g is one-to-one and so g−1 is also single-valued
and monotone.

Theorem 2.3

Suppose that X has cdf FX on support X and let Y = g(X) be
defined on Y = g(X ).

(i) If g is an increasing function then FY (y) = FX
(
g−1(y)

)
for

any y ∈ Y.

(ii) If g is a decreasing function and X is a continuous random
variable then FY (y) = 1− FX

(
g−1(y)

)
for any y ∈ Y.
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Monotone Transformations of Continuous Random Vari-

ables

Theorem 2.4

Let X be a continuous random variable with continuous pdf fX on

a support X and let Y = g(X) where g is a monotone function

on X . Let Y = g(X ) and suppose that g−1 has a continuous

derivative on Y. Then the pdf of Y is

fY (y) =

 fX
(
g−1(y)

) ∣∣∣∣∣dg−1(y)

dy

∣∣∣∣∣ for y ∈ Y

0 otherwise.
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Extension for Piecewise Monotone Transformations

Theorem 2.5

Let X be a continuous random variable with pdf fX on the sup-
port X and let Y = g(X). Let A0, A1, . . . , Ak be a partition of X
such that P (X ∈ A0) = 0 and fX is continuous on each Ai. If
there exist functions g1, . . . , gk defined on A1, . . . , Ak such that

(i) g(x) = gi(x) for every x ∈ Ai;
(ii) gi is monotone on Ai for each i = 1, . . . , k,

(iii) the set Y = {y : y = gi(x) for some x ∈ Ai} is the same for
each i = 1, . . . , k,

(iv) g−1
i has continuous derivative on Y for each i = 1, . . . , k,

then the pdf of Y is

fY (y) =


k∑
i=1

fX
(
g−1
i (y)

) ∣∣∣∣∣∣dg
−1
i (y)

dy

∣∣∣∣∣∣ for y ∈ Y

0 otherwise.

2-13



Probability Integral Transform

Theorem 2.6

Let X have continuous cdf FX and define the random variable

Y = FX(X). Then Y is distributed as a uniform random variable

on the interval (0,1).

That is the pdf of Y is

fY (y) =

{
1 0 < y < 1

0 otherwise.
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Expectations

Definition 2.6

If X is a discrete random variable with probability mass function
fsssX on support X then the expected value or mean of g(X) for
any real-valued function g is

E
(
g(X)

)
=

∑
x∈X

g(x)fX(x)

provided that
∑
|g(x)|fX(x) <∞, otherwise we say that the mean

does not exist.

If X is a continuous random variable with probability density
function fX(x) the expected value of g(X) is

E
(
g(X)

)
=
∫ ∞
−∞

g(x)fX(x) dx

provided that
∫
|g(x)|fX(x) dx < ∞, otherwise we say that the

mean does not exist.
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Some Properties of Expectations

Theorem 2.7

Let X be a random variable with support X . Then for any real-
valued functions g1 and g2 whose expectations exist and any real
constants a, b and c

(i) E
(
ag1(X) + bg2(X) + c

)
= aE

(
g1(X)

)
+ bE

(
g2(X)

)
+ c.

(ii) If g1(x) > 0 for all x ∈ X then E
(
g1(X)

)
> 0

(iii) If g1(x) > g2(x) for all x ∈ X then E
(
g1(X)

)
> E

(
g2(X)

)

(iv) If 6 g1(x) 6 b for all x ∈ X then a 6 E
(
g1(X)

)
6 b
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Moments

Definition 2.7

Suppose that X is a random variable with cdf FX. For any

positive integer r, the rth moment of X (more accurately of FX)

is µ′r = E (Xr)

The rth central moment of X is µr = E ((X − µ)r) where µ =

µ′1 = E(X).

Definition 2.8

The second central moment is called the variance of X

Var(X) = E
(
(X − µ)2

)
= E

(
X2

)
−
(

E(X)
)2

The positive square root of the variance is called the standard

deviation of X.
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Moment Generating Functions

Definition 2.9

Let X be a random variable with cdf FX. The moment generating

function of X (or of FX) is

MX(t) = E
(
etX

)
provided this expectation exists for t in some neighbourhood of

0.

Theorem 2.8

If X has moment generating function MX(t) then for any integer

r

µ′r = E (Xr) =
dr

dtr
MX(t)

∣∣∣∣∣
t=0

.
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Properties of the Moment Generating Function

Theorem 2.9

Let X be a random variable with moment generating function

MX(t) which exists in a neighbourhood of 0 and let a and b be

two real constants. The the moment generating function of the

random variable aX + b is

MaX+b(t) = ebtMX(at).

∗ If the moment generating function of a random variable exists

then all moments of that random variable exist.

∗ The reverse is not true (e.g. the log-normal distribution).
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Equality of Distributions

Theorem 2.10

Let X and Y be two random variables with cdfs FX and FY

respectively, all of whose moments exist.

(i) If X and Y have bounded support then FX(u) = FY (u) for all

u if, and only if E (Xr) = E (Y r) for all positive integers r.

(ii) If the moment generating functions MX(t) and MY (t) exist

in a neighbourhood of 0 and MX(t) = MY (t) for all t in that

neighbourhood then FX(u) = FY (u) for all u.
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Convergence of Distribution and Moment Generating Func-

tions

Theorem 2.11

Let X1, X2, . . . be a sequence of random variables each with mo-

ment generating function MXn(t), and cumulative distribution

function FXn for i = 1,2, . . .. Suppose that

lim
n→∞MXn(t) → MX(t) for all t in a neighbourhood of 0

where MX(t) is a moment generating function for some random

variable X. Then there exists a unique cumulative distribution

function FX whose moments are determined by MX(t) and

lim
n→∞FXn(x) → FX(x)

at every x where FX is continuous.
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