Random Variables

Definition 2.1

A random variable is defined as a function $X : S \to \mathcal{X} \subseteq \mathbb{R}$ mapping the sample space S to a subset of the real line.

The set \mathcal{X} of possible values of the random variable is called the support of the random variable.

* We use the notation $(X \in A)$ to denote the event (in S) which is mapped to the set A by the function X.

$$(X \in A) \equiv \{s \in S : X(s) \in A\}$$

* Hence we can define a probability function P_X on \mathcal{X} as

$$P_X(A) = P(X \in A) = P(\{s \in S : X(s) \in A\})$$

Cumulative Distribution Function

- * We talk about the distribution of a random variable to describe the probability that it falls in certain subsets of the real line.
- * Of particular interest are right-closed intervals which define the cumulative distribution function.

Definition 2.2

Suppose that X is a random variable defined on a sample space S, then the cumulative distribution function (CDF) of X is defined as

$$F_X(x) = P(X \leqslant x) = P(\{s \in S : X(s) \leqslant x\})$$

* Two random variables are said to be identically distributed if, and only if, they have the same CDF.

Properties of the CDF

Theorem 2.1

If a function F is a cumulative distribution function then it satisfies the properties

(i)
$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$,

(ii) F is a nondecreasing (monotone increasing) function

$$x_1 < x_2 \Rightarrow F(x_1) \leqslant F(x_2),$$

(iii) *F* is a right-continuous function

$$\lim_{x \downarrow x_0} F(x) = F(x_0) \quad \text{for every } x_0 \in \mathbb{R}.$$

 It can also be shown that any function F satisfying these conditions is a cumulative distribution function for some random variable.

Continuous and Discrete Random Variables

Definition 2.3

A random variable X is called a continuous random variable if the cumulative distribution function F_X is a continuous function. A continuous random variable has an uncountable support \mathcal{X} .

X is said to be a discrete random variable if F_X is a step function. A discrete random variable has finite or countable support \mathcal{X} .

Probability Mass and Density Functions

Definition 2.4

If X is a discrete random variable then the probability mass function of X is given by

$$f_X(x) = P(X = x)$$

Definition 2.5

For a continuous random variable X with cumulative distribution function $F_X(x)$, the probability density function of X is the nonnegative function f which satisfies

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt$$

Properties of Mass and Density Functions

Theorem 2.2

A function f is a probability density (or mass) function of a random variable if, and only if, it satisfies

(i) $f_X(x) \ge 0$ for every $x \in \mathbb{R}$.

(ii)
$$\sum_{x \in \mathcal{X}} f_X(x) = 1$$
 (mass function)
 $\int_{-\infty}^{\infty} f_X(x) dx = 1$ (density function)

Transformations

- * Recall that a random variable X is a function mapping a sample space S to $\mathcal{X} \subseteq \mathbb{R}$.
- * Consider a real-valued function g defined on \mathbb{R} . Then Y = g(X) is a composition of functions mapping S to $\mathcal{Y} \subseteq \mathbb{R}$ and so is also a random variable.
- * For a given random variable X and its associated distribution, we wish to find the distribution of the random variable Y = g(X) for some transformation g.

Defining Probabilities for Y = g(X)

- * For any set $A \subseteq \mathcal{Y}$ we can define an inverse mapping $g^{-1}(A) = \{x \in \mathcal{X} : g(x) \in A\}$
- * Then we define the event

$$(Y \in A) = (g(X) \in A) = (X \in g^{-1}(A)).$$

* Thus we can define a probability measure

$$P(Y \in A) = P(X \in g^{-1}(A)) = P(\{s \in S : X(s) \in g^{-1}(A)\})$$

- This satisfies the Axioms of Probability and so is a valid probability measure.
- * The support \mathcal{Y} of Y is given by

$$\mathcal{Y} = \{y : y = g(x) \text{ for some } x \in \mathcal{X}\}$$

Transformations of Discrete Random Variables

* For a discrete random variable we can find the probability mass function of Y from that for X.

$$f_Y(y) = \sum_{\{x \in \mathcal{X}: g(x) = y\}} f_X(x) = \sum_{x \in g^{-1}(y)} f_X(x) \quad \text{for } y \in \mathcal{Y}$$

* The cumulative distribution function for Y is found by summing its probability mass function

$$F_Y(y) = \sum_{t \leqslant y} f_Y(t) = \sum_{\{x \in \mathcal{X} : g(x) \leqslant y\}} f_X(x)$$

Transformations of Continuous Random Variables

* For a continuous random variable, it is generally easiest to get the cdf first.

$$F_Y(y) = \int_{\{x \in \mathcal{X} : g(x) \leq y\}} f_X(x) \, dx$$

* We can then find the probability density function using the relation

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

Monotone Transformations

- * g is said to be monotone if $u > v \Rightarrow g(u) > g(v)$ (increasing) or $u > v \Rightarrow g(u) < g(v)$ (decreasing).
- * A monotone g is one-to-one and so g^{-1} is also single-valued and monotone.

Theorem 2.3

Suppose that X has cdf F_X on support X and let Y = g(X) be defined on $\mathcal{Y} = g(\mathcal{X})$.

(i) If g is an increasing function then $F_Y(y) = F_X(g^{-1}(y))$ for any $y \in \mathcal{Y}$.

(ii) If g is a decreasing function and X is a continuous random variable then $F_Y(y) = 1 - F_X(g^{-1}(y))$ for any $y \in \mathcal{Y}$.

Monotone Transformations of Continuous Random Variables

Theorem 2.4

Let X be a continuous random variable with continuous pdf f_X on a support X and let Y = g(X) where g is a monotone function on X. Let $\mathcal{Y} = g(\mathcal{X})$ and suppose that g^{-1} has a continuous derivative on Y. Then the pdf of Y is

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| & \text{for } y \in \mathcal{Y} \\ 0 & \text{otherwise} \end{cases}$$

Extension for Piecewise Monotone Transformations

Theorem 2.5

Let X be a continuous random variable with pdf f_X on the support X and let Y = g(X). Let A_0, A_1, \ldots, A_k be a partition of X such that $P(X \in A_0) = 0$ and f_X is continuous on each A_i . If there exist functions g_1, \ldots, g_k defined on A_1, \ldots, A_k such that

$$f_{Y}(y) = \begin{cases} \sum_{i=1}^{k} f_{X}\left(g_{i}^{-1}(y)\right) \left| \frac{dg_{i}^{-1}(y)}{dy} \right| & \text{for } y \in \mathcal{Y} \\ 0 & \text{otherwise} \end{cases}$$

2-13

Probability Integral Transform

Theorem 2.6

Let X have continuous cdf F_X and define the random variable $Y = F_X(X)$. Then Y is distributed as a uniform random variable on the interval (0, 1).

That is the pdf of Y is

$$f_Y(y) = \begin{cases} 1 & 0 < y < 1 \\ 0 & otherwise. \end{cases}$$

Expectations

Definition 2.6

If X is a discrete random variable with probability mass function f_{sssX} on support \mathcal{X} then the expected value or mean of g(X) for any real-valued function g is

$$\mathsf{E}(g(X)) = \sum_{x \in \mathcal{X}} g(x) f_X(x)$$

provided that $\sum |g(x)| f_X(x) < \infty$, otherwise we say that the mean does not exist.

If X is a continuous random variable with probability density function $f_X(x)$ the expected value of g(X) is

$$\mathsf{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

provided that $\int |g(x)| f_X(x) dx < \infty$, otherwise we say that the mean does not exist.

Some Properties of Expectations

Theorem 2.7

Let X be a random variable with support \mathcal{X} . Then for any realvalued functions g_1 and g_2 whose expectations exist and any real constants a, b and c

(i)
$$\mathsf{E}(ag_1(X) + bg_2(X) + c) = a \mathsf{E}(g_1(X)) + b \mathsf{E}(g_2(X)) + c.$$

(ii) If $g_1(x) \ge 0$ for all $x \in \mathcal{X}$ then $\mathsf{E}(g_1(X)) \ge 0$

(iii) If $g_1(x) \ge g_2(x)$ for all $x \in \mathcal{X}$ then $\mathsf{E}(g_1(X)) \ge \mathsf{E}(g_2(X))$

(iv) If $\leqslant g_1(x) \leqslant b$ for all $x \in \mathcal{X}$ then $a \leqslant \mathsf{E}(g_1(X)) \leqslant b$

2-16

Moments

Definition 2.7

Suppose that X is a random variable with cdf F_X . For any positive integer r, the r^{th} moment of X (more accurately of F_X) is $\mu'_r = \mathsf{E}(X^r)$

The r^{th} central moment of X is $\mu_r = \mathsf{E}((X - \mu)^r)$ where $\mu = \mu'_1 = \mathsf{E}(X)$.

Definition 2.8

The second central moment is called the variance of X

$$\operatorname{Var}(X) = \mathsf{E}\left((X - \mu)^2\right) = \mathsf{E}\left(X^2\right) - \left(\mathsf{E}(X)\right)^2$$

The positive square root of the variance is called the standard deviation of X.

Moment Generating Functions

Definition 2.9

Let X be a random variable with cdf F_X . The moment generating function of X (or of F_X) is

$$M_X(t) = \mathsf{E}\left(\mathsf{e}^{tX}\right)$$

provided this expectation exists for t in some neighbourhood of 0.

Theorem 2.8

If X has moment generating function $M_X(t)$ then for any integer r

$$\mu_r' = \mathsf{E}(X^r) = \frac{d^r}{dt^r} M_X(t) \Big|_{t=0}$$

2-18

Properties of the Moment Generating Function

Theorem 2.9

Let X be a random variable with moment generating function $M_X(t)$ which exists in a neighbourhood of 0 and let a and b be two real constants. The the moment generating function of the random variable aX + b is

$$M_{aX+b}(t) = e^{bt} M_X(at).$$

- * If the moment generating function of a random variable exists then all moments of that random variable exist.
- * The reverse is not true (e.g. the log-normal distribution).

Equality of Distributions

Theorem 2.10

Let X and Y be two random variables with cdfs F_X and F_Y respectively, all of whose moments exist.

- (i) If X and Y have bounded support then $F_X(u) = F_Y(u)$ for all u if, and only if $E(X^r) = E(Y^r)$ for all positive integers r.
- (ii) If the moment generating functions $M_X(t)$ and $M_Y(t)$ exist in a neighbourhood of 0 and $M_X(t) = M_Y(t)$ for all t in that neighbourhood then $F_X(u) = F_Y(u)$ for all u.

Convergence of Distribution and Moment Generating Functions

Theorem 2.11

Let X_1, X_2, \ldots be a sequence of random variables each with moment generating function $M_{X_n}(t)$, and cumulative distribution function F_{X_n} for $i = 1, 2, \ldots$ Suppose that

 $\lim_{n\to\infty} M_{X_n}(t) \to M_X(t) \quad \text{for all } t \text{ in a neighbourhood of } 0$ where $M_X(t)$ is a moment generating function for some random variable X. Then there exists a unique cumulative distribution function F_X whose moments are determined by $M_X(t)$ and

$$\lim_{n\to\infty}F_{X_n}(x) \to F_X(x)$$

at every x where F_X is continuous.